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The propagation velocity of a resistive interchange mode is numerically investigated based on a

two-fluid model. It is newly found that the nonlinearity mixes the interchange parity and the tearing

parity to produce magnetic islands and controls the propagation velocity of the instability in the

poloidal direction. The parity of the interchange mode is conserved during the linear growing

evolution. However, when the amplitude of the mode becomes large and nonlinear effects are

dominant, the pure interchange mode does not satisfy the nonlinear two-fluid equation. Thus, the

nonlinear energy transfer occurs from the interchange parity mode to the tearing parity mode,

which is called the nonlinear parity mixtures, and the magnetic islands are produced by the inter-

change mode. The nonlinear magnetic island formation by the interchange mode plays a central

role in controlling the interchange mode’s propagation velocity, which is equal to the electron fluid

velocity. This nonlinear process is essential in quantitatively reproducing the propagation velocity

of the interchange mode, which is the same as the electron fluid velocity observed in the large

helical device experiment. It is also found that one of the mechanisms of parity mixtures is a

modulational instability. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4993472]

I. INTRODUCTION

One of the critical issues in the confinement of helical

plasmas is to suppress the pressure driven magnetohydrody-

namic (MHD) instabilities. Experimental results from the

large helical device (LHD) suggest that the mode rotation

plays an important role in the MHD activity. For instance, a

locked mode-like instability was found when the magnetic

shear is weak in the entire plasma region in LHD experi-

ments.1,2 In the locked mode-like instability, a rotating resis-

tive interchange mode is often observed as a precursor.

When the rotation of the resistive interchange mode stops,

the amplitude of the mode rapidly increases and then a minor

collapse occurs. In addition, when resistive interchange

modes rotate in the poloidal direction in the observation of

high beta LHD plasmas with high magnetic shear in the

peripheral region, the influence of the instabilities on the

plasma confinement is small.3 Recently, it is found that the

rotation velocity of the magnetic perturbation of the inter-

change mode agrees well with the electron fluid velocity in

the LHD plasmas.4 The rotation velocity has been studied by

numerical simulations based on fluid models. However, the

linear analysis of the interchange mode5 is not in agreement

with the rotation velocity observed in LHD experiments. The

linear analysis based on the two-fluid reduced model has

been also carried out by focusing on the influence of plasma

viscosity and thermal conductivity.6 The present study has

been undertaken to examine the influence of the nonlinear

formation of the magnetic islands on the propagation veloc-

ity of the resistive interchange mode. The study is motivated

by finding that magnetic islands are nonlinearly formed in

the previous nonlinear simulation studies based on the three-

field model without the two-fluid effects,7,8 although the

interchange mode does not generate the magnetic islands in

the linear phase. The formation of the magnetic islands may

affect the rotation velocity of the modes,9 and it is linked to

the parity of the interchange mode.10 The interchange mode

has a specific dependence on the coordinate in the radial

direction, and its electrostatic potential is an even function of

the local radial coordinate around the mode resonance sur-

face. This is clearly represented by the equation /ð�xÞ
¼ /ðxÞ, where x¼ r – rs, and the mode having this parity is

called as the interchange parity mode. On the other hand,

when electrostatic potential is an odd function,

/ð�xÞ ¼ �/ðxÞ, the mode is called as the tearing parity

mode. In the linear growing evolution, these parities are inde-

pendent. However, they are mixed in the nonlinear evolution,

and this mixture has a significant impact on the saturation level

of instability, especially on the formation of magnetic islands.10

This paper presents the dependence of the propagation velocity

of the interchange mode on the width of the magnetic islands

produced by nonlinear parity mixtures by means of the two-

fluid simulations. Since the formation of the magnetic islands

is represented by the appearance of the tearing parity mode, the

generation of the tearing parity mode is also discussed in detail.

It is found that a modulational instability is a typical process of

the nonlinear tearing parity mode production.

The remainder of this paper is as follows: The numerical

model is shown in Sec. II. The parity of instabilities is dis-

cussed in Sec. III. The linear analysis of the interchange

mode is presented in Sec. IV, and the nonlinear evolution

obtained from the simulations is presented in Sec. V. Finally,

summary is given in Sec. VI.

II. NUMERICAL MODEL

In this paper, we use the four-field model, which is a

typical two-fluid model for the analysis of instabilities

caused in magnetized plasmas,11 and we consider, for sim-

plicity, two dimensional slab geometry by assuming that the
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plasma is uniform along the z-axis. The four-field model con-

sists of the vorticity equation, the generalized Ohm’s law,

the pressure equation, and the parallel velocity equation

@U

@t
¼ U;/½ � þ w; J½ � þ 2 p;Xh½ � �

�di

2
p;U½ � þ /;r2

?p
� ��

þr2
? p;/½ �

�
þ �?r2

? U þ �dir2
? p� peqð Þ

n o
; (1)

@w
@t
¼ w;/� �dip
� �

þ g J � Jeqð Þ; (2)

@p

@t
¼ p;/½ � þ 2b�di w; J½ � þ b w; vk

� �
þ 2b Xh;/� �dip

� �
þ vr2

? p� peqð Þ; (3)

@vk
@t
¼ vk;/
� �

þ w; p½ � þ �kr2
?vk; (4)

respectively, where J ¼ r2
?w; U ¼ r2

?/; ½f ; g� ¼
@f
@x
@g
@y

� @f
@y
@g
@x, and r? ¼ êx

@
@xþ êy

@
@y. In these equations, U, /, w,

J, p, vk, and Xh are the vorticity, the electrostatic potential,

the magnetic flux, the plasma current, the pressure, the paral-

lel velocity, and the magnetic curvature, respectively. The

magnetic field and the E�B velocity are represented by

B ¼ êz � êz �rw and vE�B ¼ �r/� êz, respectively.

Here, êx; êy, and êz are the unit vectors in the x, y, and z direc-

tions, respectively. The normalizations are ½x=a;y=a;�vat=a;
w=ð�B0aÞ;/=ð�vaB0aÞ;bepð�TeÞ;vk=ð�vaÞ�!½x;y;t;w; /;p;vk�,
where B0 is the amplitude of the ambient magnetic field

along the z-axis, � is the inverse aspect ratio, and a is the

typical length of the system size such as a plasma minor

radius. Here, � is assumed to be � ¼ 0.6/3.6. The parameters
�di¼di=ð2aÞ¼c=ð2xpiaÞ¼ð2xcisaÞ�1

and b¼be/(1þbe) are

the normalized ion skin depth and the normalized electron

beta value, where sa¼a/vA, xci, and be are the Alfv�en time,

the ion cyclotron frequency, and the electron beta value.

We briefly describe the algorithm of the simulation code

used in this paper.8,12 Time advancement is made with a sec-

ond order predictor-corrector method. The simulation box

size is (1, Ly) with Ly¼ 4.4, and the box is assumed to be

periodic in the poloidal direction y. The plasma is assumed

to be surrounded by the perfect conducing wall at x¼ –0.5

and at 0.5. The derivatives with respect to x are approxi-

mated by a second order central finite differential method.

Fourier decomposition is used in the y direction as

w ¼ weq þ
P

n
~wne2ipny=Ly ; / ¼

P
n

~/ne2ipny=Ly ; p ¼ peq

þ
P

n ~pne2ipny=Ly , and vk ¼
P

n ~vkn
e2ipny=Ly , where n is the

mode number and the subscript eq represents the equilibrium

quantity. Here, we assumed that the equilibrium E�B

velocity is zero, i.e., /eq ¼ 0. The number of grid points in

the x direction is 1025, and the total number of the Fourier

modes ranges from 40 to 200 depending on the strength of

the nonlinear mode coupling.

The equilibrium profiles of the magnetic field and the

pressure are set to be

weq ¼ �B0Lsln cosh
x

Ls

� �� 	
; (5)

peq ¼
bt

2�
1� DP0tanh

x

Lp

� �
 �
; (6)

where Ls¼Lp¼ 0.15, B0¼ 0.1617, DP0¼ 0.8235, and bt is

the total beta value defined as bt¼ 2be assuming that the ion

pressure is the same as the electron pressure. In order to

study resistive interchange modes, the equilibrium current

density gradient is set to be zero, and the magnetic curvature

term and the total beta values are chosen to be Xh¼ 1.481x
and bt¼ 0.005. The dissipation coefficients are assumed to

be uniform, and their normalized value are chosen as

g ¼ �? ¼ �k ¼ v ¼ 10�6.

III. PARITY

The linear instabilities described by the two-fluid model,

Eqs. (1)–(4), are categorized into two groups. One is the

interchange parity and the other is the tearing parity, and

they are related to the symmetry in the x direction. When the

perturbed electrostatic potential is an even function of x, i.e.,

/ð�x; y; tÞ ¼ /ðx; y; tÞ, the instability is called as the inter-

change parity mode. On the other hand, when the electro-

static potential is an odd function of x, i.e., /ð�x; y; tÞ
¼ �/ðx; y; tÞ, the instability is called as the tearing parity

mode. The parity of other quantities is summarized in Table

I. The interchange parity and tearing parity modes are inde-

pendent during their linear growing evolution; however, they

can interact each other in their nonlinear evolution. Thus,

their nonlinear interactions have a significant impact on their

saturation levels, especially on the magnetic island formation

as described in Ref. 10.

In this section, we explain the parity symmetry of the

reduced MHD model

@

@t
r2/þ /;r2/

� �
¼ w;r2w
� �

; (7)

@

@t
wþ /;w½ � ¼ gr2w; (8)

instead of the two-fluid model for simplicity, where r2
? is

replaced by r2 in this section. We consider the parity sym-

metry against x by defining the parity transformation

as10,13,14

PxQðx; y; tÞ ¼ Qð�x; y; tÞ: (9)

The parity symmetry against y is related to the symmetry

along the magnetic field line in a torus plasma.16–18

TABLE I. Parity of perturbation under the transformation PxQðx; yÞ
¼ Qð�x; yÞ. /̂ is the electrostatic potential perturbation, ŵ is the magnetic

flux perturbation, v̂k is the parallel velocity perturbation, Ĵ is the parallel

current density perturbation, and p̂ is the pressure perturbation.

/̂ ŵ v̂k Ĵ p̂

Interchange parity mode Even Odd Odd Odd Even

Tearing parity mode Odd Even Even Even Odd
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A. Parity conservation of linear instability

In this subsection, we describe that both tearing and

interchange parity modes satisfy the linearized reduced

MHD equations so that each parity is conserved during the

linear evolution. We consider a normal shear plasma and

assume that Byð�xÞ ¼ �ByðxÞ; weqð�xÞ ¼ weqðxÞ, for

instance, By ¼ B0x; weq ¼ B0x2=2, where wðx; tÞ ¼ weqðxÞ
þŵðx; tÞ; /ðx; tÞ ¼ /̂ðx; tÞ, and x¼ (x, y). We apply the par-

ity transformation Px to the linearized equation, and then,

we have

@

@t
r2/̂6 ¼ weq;r2ŵ7

h i
þ ŵ7;r2weq

h i
; (10)

@

@t
ŵ7 þ /̂6;weq

h i
¼ gr2ŵ7; (11)

(Appendix A) by using the fact that the transformation

changes the sign of the Poisson bracket Px½f ; g�
¼ �½Pxf ;Pxg�. The equation implies that the tearing parity

mode (/̂�; ŵþ) and the interchange parity mode (/̂þ; ŵ�)

satisfy the linearized equation, respectively, and thus, the

parities are conserved during the linear evolution, respec-

tively, where /̂6ðx; y; tÞ ¼ 1
2
ð16PxÞ/̂ðx; y; tÞ; ŵ6ðx; y; tÞ

¼ 1
2
ð16PxÞŵðx; y; tÞ. In terms of /6 and w6, the inter-

change parity is Pxŵ�ðxÞ ¼ ŵ�ð�xÞ ¼ �ŵ�ðxÞ and

Px/̂þðxÞ ¼ /̂þð�xÞ ¼ /̂þðxÞ, and the tearing parity is

Px/̂�ðxÞ ¼ /̂�ð�xÞ ¼ �/̂�ðxÞ and PxŵþðxÞ ¼ ŵþð�xÞ
¼ ŵþðxÞ.

We have shown that each of the interchange and tearing

parities is conserved, when the amplitude of an instability is

small and the linearized equation is valid. It is noted that

these originate from the parity symmetry of the Poisson

bracket, and so, they are valid not only for reduced fluid

models but for the gyrokinetic equations.

B. Nonlinear parity mixing

Nonlinear effects become important and control the sat-

uration amplitude of instability when an instability grows.

We will show that the interchange parity mode is not able to

get saturated with keeping its parity, and thus, the inter-

change parity mode does not satisfy the nonlinear equation.

The constraint on the parity symmetry controls the nonlinear

evolution of the interchange mode. This is true for not only

the MHD instability but also the drift-wave instability such

as the ion temperature gradient (ITG) mode because the

gyrokinetic equation has the same parity symmetry. Hence,

the interchange parity mode should produce the tearing par-

ity mode in nonlinear evolution, which is called nonlinear

parity mixing.10

The nonlinear parity mixing occurs when the inter-

change parity mode grows and then the tearing parity mode

is excited by the interchange parity mode through nonlinear

effects. In order to show this, we substitute the electrostatic

potential / ¼ /̂þ þ /̂� and the magnetic potential w ¼ weq

þ ŵþ þ ŵ� to the reduced MHD equations. We neglect the

linear terms to elucidate the nonlinear parity mixing as

@

@t
r2/̂þ þ

@

@t
r2/̂� ¼ � /̂þ;r2/̂þ

h i
� /̂�;r2/̂�

h i

� /̂þ;r2/̂�

h i
� /̂�;r2/̂þ

h i
þ ŵþ;r2ŵþ

h i
þ ŵ�;r2ŵ�

h i
þ ŵþ;r2ŵ�

h i
þ ŵ�;r2ŵþ

h i
; (12)

@

@t
ŵþ þ

@

@t
ŵ� ¼ � /̂þ; ŵ�

h i
� /̂�; ŵþ

h i
� /̂þ; ŵþ

h i
� /̂�; ŵ�

h i
: (13)

First, we show that the tearing parity mode does not pro-

duce the interchange parity mode even in nonlinear evolution

so that the tearing parity mode satisfies the nonlinear equa-

tion. The tearing parity mode is represented by ð/̂�; ŵþÞ 6¼
0 and ð/̂þ; ŵ�Þ ¼ 0. We substitute them into the right-hand-

side of Eqs. (12) and (13), and then, we have

@

@t
r2/̂� ¼ � /̂�;r2/̂�

h i
þ ŵþ;r2ŵþ

h i
;

@

@t
r2/̂þ ¼ 0;

(14)

@

@t
ŵþ ¼ � /̂�; ŵþ

h i
;

@

@t
ŵ� ¼ 0: (15)

Equations (14) and (15) include only the tearing parity

mode, and thus, there is no nonlinear parity mixing, when

the tearing parity mode grows nonlinearly, e.g., in the

Rutherford regime. This means that when the initial state

includes only the tearing parity mode, the interchange parity

mode is not generated since the rate of the change of the

interchange parity mode is zero.

Next, we show the excitation of the tearing parity mode

by the interchange parity mode through the nonlinear parity

mixing so that the interchange parity mode does not satisfy

the nonlinear equation and is not able to get saturated with

keeping its parity. We substitute the interchange parity mode

ð/̂þ; ŵ�Þ 6¼ 0 and ð/̂�; ŵþÞ ¼ 0 to the right-hand-side of

Eqs. (12) and (13), and then, we obtain

@

@t
r2/̂� ¼ � /̂þ;r2/̂þ

h i
þ ŵ�;r2ŵ�

h i
;

@

@t
r2/̂þ ¼ 0;

(16)

@

@t
ŵþ ¼ � /̂þ; ŵ�

h i
;

@

@t
ŵ� ¼ 0: (17)

The nonlinear terms ½/̂þ;r2/̂þ�; ½ŵ�;r2ŵ��; ½/̂þ; ŵ�� in

the right-hand-side of Eqs. (16) and (17) represent that the

nonlinear interactions of the interchange parity mode excite

the tearing parity mode, i.e., the nonlinear parity mixing

produces the tearing parity mode.10 This results in the coex-

istence of both parity modes ð/̂þ; ŵ�Þ 6¼ 0 and

ð/̂�; ŵþÞ 6¼ 0, and then, the tearing parity mode is excited

by nonlinear interactions between the same parity modes,

while the interchange parity mode is excited by nonlinear

interactions between opposite parity modes as shown in

Appendix B.
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C. Modulational parity instability

One of the nonlinear parity mixing processes is a modu-

lational instability. A saturated state of the interchange mode

is unstable against the tearing parity mode, and this instabil-

ity is called as the modulational parity instability. The modu-

lational instability is normally used to investigate the zonal

flow production by a saturated drift-wave instability called a

pump mode.15 In the modulational parity instability, the

pump mode is the interchange mode, and the side-band

mode corresponds to the tearing parity mode representing

the magnetic island formation. In order to show the modula-

tional instability, we suppose that the interchange mode

ðÛþðxÞ; ðŴ�ðxÞÞ with Û� ¼ Ŵþ ¼ 0 gets saturated and is

in a steady state. Then, we add perturbations to the saturate

state of the interchange mode. The perturbations are a tearing

parity mode ð/̂�ðx; tÞ; ðŵþðx; tÞÞ with /̂þ ¼ ŵ� ¼ 0 and an

interchange parity zonal flow ð/̂þ0ðx; tÞ; ðŵ�0ðx; tÞÞ with

/̂�0 ¼ ŵþ0 ¼ 0. We assume that the perturbations are much

smaller than the interchange mode, ð/̂�; ŵþÞ � ðÛþ; Ŵ�Þ
and ð/̂þ0; ŵ�0Þ � ðÛþ; Ŵ�Þ. Substituting them into Eqs.

(B1), (B2), (B3), and (B4) yields

@

@t
r2/̂� ¼ � Ûþ;r2/̂þ0

h i
� /̂þ0;r2Ûþ
h i

þ Ŵ�;r2ŵ�0

h i
þ ŵ�0;r2Ŵ�
h i

; (18)

@

@t
ŵþ ¼ � Ûþ; ŵ�0

h i
� /̂þ0; Ŵ�
h i

; (19)

@

@t
r2/̂þ0 ¼ � Ûþ;r2/̂�

h i
� /̂�;r2Ûþ
h i

þ Ŵ�;r2ŵþ

h i
þ ŵþ;r2Ŵ�
h i

; (20)

@

@t
ŵ�0 ¼ � Ûþ; ŵþ

h i
� /̂�; Ŵ�
h i

: (21)

The essential mechanism of the modulational parity instabil-

ity can be understood by neglecting the magnetic perturba-

tion and by retaining only the first term in the right-hand-

side of Eqs. (18) and (20):

@

@t
r2/̂� ¼ � Ûþ;r2/̂þ0

h i
; (22)

@

@t
r2/̂þ0 ¼ � Ûþ;r2/̂�

h i
: (23)

Combining these equation gives

@2

@t2
r2/̂� ¼ Ûþ; Ûþ;r2/̂�

h ih i
: (24)

This equation implies the growth of the tearing parity mode

/̂� with the growth rate approximated to the amplitude of

the saturated interchange mode Ûþ. It is remarked that the

interchange parity zonal flow grows simultaneously.

The dispersion relation of the modulational parity insta-

bility of the saturated state of the interchange mode can be

obtained by substituting Ûþ ¼ �Uþ expðctþ ip �xÞ; /̂� ¼ �/�
expðctþ ik �xÞ, /̂þ0¼ �/þ0 expðctþ iq �xÞ; Ŵþ ¼ �Wþ expðct

þ ip �xÞ; ŵ� ¼ �w� expðctþ ik �xÞ, and ŵþ0 ¼ �wþ0 expðct

þ iq �xÞ into Eqs. (18), (19), (20), and (21), where

p¼ðpx;pyÞ; k¼ðkx;�pyÞ; q¼ðqx;0Þ, and pþkþq¼0. We

will show that the modulational parity instability plays a cru-

cial role in the magnetic island formation by the interchange

mode in Sec. VB.

IV. LINEAR ANALYSIS

The equilibrium described in Sec. II is unstable against

the resistive interchange mode but stable against tearing

modes. Figure 1 shows the eigen-mode structure of the resis-

tive interchange mode obtained from a simulation code in

which the linearized equations of Eqs. (1)–(4) are solved.

The interchange mode is indeed the interchange parity mode

described in Sec. III. Figure 2 shows the dependence of the

linear growth rate c and the real mode frequency xr of the

interchange mode on the mode number. As the magnitude of

the ion skin depth, which is the two-fluid effect, becomes

larger, higher modes are suppressed and the most unstable

mode is shifted from a higher mode to a lower mode because

of the increase in x*. The interchange mode is most unstable

at n¼ 16 for �di ¼ 0:02, at n¼ 3 for �di ¼ 0:05, and at n¼ 1

for �di ¼ 0:08. In Fig. 2(b), the real mode frequency is nor-

malized by x� ¼ ��diky
dpeq

dx , which is the electron diamag-

netic frequency at the equilibrium where ky¼ 2pn/Ly. The

real frequency corresponds to the propagation velocity of the

FIG. 1. Eigen-mode structures of (a)

the magnetic flux perturbation w and

(b) the electrostatic potential perturba-

tion / of the resistive interchange

mode with n¼ 1 for �di ¼ 0:08.

082501-4 M. Sato and A. Ishizawa Phys. Plasmas 24, 082501 (2017)



mode in the linear growing evolution. The propagation

velocity of the mode is about 60% of the electron diamag-

netic drift velocity V*e,eq regardless of the magnitude of the

ion skin depth di, where V*e,eq¼x*/ky. Since there is no

equilibrium flow VE�B,eq¼ 0, the electron fluid velocity

coincides with the electron diamagnetic drift velocity

Ve;eq ¼ V�e;eq þ VE�B;eq ¼ V�e;eq. Hence, the propagation

velocity of the modes is smaller than the electron fluid veloc-

ity in the linear phase, which disagrees with the experimental

observation of the mode propagation velocity observed in

LHD plasmas.

V. NONLINEAR ANALYSIS ON THE INTERCHANGE
MODE PRODUCING MAGNETIC ISLANDS THROUGH
PARITY MIXTURES

The time evolution of the magnetic energy of each

Fourier mode for several values of the ion skin depth
�di ¼ 0:02; 0:05, and 0.08 is shown in Fig. 3, where the mag-

netic energy for each mode is defined as EMn ¼ 1
2

Ð 0:5

�0:5 dxÐ Ly

0
dyjr~wnj

2
. The n¼ 1 mode becomes the dominant mode

in the saturated state for all cases, and the saturated state

depends on the ion skin depth �di. For �di ¼ 0:02, the saturated

state is a steady state. On the other hand, the saturated states

for �di ¼ 0:05 and �di ¼ 0:08 are not steady states. In this

section, the details of the nonlinear evolution for a strongly

interchange unstable case with �di ¼ 0:02 and a weakly inter-

change unstable case with �di ¼ 0:08 are shown. In the for-

mer case, the magnetic islands are produced by the parity

mixture through nonlinear Fourier mode coupling between

two unstable interchange modes. In the latter case, the

islands are produced by the parity mixture through the modu-

lational instability.

A. Strongly interchange unstable case

When the instability is strong with �di ¼ 0:02, there

appears a magnetic island in the nonlinear saturated state as

shown in Fig. 4, which corresponds to the dominance of the

n¼ 1 mode. In order to discuss the parity, the variables

ðw;/; p; vkÞ are decomposed into the even function and the

odd function with respect to the neutral magnetic surface,

ðwþ þ w�;/þ þ /�; pþ þ p�; vkþ þ vk�Þ, where the super-

scriptþ (–) denotes the even (odd) function of x as described

in Sec. III B. Then, ðw�;/þ; pþ; vk�Þ and ðwþ;/�; p�; vkþÞ
correspond to the interchange parity and the tearing parity

FIG. 2. Dependence of the linear growth rate c and the real mode frequency

normalized by the electron diamagnetic frequency xr/x*
on the mode num-

ber n, which is related to the poloidal wavenumber by ky¼ 2pn/Ly, for sev-

eral values of the ion skin depth �di.

FIG. 3. Time evolution of magnetic energy for each mode EMn for (a)
�di ¼ 0:02, (b) �di ¼ 0:05, and (c) �di ¼ 0:08, where ky¼ 2pn/Ly.
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modes, respectively. Figure 5 shows the profiles of the mag-

netic flux and the electrostatic potential of interchange and

tearing parity modes with n¼ 1 at t¼ 20 000. From the lin-

ear theory on the parity in Sec. III A, magnetic islands are

not formed by the resistive interchange mode during its lin-

ear growth since the magnetic flux of the interchange parity

mode w– vanishes at the neutral magnetic surface as shown

in Fig. 1. At the nonlinear saturated state, however, the tear-

ing parity mode with finite amplitude at the neutral magnetic

surface is generated as shown in Fig. 5(a). This implies that

the magnetic island is formed due to the generation of the

tearing parity. The amplitudes of tearing parity and inter-

change parts of the magnetic flux and of the electrostatic

potential are comparable. Hence, the mixture of the parities

occurs at the saturated state of the interchange mode, and the

magnetic islands are formed. The process of the parity mix-

ture, which is the growth of the tearing parity mode with

n¼ 1, is the nonlinear mode coupling of the linearly unstable

interchange modes.

B. Weakly interchange unstable case causing
modulational parity instability

When the instability is weak with �di ¼ 0:08, the nonlinear

evolution is more complicated than the strongly unstable case

with �di ¼ 0:02, and there are two subsequent saturated states

as shown in Fig. 3(c). The first subsequent saturated state is a

steady state realized after the mode energies become saturated

in 20 000< t< 50 000, and then, the second subsequent satu-

rated state is an oscillatory state at t> 50 000. The numbers of

magnetic islands are different in these two states as clearly

shown by the magnetic surfaces at t¼ 40 000 in the steady

state and t¼ 150 000 in the oscillatory state in Fig. 6. Two

magnetic islands are formed at t¼ 40 000 in the steady state,

and then, they merge into one wider island at t¼ 150 000 in

the oscillatory state.

First, we examine the steady state with two magnetic

islands at 20 000< t< 50 000 in detail. Figure 7(a) shows

the profiles of the tearing parity and the interchange parity

parts of the magnetic flux for n¼ 1 and n¼ 2 at t¼ 40 000 in

the steady state. The amplitude of the tearing parity mode

with n¼ 2 is larger than that with n¼ 1. Thus, two magnetic

islands are formed by the tearing parity magnetic flux with

n¼ 2. This is explained by the mode structure of the

FIG. 4. Magnetic flux surfaces at t¼ 20 000 for the strongly interchange

unstable case with �di ¼ 0:02.

FIG. 5. Profiles of the tearing parity

(red curves) and the interchange parity

(blue curves) of the n¼ 1 mode for (a)

the magnetic flux and (b) the electro-

static potential at t¼ 20 000 for the

strongly interchange unstable case

with �di ¼ 0:02.

FIG. 6. Magnetic flux surfaces at (a) t¼ 40 000 in the steady state and (b)

t¼ 150 000 in the oscillatory state for the weakly interchange unstable case
�di ¼ 0:08.
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interchange mode in the poloidal direction. The twisting of

the radial displacement with n¼ 1 forces magnetic reconnec-

tion at two points in the poloidal direction on the neutral

magnetic surface so that two X-points are formed and two

magnetic islands are produced in Fig. 6(a). Hence, the ampli-

tude of the tearing parity of the n¼ 2 mode is larger than that

of the n¼ 1 mode as shown in Fig. 7(a).

Next, we examine the oscillatory state which has one

larger magnetic island shown in Fig. 6 at t> 50 000 in detail.

At t¼ 150 000 in the oscillatory state, the amplitude of the

tearing parity part of n¼ 1 is larger than that of n¼ 2 as

shown in Fig. 7(b). The emergence of the tearing parity

mode with n¼ 1 is caused by the modulational parity instability

driven by the saturated n¼ 1 interchange mode. Figure 8 shows

the time evolution of the kinetic and magnetic energies of

the pump mode which is the interchange parity mode with

n¼ 1 and of the growing side-band modes which are the

tearing parity mode with n¼ 1 and the asymmetric part of

the zonal flow corresponding to the symmetric part of the

zonal potential with n¼ 0, which has interchange parity. The

interchange parity mode with n¼ 1 becomes saturated and in

the steady state at t> 20 000, and the tearing parity mode

with n¼ 1 continues to grow with an oscillation during the

steady state. Meanwhile, the asymmetric part of the zonal

flow grows with the same growth rate as the tearing parity

mode with n¼ 1, and thus, they are the side-band modes of

the modulational instability. Hence, the mechanism of the

growth of the tearing parity mode at t> 20 000 is the

modulational parity instability driven by the pump mode

that is the saturated n¼ 1 interchange mode discussed in

Sec. III C.

In order to confirm that the modulational parity instabil-

ity is the cause of the growth of the tearing parity of the

n¼ 1 mode for �di ¼ 0:08, we set up a similar situation as the

one described in Sec. III C, i.e., numerical simulations

including only the n¼ 0 mode and the n¼ 1 mode have been

carried out by using the simulation data for �di ¼ 0:08. We

stop the simulation at t¼ 30 000 for �di ¼ 0:08 and set

the amplitude of the perturbation to be zero for n> 1. Then,

we restart the simulation. Since the pump mode is the

interchange parity of the n¼ 1 mode, we assume that the

amplitude of the interchange parity of the n¼ 1 mode does

not change in time. This mimics the steady state where

the amplitude of the n¼ 1 mode does not change at

30 000< t< 50 000. The side-band modes are the tearing

parity mode with n¼ 1 and the interchange parity mode with

n¼ 0 in this simulation. As discussed in Sec. III, the growth

rate of the modulational instability is proportional to the

amplitude of the interchange parity mode with n¼ 1. In

order to compare the simulations with the theoretical predic-

tion, simulations for several values of an amplification factor

of the pump mode a have been performed, where the pump

mode is set to be ~w�;n¼1ðtÞ ¼ a~w�;n¼1ðt ¼ t0Þeiðkyy�xrðt�t0ÞÞ,
where t0¼ 30 000, a is the amplification factor of the pump

mode, and xr is the real mode frequency at t¼ t0. It is found

that the tearing parity mode with n¼ 1 is unstable when a
ranges 0.9� a� 2.4. The time evolution of the magnetic

FIG. 7. Profiles of the tearing parity

(red and green curves) and the inter-

change parity (blue and sky blue

curves) of the n¼ 1 mode and the

n¼ 2 mode for the magnetic flux at (a)

t¼ 40 000 in the steady state and (b)

t¼ 150 000 in the oscillatory state for

the weakly interchange unstable case
�di ¼ 0:08. The solid and dashed curves

correspond to the real and the imagi-

nary parts, respectively.

FIG. 8. Time evolution of (a) the kinetic energies and (b) the magnetic ener-

gies of both parities of the n¼ 1 mode and the interchange parity of the

n¼ 0 mode for �di ¼ 0:08.
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energy of the tearing parity mode with n¼ 1 is shown in Fig.

9 for a¼ 0.9, 1, and 2. In Fig. 9, the red curve corresponds to

the original simulation result shown in Fig. 8(b). The growth

rate of the tearing parity of the n¼ 1 mode for a¼ 1 agrees

well with the original simulation result. The slight difference

between them may be due to the influence of the n¼ 2 mode.

The growth rate increases with a for 0.9� a� 2. This

implies that the growth of the tearing parity of the n¼ 1

mode is due to the modulational parity instability in which

the interchange parity mode with n¼ 1 is the pump mode.

C. Propagation velocity of magnetic islands

The magnetic flux on the neutral magnetic surface

becomes finite in the nonlinear phase, and this implies the

formation of magnetic islands. The time evolution of the per-

turbed magnetic flux on the neutral magnetic surface (x¼ 0)

for �di ¼ 0:02 is shown in Fig. 10. In the nonlinear phase,

since the interchange parity mode with n¼ 1 deforms the

magnetic surfaces, the X-point and O-point of the magnetic

island are not necessarily located at x¼ 0. However, the

deformation is small as shown in Fig. 4 so that the maximum

and minimum of the magnetic flux at each time in Fig. 10

can be regarded as the O-point and the X-point of the

magnetic island, respectively. Figure 10 shows the propaga-

tion of the mode in the poloidal direction. In the linear phase,

the mode propagates in the positive y direction, which corre-

sponds to the equilibrium electron diamagnetic drift velocity

direction V*e,eq. However, in the nonlinear phase, the propa-

gation direction of the mode is reversed, and the mode prop-

agates in the negative y direction which is the equilibrium

ion diamagnetic drift velocity direction V*i,eq.

The magnetic island propagation is expected to be con-

trolled by drift velocities, and so, we discuss here the profiles

of drift velocities. Figure 11(a) shows the profiles of the

zonal flow velocity VE�B, the electron diamagnetic velocity

V�e, and the electron fluid velocity Ve at the saturated state

where VE�B, V�e, and Ve are defined as VE�B ¼ ~/
0
n¼0;

V�e ¼ ��diðp0eq þ ~p0n¼0Þ, and Ve ¼ V�e þ VE�B, respectively.

Here, the prime denotes the derivative with respect to x. The

profile of the electron diamagnetic drift velocity at the initial

equilibrium V*e,eq is also shown in Fig. 11(a). Since the pres-

sure profile becomes flattened inside the magnetic island, the

electron diamagnetic drift velocity decreases. The zonal flow

has both the symmetric (tearing parity) and asymmetric

(interchange parity) components with respect to the neutral

magnetic surface. Their profiles of the symmetric component

are shown in Fig. 11(b). The symmetric component of the

FIG. 10. Time evolution of the perturbed magnetic flux at the neutral mag-

netic surface for �di ¼ 0:02. The magnetic flux is normalized by the maxi-

mum absolute value at each time.

FIG. 11. (a)Profiles of the zonal components of the E�B velocity (VE�B),

the electron diamagnetic velocity (V�e), and the electron fluid velocity (Ve)

at t¼ 20 000 for �di ¼ 0:02. The profiles of their symmetric (tearing parity)

components are shown in (b).

FIG. 9. Time evolution of the magnetic energy of the tearing parity of the

n¼ 1 mode obtained from the simulations using the n¼ 0 mode and the

n¼ 1 mode. The blue, green, and sky blue curves correspond to the results

for a¼ 1, 2, and 0.9, respectively. The red curve corresponds to the original

simulation result shown in Fig. 8(b).
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zonal flow is generated in the direction of the equilibrium

ion diamagnetic drift at the neutral magnetic surface. Since

the E�B velocity is larger than the electron diamagnetic

drift velocity at the neutral magnetic surface, the direction of

the electron fluid is in the equilibrium ion diamagnetic drift

direction, which is in the negative y direction and is consis-

tent with the propagation direction of the magnetic island

shown in Fig. 10. Figure 12 shows the profiles of the zonal

component of the E�B velocity, the electron diamagnetic

velocity, and the electron fluid velocity around the neutral

sheet at t¼ 40 000 in the steady state and t¼ 150 000 in the

oscillatory state. At t¼ 40 000 in the steady state, the profile

of the zonal flow is symmetric with respect to the neutral

magnetic surface. However, the amplitude of the asymmetric

components increases at t¼ 150 000 in the oscillatory state.

This is due to the generation of the interchange parity part of

the zonal flow by the modulational parity instability. Figure

13 shows the time evolution of the perturbed magnetic flux

at the neutral magnetic surface in the steady state and the

oscillatory state. Although the number of the magnetic

islands is different, the magnetic islands propagate in the

positive y direction, i.e., the equilibrium electron diamagnetic

drift direction in both phases. In comparison with �di ¼ 0:02,

since the width of the magnetic island for �di ¼ 0:08 is smaller

than that for �di ¼ 0:02, the reduction of the pressure gradient

for �di ¼ 0:08 is smaller than that for �di ¼ 0:02. Thus, the

electron diamagnetic drift velocity is maintained to be larger

than the E�B velocity flowing in the ion diamagnetic drift

direction at the neutral magnetic surface. As a result, the

electron fluid flow is in the equilibrium electron diamagnetic

drift direction, which is consistent with the propagation

direction of the magnetic islands.

In the oscillatory sate at t> 50 000 for �di ¼ 0:08, the

oscillation results from the difference in the propagation

velocities of the tearing parity mode with n¼ 1, which is

generated by the modulational instability, and the inter-

change parity mode with n¼ 1. In this case, the tearing parity

mode with n¼ 1 propagates in the direction of the electron

diamagnetic drift with respect to the interchange parity mode

with n¼ 1, and the ratio of the propagation velocities of the

tearing parity mode with n¼ 1 (vT) to the interchange parity

mode with n¼ 1 (vI) is vT/vI 	 1.17. Hence, the X-point and

the O-point are not at rest with respect to the interchange

parity mode with n¼ 1. This results in the oscillation of the x
position of the X-point and the O-point. On the other hand,

for �di ¼ 0:02, the tearing parity mode with n¼ 1 propagates

with the same velocity as the interchange parity mode with

n¼ 1 at the saturated state. Hence, in this case, there is no

oscillation of the x position of the X-point and the O-point,

and the steady state is achieved.

We summarize the magnetic island propagation velocity

and drift velocities. Figure 14 shows the propagation velocity

and drift velocities as a function of the magnetic island width

at the saturated state. When the width of the magnetic island

FIG. 12. (a)Profiles of the zonal components of the E�B velocity (VE�B),

the electron diamagnetic velocity (V�e), and the electron fluid velocity (Ve)

at (a) t¼ 40 000 and (b) t¼ 15 000 for �di ¼ 0:08.

FIG. 13. Time evolution of the perturbed magnetic flux on the neutral mag-

netic surface ŵðx ¼ 0Þ for (a) 35 000� t� 40 000 and (b) 140 000� t
� 150 000 for �di ¼ 0:08. The magnetic flux is normalized by the maximum

absolute value at each time in order to clearly show the O- and X- points of

the magnetic islands.
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is about 10 times larger than the ion Larmor radius, the prop-

agation velocity of the magnetic island agrees well with the

electron fluid velocity. Thus, the formation of the magnetic

island controls the propagation velocity of the resistive inter-

change modes, which reproduces the velocity of magnetic

perturbation of the interchange mode observed in the LHD

experiments.

Here, we describe the details of the propagation velocity

as a function of the island width, which is controlled by the

value of �di, at the saturated state in Fig. 14. As the width of

the magnetic island increases, the pressure profile becomes

flattened inside the magnetic island, and thus, the electron

diamagnetic drift velocity decreases. The E�B velocity is

always in the negative y direction which is the equilibrium

ion diamagnetic drift direction. Thus, the direction of the

electron fluid velocity depends on the magnitude relationship

between the electron diamagnetic drift velocity and the

E�B velocity. In conclusion, regardless of the magnitude

relation, the propagation velocity of the magnetic island

becomes close to the electron fluid velocity as the width of

the magnetic island increases. In evaluating the velocities,

some averages are used as follows: For �di > 0:04, the satu-

rated state is not a steady state. For such cases, the width of

the magnetic island and the propagation velocity are evalu-

ated by averaging over a time period. At the saturated state,

the neutral magnetic surface is deformed by the nonlinear

effects so that the x position of the neutral magnetic surface

depends on y. Thus, VE�B and V�e are evaluated by averaging

the velocity on the curved neutral magnetic surface.

VI. SUMMARY AND DISCUSSION

The propagation velocity of the resistive interchange

modes is investigated by nonlinear simulations based on the

two-fluid model including both the electron and ion diamag-

netic effects. In the linear growing phase, the propagation

velocity of the interchange mode is smaller than the electron

fluid velocity and is smaller than the observed propagation

velocity of the magnetic perturbation of the interchange

mode in LHD experiments. On the other hand, due to the

nonlinear formation of the magnetic islands, the propagation

velocity of the mode becomes close to the electron fluid

velocity so that the simulation results reproduce the experi-

mental observation. When the width of the magnetic islands

is larger than about 10 times the ion Larmor radius, which

can be the observable width of the island in experiments, the

propagation velocity of the mode is almost the same as the

electron fluid velocity. Therefore, the nonlinear formation of

the magnetic island controls the mode rotation velocity of

the interchange mode observed in the LHD experiments

where the resistive interchange modes rotate with the elec-

tron fluid velocity.

We have also shown that the formation of the magnetic

islands is due to the generation of the tearing parity mode.

The generation of the tearing parity mode occurs in the non-

linear evolution because the pure interchange mode does not

satisfy the nonlinear two-fluid equation. This is in contrast to

linear evolution, where both parity modes satisfy the linear-

ized two-fluid equation and are conserved. Hence, the energy

of the interchange mode should be transferred into the tear-

ing parity mode through nonlinear interactions so that the

parity is mixed and the magnetic islands are produced. There

are two types of nonlinear parity mixtures between inter-

change and tearing parity modes. One is the nonlinear inter-

action between two linearly unstable interchange modes,

which is observed when the growth rate of the interchange

mode is large with �di ¼ 0:02 and 0.05. The other is the mod-

ulational parity instability observed when the growth of the

interchange mode is weak with �di ¼ 0:08. In the former

case, the tearing parity mode with n¼ 1 grows by the nonlin-

ear mode coupling between the linearly unstable modes, and

when the growth of the interchange mode becomes saturated,

the n¼ 1 interchange mode is the dominant mode and the

amplitude of the tearing parity mode with n¼ 1 is compara-

ble to the interchange parity of the n¼ 1 mode, where n rep-

resents the poloidal wavenumber through ky¼ 2pn/Ly. In the

latter case, the nonlinear mode coupling is weak at the begin-

ning and the amplitude of the interchange parity mode with

n¼ 1 is significantly larger than that of the tearing parity

mode in the initial nonlinear saturated state. However, the

initial saturated state is unstable against the modulational

parity instability. Then, the amplitude of the tearing parity

mode with n¼ 1 grows and becomes comparable to that of

the interchange parity mode. The nonlinear parity mixture

explains the reduced MHD simulation results in Refs. 7 and

19, which show the reduction of the number of the magnetic

islands and the E�B flow generation. It is remarked that the

modulational parity instability consists of the growth of the

tearing parity mode and the interchange parity zonal flow

mode, and these modes are two sides of the same coin. The

modulational instability is normally used in the analysis of

zonal flow production by the saturated drift-wave instability

such as the ITG mode. In the analysis, the drift-wave insta-

bility is a pump mode, and a zonal flow mode and a side-

band mode are driven by the saturated drift-wave and grow.

In our modulational parity instability, the interchange mode

is the pump mode, and the tearing parity mode corresponds

to the side-band mode. Thus, the analytical method of the

FIG. 14. Dependence of the propagation velocity of the magnetic island

(Visland), the electron diamagnetic drift velocity (V�e), the E�B zonal flow

velocity (VE�B), and the electron fluid velocity (Ve) on the width of the mag-

netic island normalized by the ion Larmor radius (qi) at the saturated state.
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modulational instability for investigating zonal flow produc-

tion can be utilized for the analysis of the modulational par-

ity instability.

In the LHD experiments, it is found that the displace-

ment vector of the rotating resistive interchange mode has the

interchange parity from the diagnostics of the plasma temper-

ature.2 In our simulation results, the saturated state of the

resistive interchange mode is the mixture of the interchange

parity and the tearing parity. Although the magnetic island is

formed due to the tearing parity of the magnetic flux, the

amplitude of the interchange parity is significantly larger than

that of the tearing parity for the electrostatic potential as

shown in Fig. 5(b). Thus, our results are not inconsistent with

the experimental results. In other words, the structure of the

magnetic field cannot be estimated from the displacement

vector or the temperature for the resistive interchange modes.

For the locked mode-like instability, the experimental results

showed that the non-rotating mode has the tearing parity in

the displacement vector.1 In this case, the amplitude of the

interchange parity may diminish with the suppression of the

mode rotation. The study of the mechanism of the suppres-

sion of the mode rotation and the mode structure of the

locked mode-like instability are future works.
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APPENDIX A: PARITY TRANSFORMATION

Here, we derive some equations obtained by applying

the parity transformation to the nonlinear reduced MHD

equations and to the linearized equations. By operating the

transformation to the nonlinear equations and using the fact

that the transformation changes the sign of the Poisson

bracket Px½f ; g� ¼ �½Pxf ;Pxg�, we have

@

@t
r2 �Px/ð Þ þ �Px/ð Þ;r2 �Px/ð Þ

� �
¼ Pxw;r2Pxw
� �

;

(A1)

@

@t
Pxwþ �Px/ð Þ;Pxw½ � ¼ gr2Pxw: (A2)

Thus, when ð/;wÞ satisfy the reduced MHD equation, and

then, ð�Px/;PxwÞ also satisfy the equation. This is related

to the fact that the tearing parity mode satisfies the nonlinear

equation and is able to get saturated in the nonlinear evolu-

tion with keeping its parity. When we apply the parity trans-

formation Px to the linearized equation, we have

@

@t
r2 �½weq;r2 � � ½ ;r2weq�

þ ;weq

� � @

@t
� gr2

0
BB@

1
CCA 7Px/̂

6Pxŵ

 !
¼ 0:

The sum and difference of these two equations yield Eqs.

(10) and (11).

APPENDIX B: NONLINEAR INTERACTIONS IN
COEXISTENCE OF TEARING PARITY AND
INTERCHANGE PARITY MODES

When the tearing parity mode ð/̂�; ŵþÞ 6¼ 0 is excited

by nonlinear interactions of the interchange parity mode

ð/̂þ; ŵ�Þ 6¼ 0, the tearing parity mode is further excited

because it obeys

@

@t
r2/̂� ¼ � /̂þ;r2/̂þ

h i
� /̂�;r2/̂�

h i
þ ŵþ;r2ŵþ

h i
þ ŵ�;r2ŵ�

h i
; (B1)

@

@t
ŵþ ¼ � /̂þ; ŵ�

h i
� /̂�; ŵþ

h i
: (B2)

The nonlinear terms ½/̂�;r2/̂��; ½ŵþ;r2ŵþ�; ½/̂�; ŵþ� in

the right-hand-side imply that once the tearing parity mode

is excited, these nonlinear terms further excite the tearing

parity mode. In addition, when both parity modes exist, the

interchange parity mode is also produced by nonlinear inter-

actions as

@

@t
r2/̂þ ¼ � /̂�;r2/̂þ

h i
� /̂þ;r2/̂�

h i
þ ŵþ;r2ŵ�

h i
þ ŵ�;r2ŵþ

h i
; (B3)

@

@t
ŵ� ¼ � /̂�; ŵ�

h i
� /̂þ; ŵþ

h i
: (B4)

The conclusion on the nonlinear interaction in the coexis-

tence of both parity modes is that the tearing parity mode is

produced by interactions between the same parity modes,

while the interchange parity mode is produced by interac-

tions between opposite parity modes.
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