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Pathologies on Du Val del Pezzo surfaces

All varieties are defined over k = k̄ in characteristic p � 0.

Definition
X is a Du Val del Pezzo surface

def
() X is a normal projective surface

with only Du Val singularities s.t. �KX is ample.

Notation
If X has three A1-singularities and one D4-singularity, then we write

Dyn(X ) = 3A1 + D4 or X = X (3A1 + D4).

Pathological Phenomena in p > 0
Keel–M

c
Kernan constructed a Du Val del Pezzo surface X := X (7A1) in

p = 2.

I 7A1 /2 Dynkin type in p = 0.

I Violating Bertini’s Theorem: all members of |� KX | are singular.

I Violating Kodaira type Theorem: 9A: ample Z-divisor s.t.

H
1(OX (KX + A)) 6= 0 (Cascini-Tanaka).
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Log liftability

It is believed that “Pathologies in p > 0 $ Non liftability to the Witt
ring”

Unfortunately, all Du Val del Pezzo surfaces lift to the Witt ring.

Therefore, we consider stronger liftability.

Definition (log lift)
X : Du Val del Pezzo surface in p > 0.

X is log liftable
def
() (Y ,E ) lifts to the Witt ring W (k), where

⇡ : Y ! X is the minimal resolution with reduced exceptional divisor E .

As we will see later, X (7A1) is not log liftable.
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Pathologies and log liftability

We introduce the following properties.

For a Du Val del Pezzo surface X in p > 0, we say that X satisfies:

I (ND) if 6 9XC : Du Val del Pezzo surface over C s.t.

Dyn(X ) = Dyn(XC) and ⇢(X ) = ⇢(XC).

I (NB) if all members of |� KX | are singular.

I (NK) if 9A: ample Z-divisor s.t. H
1(OX (KX + A)) 6= 0.

I (NL) if X is not log liftable.

Lemma
We have the following implications.

ND +3 NL +3 NB

NK

KS

By the above lemma, we should focus on Du Val del Pezzo surfaces

satisfying NB.
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Main Result

Theorem
Du Val del Pezzo surfaces satisfying NB are as follows.

Table 1:
K

2
X K

2
X = 1

Dyn(X ) E8 D8 A1 + E7 2D4 2A1 + D6
Characteristic p = 2, 3 p = 2

No. of isomorphism classes 1 1 1 1 1

NL? ⇥ ⇥ ⇥ ⇥ ⇥

ND? ⇥ ⇥ ⇥ ⇥ ⇥

NK? ⇥ ⇥ ⇥ ⇥ ⇥

K
2
X = 1 K

2
X = 2

4A1 + D4 8A1 A2 + E6 4A2 E7 A1 + D6 3A1 + D4 7A1
p = 2 p = 3 p = 2

1 1 1 1 1 1 1 1

� � ⇥ � ⇥ ⇥ ⇥ �

� � ⇥ ⇥ ⇥ ⇥ ⇥ �

� � ⇥ ⇥ ⇥ ⇥ ⇥ �

Remark
(NL) () Dyn(X ) = 4A1 + D4, 8A1, 7A1, or (p,Dyn(X )) = (3, 4A2).
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Non log liftability of X (4A2)

Sketch of proof
Suppose that X := X (4A2) is log liftable. Let ⇡ : Y ! X be the minimal

resolution with reduced exceptional divisor E and (YK ,EK ) be the generic

fiber of W (k)-lifting of (Y ,E ). Then the blow-up ZK ! YK at the base

point of |� KYK | gives the anti-canonical morphism fK : ZK ! P1
K . Let

GK ,i ⇢ ZK be the strict transform of EK ,i , where EK ,i (i = 1, 2, 3, 4) are

connected component of EK . Then fK (GK ,i ) is a K -rational point for

each i . By using Beauville’s result, we have fK (Gi ) = ! and hence

! 2 K , where ! is a primitive cube root of unity. This is a contradiction.

(ZK ,GK =
P4

i=1 GK ,i ) //

fK

**

(YK ,EK :=
P4

i=1 EK ,i )

�|�KYK
|

✏✏

P1
K
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