On liftability of Du Val del Pezzo surfaces in positive characteristic

Tatsuro Kawakami (j.w.w Masaru Nagaoka)

The University of Tokyo

Kinosaki Algebraic Geometry Symposium 2020, October

Pathologies on Du Val del Pezzo surfaces

All varieties are defined over $k = \overline{k}$ in characteristic $p \ge 0$.

Definition

X is a Du Val del Pezzo surface $\stackrel{\text{def}}{\iff} X$ is a normal projective surface with only Du Val singularities s.t. $-K_X$ is ample.

Notation

If X has three A_1 -singularities and one D_4 -singularity, then we write $Dyn(X) = 3A_1 + D_4$ or $X = X(3A_1 + D_4)$.

Pathological Phenomena in p > 0

Keel-M^cKernan constructed a Du Val del Pezzo surface $X := X(7A_1)$ in p = 2.

- ▶ $7A_1 \notin$ Dynkin type in p = 0.
- ▶ Violating Bertini's Theorem: all members of $|-K_X|$ are singular.
- Violating Kodaira type Theorem: ∃A: ample Z-divisor s.t. H¹(O_X(K_X + A)) ≠ 0 (Cascini-Tanaka).

Log liftability

It is believed that "Pathologies in $p > 0 \leftrightarrow$ Non liftability to the Witt ring"

Unfortunately, all Du Val del Pezzo surfaces lift to the Witt ring. Therefore, we consider stronger liftability.

Definition (log lift)

X : Du Val del Pezzo surface in p > 0. X is log liftable $\stackrel{\text{def}}{\iff} (Y, E)$ lifts to the Witt ring W(k), where $\pi: Y \to X$ is the minimal resolution with reduced exceptional divisor E.

As we will see later, $X(7A_1)$ is not log liftable.

Pathologies and log liftability

We introduce the following properties.

For a Du Val del Pezzo surface X in p > 0, we say that X satisfies:

- ▶ (ND) if $\exists X_{\mathbb{C}}$: Du Val del Pezzo surface over \mathbb{C} s.t. Dyn(X) = Dyn(X_C) and $\rho(X) = \rho(X_{\mathbb{C}})$.
- (NB) if all members of $|-K_X|$ are singular.
- ▶ (NK) if $\exists A$: ample \mathbb{Z} -divisor s.t. $H^1(\mathcal{O}_X(K_X + A)) \neq 0$.
- (NL) if X is not log liftable.

Lemma

We have the following implications.

By the above lemma, we should focus on Du Val del Pezzo surfaces satisfying NB.

Main Result

Theorem

Du Val del Pezzo surfaces satisfying NB are as follows.

K_X^2				$K_X^2 = 1$				
$\operatorname{Dyn}(X)$				<i>E</i> ₈	D ₈	$A_1 + E_7$	2 <i>D</i> ₄	$2A_1 + D_6$
Characteristic				<i>p</i> = 2, 3	p = 2			
No. of isomorphism classes				1	1	1	∞	1
NL?				×	×	×	×	×
ND?				×	×	×	×	×
NK?				×	×	×	×	×
$K_X^2 = 1$				$K_X^2 = 2$				
$4A_1 + D_4$	8A1	$A_2 + E_6$	4 <i>A</i> ₂	E ₇	$A_1 + D_6$	$3A_1 + D_4$	$7A_1$	
p=2 $p=3$		p = 2						
∞	∞	1	1	1	1	1	1	
\bigcirc	\bigcirc	×	\bigcirc	×	×	×	\bigcirc	
Ō	\bigcirc	×	×	×	×	×	\circ	
0	Ó	×	×	×	×	×	Ó	

Table 1:

Remark

 $(\mathsf{NL})\iff \mathrm{Dyn}(X)=4A_1+D_4, 8A_1, 7A_1, \text{ or } (p,\mathrm{Dyn}(X))=(3,4A_2).$

Non log liftability of $X(4A_2)$

Sketch of proof

Suppose that $X := X(4A_2)$ is log liftable. Let $\pi : Y \to X$ be the minimal resolution with reduced exceptional divisor E and (Y_K, E_K) be the generic fiber of W(k)-lifting of (Y, E). Then the blow-up $Z_K \to Y_K$ at the base point of $|-K_{Y_K}|$ gives the anti-canonical morphism $f_K : Z_K \to \mathbb{P}^1_K$. Let $G_{K,i} \subset Z_K$ be the strict transform of $E_{K,i}$, where $E_{K,i}$ (i = 1, 2, 3, 4) are connected component of E_K . Then $f_K(G_{K,i})$ is a K-rational point for each i. By using Beauville's result, we have $f_K(G_i) = \omega$ and hence $\omega \in K$, where ω is a primitive cube root of unity. This is a contradiction.