Cylinders in canonical del Pezzo fibrations

Masatomo Sawahara

Saitama University

October 21, 2020

Notation

- Unless otherwise stated, all varieties are defined over k, where k: field of characteristic zero (NOT necessarily an algebraic closed field).
- \overline{k} : algebraic closure of k.
- A Fano variety means a normal projective variety, whose anti-canonical divisor is ample.
- A del Pezzo surface means a Fano variety of dimension two.

Definition.

X: normal algebraic variety, U: (Zariski) open subset of X. U: cylinder (on X) $\iff U \simeq \mathbb{A}^1_k \times Z$ for some variety Z.

4/10

Why cylinder?

There are many applications (especially unipotent group actions).

Theorem. (Kishimoto-Prokhorov-Zaidenberg '11)

Assume $k = \overline{k}$.

X: normal projective variety, H: ample \mathbb{Q} -divisor on X. Then the following two assertions are equivalent:

1 X contains an H-polar cylinder U, i.e., U is a cylinder and $\exists D: \text{ eff. } \mathbb{Q}\text{-div. on } X \text{ s.t. } D \sim_{\mathbb{Q}} H \text{ and } U = X \setminus \text{Supp}(D).$

2
$$\hat{X} := \operatorname{Spec}\left(\bigoplus_{i \ge 0} H^0(X, \mathscr{O}_X(iH))\right)$$
 admits an eff. \mathbb{G}_a -action.

Example. (Cheltsov-Park-Won '16)

Assume $k = \overline{k}$. They proved that: $\mathbb{P}_k^3 \supseteq S := (x^3 + y^3 + z^3 + w^3 = 0) \supseteq \not\exists (-K_S)$ -polar cylinder. $\therefore \mathbb{A}_k^4 \supseteq \hat{S} = (x^3 + y^3 + z^3 + w^3 = 0) \not\exists \curvearrowleft \text{ eff. } \mathbb{G}_a\text{-action.}$

How to find cylinders? -Cylinders in MFS-

V: normal projective variety with at most \mathbb{Q} -factorial klt singularities $/\mathbb{C}$.

Theorem. (Birkar-Cascini-Hacon-McKernan '10)

 $K_V: \text{ NOT pseudo-effective} \implies$ $\exists V \dashrightarrow X; \text{ minimal model program (MMP),}$ which ends with a Mori fiber space (MFS) $f: X \to Y.$

Lemma. (Dubouloz-Kishimoto '19)

 $V \dashrightarrow X; MMP.$

X contains a cylinder \implies V contains a cylinder.

Question.

Look for cylinders contained in a projective variety with MFS structure.

Vertical cylinder

 $f: X \to Y$; dominant morphism between normal varieties.

Definition.

$$\begin{split} X \supseteq U \simeq \mathbb{A}_{k}^{1} \times Z \colon \textit{cylinder.} \\ U : \textit{vertical cylinder w.r.t.} \ f \iff \exists g : Z \to Y \textit{ s.t. } f|_{U} = g \circ pr_{Z}. \\ X \xleftarrow{} U \\ f \downarrow & \bigcirc \\ Y \xleftarrow{g} & Z \end{split}$$

 X_{η} : generic fiber of f.

Lemma.

f admits a vertical cylinder $\stackrel{iff}{\iff} X_{\eta}$ contains a cylinder.

Generic fiber of MFS

 $f: X \to Y$; MFS / \mathbb{C} , X_η : generic fiber of f.

- X_η: Fano variety of rank one over C(Y) and of dimension dim X − dim Y.
- Note that $\mathbb{C}(Y)$ is NOT algebraically closed unless dim Y = 0.

Question.

V: Fano variety of rank one over k. In which case does V contain a cylinder?

Theorem. (Dubouloz-Kishimoto '18)

S: <u>smooth</u> del Pezzo surface of rank one over k. $d := (-K_S)^2 \in \{1, \ldots, 6, 8, 9\}$: degree of S. $S \supseteq \exists$ cylinder $\iff d \ge 5$ and $S(k) \ne \emptyset$. (Hence, the existence of cylinders contained in S is completely controlled by means of degree of S and k-rational points on S.)

7/10

Canonical del Pezzo fibration

• To state the result, we need to prepare some definitions.

Definition.

- S: del Pezzo surface over k.
- S: canonical del Pezzo surface $\iff_{def.} S_{\overline{k}}$ has at most Du Val singularities.

Definition.

 $f: X \to Y$; dominant projective morphism. f; canonical del Pezzo fibration $\underset{def}{\longleftrightarrow}$ the following conditions hold:

- X has at most canonical singularities.
- The generic fiber X_{η} : del Pezzo surface of rank one.

Question.

S: canonical del Pezzo surface of rank one over k. In which case does S contain a cylinder?

8/10

Main Result

Theorem. (S.)

S: <u>canonical</u> del Pezzo surface of rank one over k. The existence of cylinders contained in S is completely controlled by means of <u>degree</u> of S and the action of $Gal(\overline{k}/k)$ on the set of exceptional <u>curves</u> appearing the minimal resolution of $S_{\overline{k}}$ except for few cases. (Precise statement being a bit long, we omit it.)

Example. (S.)

Assume $k = \mathbb{C}(t)$ and $\mathbb{P}(1, 1, 1, 2) = \text{Proj}(k[x, y, z, w])$. $\mathbb{P}(1, 1, 1, 2) \supseteq S_n := (t^n w^2 + x^2 y^2 + y z^3 = 0)$, here $n \in \mathbb{Z}$.

- S_n : canonical del Pezzo surface of degree 2.
- $S_{n,\overline{k}}$ has exactly two singular points of A_2 and A_5 -type respectively.
- Namely, S_n is of rank one.

 $S_n \supseteq \exists$ cylinder $\stackrel{\text{iff}}{\iff} n$: even.

9/10

References

- [BCHM] C. Birkar, P. Cascini, C. Hacon and J. McKernan, *Existence of minimal models for varieties of log general type*, J. Am. Math. Soc., **23** (2010), 405–468.
- [CPW1] I. Cheltsov, J. Park and J. Won, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc., 18 (2016), 1537–1564.
- [CPW2] I. Cheltsov, J. Park and J. Won, Cylinders in singular del Pezzo surfaces, Comp. Math., 152 (2016), 1198–1224.
- [DK1] A. Dubouloz and T. Kishimoto, Cylinders in del Pezzo fibrations, Israel J. Math., 225 (2018), 797–815.
- [DK2] A. Dubouloz and T. Kishimoto, Deformations of A¹-cylindrical varieties, Math. Ann., 373 (2019), 1135–1149.
- [KPZ] T. Kishimoto, Y. Prokhorov and M. Zaidenberg, Group actions on affine cones, In: Affine Algebraic Geometry, 123–163, Peter Russell's Festschrift, CRM Proc. Lecture Notes 54, Amer. Math. Soc., Providence, RI, 2011.
- [S1] M. Sawahara, Cylinders in weak del Pezzo fibrations, submitted.
- [S2] M. Sawahara, Cylinders in canonical del Pezzo fibrations, in preparation.