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Abstract
This paper presents a review of multi-scale interactions between small-scale turbulence and large
scale magnetic islands. In finite beta plasmas, zonal flows are relatively weak, and thus another
electromagnetic coherent structure formation such as magnetic islands becomes important for
regulating turbulence. In multi-scale interactions, large-scale modes dominate turbulent
fluctuations even when the growth rate of the large-scale mode is much smaller than small-scale
modes. On the other hand, small-scale modes influence large-scale modes when the large-scale
modes are stable/marginally stable. Thus, the multi-scale interactions are categorized according to
the stability of tearing mode (TM), which drives large-scale magnetic islands. When the TM is
unstable, wide magnetic islands are produced, and as a result of the multi-scale interactions, the
turbulent transport is significantly enhanced inside the separatrix of the island, because large-scale
stable modes are excited by mutual interactions between turbulence and the island. On the other
hand, a steep temperature gradient is formed around the separatrix of the island, which is consistent
with zonal flow shear appearing at the separatrix. When the TM is stable/marginally stable,
turbulence drives and sustains magnetic islands of width equal to multiples of the Larmor radius.
This excitation of islands by turbulence can be related to the seed island formation of neo-classical
TMs. The parity of fluctuations plays crucial role in the multi-scale nonlinear interactions, because
pure twisting parity mode does not satisfy the nonlinear fluid/gyrokinetic equations. Magnetic
islands belongs to the tearing parity mode and drift-wave instabilities normally belong to the
twisting parity mode, and each parity is conserved in the linear growth of the instability. However,
when the amplitude of the twisting parity mode becomes finite, the nonlinear energy transfer takes
place from the twisting parity to tearing parity modes. Through this nonlinear parity mixture, the
magnetic islands are produced by the turbulence. The influence of anomalous current drive and
polarization current on the multi-scale interactions is discussed as well.

Keywords: turbulence, magnetic island, multi-scale, parity, numerical simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

Turbulence is considered to cause anomalous transport in
magnetically confined plasmas [1–3], and is mainly driven by

drift-wave instabilities such as ion-temperature-gradient (ITG)
mode and trapped electron mode (TEM). The drift-wave tur-
bulence produces zonal flows through nonlinearity, then the
turbulence is regulated by the zonal flows at low β [4]. When
the normalized pressure β becomes finite, turbulent fluctuations
becomes electromagnetic [5–7], and magnetic perturbations
play important role in the turbulent transport. At finite beta, the
fluctuations of the ITG mode become electromagnetic and
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kinetic ballooning mode (KBM) can be destabilized at high β

(figure 1) [8]. In addition, electromagnetic fluctuations give rise
to a long wavelength MHD instability such as tearing modes
(TMs) which reconnect the closed magnetic surfaces and
degrade the confinement. In the finite β plasma zonal flows
become weak so that coherent structure formation rather than
the zonal flow production can be a mechanism controlling
turbulent transport. Especially, coherent magnetic islands that
have a long wavenumber play an important role as well as the
zonal magnetic field and zonal pressure field.

Magnetic islands are represented by the Poincare map of
magnetic field lines on a cross-section of torus. The map forms
curved lines, which are cross sections of the good flux surfaces
(figure 2). The field lines have a concentric structure
surrounding a point called O-point, where the component of

magnetic field on the cross-section vanishes. Another vanish-
ing point of the field is called X-point, which is a stagnation
point of the field line. The line goes through the X-point is
called as the separatrix of magnetic island. Since the parallel
streaming of particles is fast in magnetically confined plasmas,
the profiles of temperature and density tend to flatten inside the
separatrix of the island resulting in the degradation of con-
finement [9], and thus the appearance of magnetic islands can
limit the performance of tokamak plasmas such as the standard
ELMy H-mode and advanced scenarios of ITER [10]. Fur-
thermore, when coherent magnetic island chains appearing at
different radii become wide and overlap each other, the
degradation of confinement is significant and a disruption ter-
minates the discharge of tokamak plasma [10]. This is because
the overlap of coherent magnetic islands results in stochastic
magnetic field in wide range of radius, and then flattening of
temperature and density profiles is significantly enhanced.

When a plasma is confined by a set of nested magnetic
surfaces, magnetic islands are produced by magnetic recon-
nection, which changes the topology of magnetic field lines
and violates the nested surfaces. The point where the recon-
nection takes place is the X-point. Magnetic islands are
caused by TMs, which is a spontaneous magnetic reconnec-
tion [11]. Neoclassical tearing mode (NTM) produces
magnetic islands at a low-order rational surface and is one of
primary instabilities limiting the achievable plasma pressure
of high-β tokamak plasmas. NTMs are nonlinear MHD
instabilities due to the perturbed bootstrap current caused by
pressure flattening inside the separatrix of magnetic island,
and thus they start to grow from finite size magnetic islands
required for overcoming a threshold of destabilization [12].
The typical width of this seed magnetic island is evaluated to
be several times as large as the ion Larmor radius from
experimental data [13]. The seed island can be excited by
another MHD activity such as a sawtooth crash and edge
localized modes (ELMs). For instance, a sawtooth crash,
which has m n, 1, 1=( ) ( ) fluctuation, excites an higher har-
monics (m, n)=(2, 2) at q=1 rational surface, and then
generates (m, n)=(3, 2) magnetic perturbation because of
the toroidal geometry. This (m, n)=(3, 2) magnetic pertur-
bation produces seed magnetic islands and then excites an
NTM at q=3/2 rational surface. On the other hand, an
(m, n)=(2, 1) NTM is observed without any sawtooth cra-
shes and ELMs in the JT-60U experiments [14]. Thus, the
electromagnetic drift-wave turbulence can be a candidate for
explanation of this experimental observation on the excitation
of NTM without MHD activities. Magnetic islands are also
produced by magnetic reconnection caused by externally
applied resonant magnetic perturbations (RMPs) at a rational

Figure 1. Plasma beta dependence of linear growth rate calculated
from a two-fluid model (five-field model) described in section 2. The
ITG mode is unstable at low β and the KBM is destabilized at high
β. Reproduced courtesy of IAEA. Figure from [8]. Copyright
2007 IAEA.

Figure 2. A magnetic island.

Figure 3. Schematic drawing of multiscale interactions. Reprinted
from [25], with the permission of AIP Publishing.
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surface in the edge region. The RMPs are used to control the
ELMs [15], which is expected to appear in the standard
ELMy H-mode of ITER, by violating the nested magnetic
surfaces at the edge region. The island formation by RMPs
can be influenced by strong E×B flow and by edge turbu-
lence, which can be an electromagnetic drift-wave turbulence.

Nonlinear interactions between turbulence and coherent
modes, which can be magnetic islands and long lasting
modes, become an important issue in understanding the
mechanism of confinement degradation, because drift-wave
turbulence is ubiquitous in magnetically confined plasmas,
and nonlinearly interacts with magnetic island. In fact, low-
wavenumber MHD activities are observed before the dis-
ruption in reversed shear plasmas with a transport barrier
related to zonal flows and drift-wave turbulence in JT-60U
[16]. In addition, micro turbulence is observed in LHD
plasmas that usually exhibit MHD activities [17]. The inter-
action between turbulence and magnetic islands is a multi-
scale (cross-scale) interaction illustrated in figure 3. The tur-
bulence is driven by drift-wave instability characterized by
high toroidal wavenumber n?1 (figure 4), while the
magnetic islands can be caused by TM characterized by low
toroidal wavenumber n∼1 (figure 4). Thus, this multi-scale
interaction originates from a high wavenumber nature of the
pressure driven instability and a low wavenumber nature of
the current driven instability. Theoretical study on interac-
tions between turbulence and magnetic islands mainly focuses
on the influence of turbulence on the growth of TM through
anomalous resistivity, anomalous electron viscosity, and
negative viscosity due to turbulence [18–23]. Mutual inter-
actions between turbulence and magnetic islands are studied
numerically by means of fluid model [8, 24–54]and by
gyrokinetic model [55–63], and they are reviewed in this
paper. Since magnetic islands are generated by TMs, which

are a long wavelength MHD instability mainly driven by an
equilibrium current density gradient, it is convenient to
separately discuss two cases: the TM is unstable and stable.
When the TM is unstable we have magnetic islands which are
much wider than the ion Larmor radius W?ρi [8, 24–27,
29, 30, 34, 35, 40, 43, 48, 49] as will be discussed in
section 4. On the other hand, when TM is stable [37, 54] or
marginally stable [39, 44, 47, 51–53] turbulence produces
magnetic islands with W�ρi as will be discussed in
section 5. In addition, static magnetic islands interacting with
turbulence is investigated to elucidate the influence of
magnetic islands on turbulence and polarization current
effects [28, 31–33, 36, 38, 41, 42, 45, 46, 50] as will be
discussed in section 6. The TM stability parametersD¢ [11] of
numerical simulations are listed in table 1.

Recently, experimental observation of the interactions
between turbulent fluctuations and magnetic islands have
been extensively studied [64–73]. The spatial correlation
between turbulent electron temperature fluctuations and
magnetic islands in KSTAR is reported [67]. The relation
between turbulent density fluctuation and a magnetic island in
DIII-D is presented [68, 69]. The temporal correlations
between turbulence and magnetic islands in HL-2A and
EAST are investigated [70–73]. Comparison with numerical
simulation results has just started.

Multi-scale interactions causing the appearance of magnetic
island in quasi-steady turbulent state including zonal flows, and
geodesic acoustic mode (GAM) in a torus plasma is firstly
presented by two-fluid simulations [25]. Then, it is demonstrated
that multi-scale interactions between turbulence and magnetic
islands have significant impact on the turbulent transport at finite
beta as shown in flux-driven electromagnetic two-fluid simula-
tions [30]. The mechanisms of interactions are extensively stu-
died by simplifying geometry of plasmas such as cylindrical
[24, 45, 47] or slab plasmas [28, 29, 31, 34, 35, 37, 39, 42, 44,
50–54] (tables 2 and 3).

When the TM is unstable, large magnetic islands W?ρi
are produced by the instability. Then magnetic islands influence
turbulence by magnetic perturbations, by producing coherent
vortex flows, and by pressure flattening (section 4). The flat-
tening of temperature and density profiles inside the separatrix of
the magnetic island is incomplete because of the penetration of
turbulence inside the separatrix. That is observed in many

Figure 4. Color map of electrostatic potential on a poloidal section for drift-wave instability with n=15 and zonal flow n=0, and magnetic
field lines of (m, n)=(2, 1) magnetic islands on a poloidal section. Reproduced courtesy of IAEA. Figure from [30]. Copyright 2009 IAEA.

Table 1. The stability parameter of tearing mode D¢ in numerical
simulations.

Stability of
tearing mode

Stable–
unstable

Marginally
stable–unstable Unstable

References [37] [39, 47, 51–53] [43, 49]
Stability
parameter D¢

−3.4 to 1.8 −0.45 to 1.2 3.0
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simulations and experiments (section 4.1) [30, 44–46, 55,
57, 69]. The enhancement of turbulent transport inside the
separatrix is attributed to coherent vortex flows produced by
interactions between the turbulence and magnetic islands
(section 4.2) [8, 25, 36, 55, 57, 59]. The poloidal angle
dependence of turbulence intensity caused by magnetic islands is
weak in flux-driven simulations [30], while it is strong in non-
flux-driven simulations [32, 57]. Zonal flows are not strong in
electromagentic turbulence at finite β, furthermore the flows are
modified by magnetic islands because of the violated magnetic
surfaces [30, 63]. In addition, zonal flows oscillate by the pre-
sence of magnetic islands (section 4.3) [29, 40, 59]. Magnetic
field lines can be stochastic in torus plasma, and the X-point is
sensitive to magnetic perturbations, and thus magnetic fluctua-
tions of turbulence enhance the stochasticity of magnetic field
lines around the separatrix including the X-points of magnetic
islands (section 4.4) [30, 61]. The turbulence influences magn-
etic islands when they are small and growing, and the growth of
magnetic islands is enhanced by turbulent anomalous resistivity
(section 4.5) [27, 40, 50].

When TMs are stable, turbulence produces long wavelength
magnetic islands with small width W�ρi (section 5)
[37, 39, 47, 52, 53, 61, 62], because turbulent fluctuations
become electromagnetic at finite β. This issue is linked to the
excitation of NTMs [12, 13, 74], which limit the achievable β of

tokamak plasmas, because the turbulence can produce the seed
island of NTMs that appears even if the conventional TM is
stable. The process of magnetic island formation by turbulence
is not simple. The nonlinear mode coupling between large scale
coherent mode with small scale turbulence can generally exist,
so that a large-scale mode can be excited. However, this does
not mean the excitation of magnetic islands, because the
magnetic islands appear only when magnetic reconnection takes
place and the topology of magnetic field lines is changed on the
low (m, n) rational surface where the magnetic field line bending
stabilizing effect is weak [25]. Thus, in addition to the energy
transfer to a coherent mode, the parity mixture and magnetic
reconnection are required for the formation of magnetic islands.

In addition to the categorization based on the stability of
TMs, it is useful to study turbulence in a static magnetic
island (section 6), because the polarization current effect,
which is one of the important mechanisms of magnetic island
growth, is evaluated by using the static island model. The
polarization current due to turbulence is firstly investigated by
numerical simulations for electrostatic interchange modes
(ICs) [28, 31], and then it is studied by simulations for ITG
turbulence [42]. It is found that the polarization current due to
turbulence can drive magnetic islands [31, 42].

The organization of the remainder of the paper is as follows.
Fluid models used in numerical simulations are described in
section 2. The parity symmetry is explained in section 3. The
multi-scale interactions when the TM is unstable is presented in
section 4. Then, the interactions when the TM is stable is
described, and the importance of parity is demonstrated in
section 5. The analysis using a static magnetic island is described
in section 6. Summary is given in section 7.

Table 2. Fluid models and plasma geometry used for studies of multi-scale interactions between small-scale turbulence and large-scale
magnetic islands, where EM, ES, and flux-driven represent electromagnetic, electrostatic and flux-driven simulations, respectively. Each
model can describe several instabilities which are toroidal ITG mode (tITG), kinetic ballooning mode (KBM), tearing mode (TM), internal
kink mode (IK), interchange mode (IC), and slab ITG mode (sITG). Turbulence is driven by the instability typed by bold letter in the paper
labeled by the name of first author.

Five-field Four-field Three-field Three-field
n v T, , , , if y ( ) n v, , ,f y ( ) n, ,f y( ) n v T, , ( )

Flux driven tITG, KBM, GAM, TM, IK
Torus, EM Ishizawa [30]

Torus, EM tITG, KBM, GAM, TM, IK
Ishizawa [8, 25]

Cylinder, EM IC, TM, IK IC, TM
Yagi [24] Poye [47]

Cylinder, ES sITG
Hariri [45]

Slab, EM sITG, IC, TM IC, TM IC, TM
Li [29, 40], Ishizawa [37] Sato [54] Muraglia [34, 35, 39, 53]
Hu [43, 48], Liu [49] Agullo [44, 51, 52]

Slab, ES sITG, IC IC sITG
Ishizawa [42], Izacard [50] Militello [28] Hill [46]

Waelbroeck [31]

Table 3. Gyrokinetic simulations for the interactions between
turbulence and magnetic islands.

ES, static island EM, static island EM, 0D¢ >

References [55–57, 63] [59, 60] [61, 62]
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2. Model equations

Here, we describe two-fluid equations used in numerical
simulations presented in this paper. Most of fluid models used
for the study of interactions between turbulence and magnetic
islands are a subset of the five-field model of two-fluid
equations described here (table 2).

2.1. Fluid model used in simulations of toroidal plasma

We consider three-dimensional toroidal plasmas, and describe
a reduced set of two-fluid equations that extends the standard
reduced two-fluid equations [75] by including ion temperature
with the Landau fluid closure [25, 76]. The model consists of
the vorticity equation for the electrostatic potential f, the
electron density n equation, the parallel velocity vP equation,
the generalized Ohm’s law for the magnetic flux function ψ,
and the ion temperature Ti equation,

n
D
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L
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p ∣ ∣, where ρi, ò=a/R, R, a and γ=5/3, and

a a1 i*
r r= =˜ , are the Larmor radius, the inverse of aspect

ratio, the major radius, the minor radius, the specific heat, and
the inverse of normalized Larmor radius. In these equations
J J 2 yº - = ^ , p p pi e= + , v v J ne eq= +  , p nTi i= ,
p nTe e= , Ti, Te are the negative of parallel current density, the
total pressure, the parallel electron velocity, the ion pressure,
the electron pressure, the ion temperature, and the electron
temperature, respectively. They are divided into an equili-
brium part and a perturbed part aeqy y y= + ˜ ˜, af f= ˜ ˜,
n n n aeq= + ˜ ˜, T T T ai ieq= + ˜ ˜, T Te eqt= , p n Ti eq eq= +
T n a n T aieq eq+˜ ˜ ˜ ˜, p n T T n ae eq eq eqt t= + ˜ ˜. The electron
temperature consists of a given equilibrium part Te=
Teq. The normalizations are tv a r,ti ir( , a e T, , ,i 0r f ^ 

B n n T T v v t r, , , , ,i ti0 0 0y b r  ̂ ) ( , n T v, , , , ,f y ).
The five-field mode for torus plasmas is able to describe

the toroidal ion-temperature-gradient mode, KBM, IC, TM,
and internal kink mode (table 2). Figure 1 shows the linear
growth rate of drift-wave instabilities for a profile described
in [77]. The ITG mode is unstable at low β and KBM

(drift-resistive ballooning mode) appears at high β [8, 77].
The five-field model can be reduced by decreasing the
number of fields. It is also reduced by applying for cylinder
and slab plasmas. The reduction of geometry from a torus to
cylinder is made by letting the inverse aspect ratio approach
to zero a R 00 = . When the geometry is simplified from a
torus to a cylinder/slab, then toroidal ITG mode becomes a
slab ITG (sITG) mode and the KBM becomes an electro-
magnetic IC, furthermore, the GAM is lost. This five-field
model in a slab geometry is used in [29]. The five-field
model is reduced to the standard four field model solving

n v, , ,f y ( ) [75] by omitting ion temperature fluctuation.
The model is used to investigate interchange turbulence in a
cylindrical plasma [24] and in a slab plasma [54]. In the cold
ion limit, i.e. in the absence of ion diamagnetic velocity

0i*w = , the four-field model is further reduced to a four
field model that can describe the IC, TM, and drift-waves
[78]. The four-field model is reduced to a three-field model
solving (f, ψ, n) by ignoring the parallel velocity. In this
model the density can be replaced to the pressure by
assuming a uniform temperature. The model is used to
investigate the electromagnetic IC in a slab plasma
[34, 35, 44]. The model can describe the IC and TM, and the
drift-wave described in [79] is replaced to a simple drift-
wave because of no parallel compressibility.

There is another way to reduce the model by considering
a static magnetic island in the electrostatic limit. This model
solves the five-field n v T, , , , if y ( ) and is used to investigate
the electrostatic ITG turbulence in a static magnetic island in a
slab plasma [50]. The model is further reduced to a three-field
model by omitting ion temperature and parallel velocity (f, ψ,
n). This electrostatic model is used to investigate the influence
of electrostatic interchange turbulence on a static magnetic
island [28, 31]. These are summarized in table 2. It is
remarked that there is a model including the electron temp-
erature instead of the ion temperature in cylindrical plas-
mas [80].

2.2. Fluid model used in two-dimensional simulations

It this section we describe the five-field model in slab plas-
mas. A slab plasma corresponds to a radially localized region
around a low (m, n) rational surface in a torus plasma as
shown in figure 5. In two-dimensional slab plasmas the five-
field equations become

t
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( ). In the equations BB e ez z0 y= - ´  , v ez= ´
f , pv edi z i= ´  are the magnetic field, the E×B flow

velocity, and the ion diamagnetic velocity, respectively.
In slab plasmas, the parallel component is in the guide
magnetic field direction along the z-axis. The normal-
izations are tv L x L B v L B L v v n n, , , , , ,A 0 A 0 A 0f y ( ( ) ( )
T T0)  t x v n T, , , , , ,f y ( ), where vA is the Alfvén speed.

The parameters d vi i iA r b= W = , η, β, 5 3g = , and L
are the ion skin depth, the plasma resistivity, the plasma beta,
the ratio of specific heats, and the system size, respectively,
where iW is the ion cyclotron frequency and ρi is the ion
Larmor radius.

Magnetic field configuration on the (x, y) plane is a
Harris current sheet, x x x Ld d tanh seqy =( ) ( ). The magnetic
shear length Ls of the Harris sheet is associated with the
gradient of current density. Since the slab plasma describes a
radially localized region around a rational surface, this local
parameter Ls controls the growth rate of tearing instability
which is a spontaneous magnetic reconnection. When the
current sheet is thin, i.e. Ls is small, the growth rate of TM is
large. In the conventional MHD theory the stability parameter
of TM xd ln dL

2 0
0s yD¢ = -
+[ ˆ ] is obtained by solving the lin-

earized form of JB B 02y =  =· · . An equilibrium is
stable (unstable) to tearing instabilities when D¢ is negative
(positive). The turbulence is driven by an ion temperature
gradient represented by the parameter L Li n Th = , which is
the ratio of density-gradient length L n xd ln dn eq

1= - -( )
and ITG length L T xd ln dT eq

1= - -( ) . Both density and
temperature gradients are assumed to be uniform, and Ln is
the same as the system size Ln=L in our simulations.

3. Parity

We discuss the parity of fluctuations in magnetized plasmas,
and consider two parity symmetries. One is the parity that
reflects the symmetry in the radial direction x in slab plasmas

(figure 5) [26, 54]. The other is the parity that reflects the
symmetry along the magnetic field line (figure 6) [7]. First,
we describe the parity in the radial direction, then we explain
the parity along the magnetic field line.

3.1. Parity symmetry in radial direction

We discuss the parity symmetry in radial direction near a
rational surface. It is an extension from the parity of two-field
model (reduced MHD) [26, 54] to the five-field model.
Figure 7 illustrates the electrostatic potential f and the per-
turbed magnetic flux ψ of twisting and tearing parity modes
[54]. The mode is referred to as twisting parity mode, when f
(ψ) is even (odd) function of x=r−rs, so that the E×B flow
twists the magnetic surfaces, and the topology of the field
lines does not change (figure 7(a)). On the other hand, the
tearing parity mode exhibits the E×B flow which directs
into the X-point, and the equi-contours of k ycos yeqy y+ ˆ
represent a magnetic island (figure 7(b)). We introduce the
parity operator, whose rule of operation is to reflect x x - ,

f x y t f x y t, , , , . 11x = -( ) ( ) ( )

We rewrite the five-field equations equations (6)–(10) in
terms of the Poisson bracket as

t
d p

K p

, , ,

, 12

i i

2
2 2

4

f
f f y y b f

m f

¶
¶

+  =  -  

- + 

[ ] [ ] · [ ]

[ ] ( )

n

t
n v d K p n, , ,

13

i e
2 2f y y f m

¶
¶

+ = +  + - + [ ] [ ] [ ]

( )
v

t
v p v, , , 142f b y m

¶

¶
+ = + 

 [ ] [ ] ( )

Figure 5. Parity operator x in the radial direction.
Figure 6. Parity operator  along the magnetic field line.

Figure 7. Electrostatic potential f and perturbed magnetic flux ψ
profiles of (a) twisting parity mode (f+, ψ−) and (b) tearing parity
mode (f−, ψ+) in a slab plasma.
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t
d p, , , 15i e

2y
f y b y h y

¶
¶

+ = - + [ ] [ ] ( )

T

t
T v T

K T n T T

, 1 ,

1 ,

16

i
i L i

i i i
2

f g y k

g f g m

¶
¶

+ = - - +

+ - + + + + 

[ ] ( )( [ ] )

[( )( ) ]
( )

where K f x f2 ,=[ ] [ ], p p pi e= + , p nTi i= , p nTe e= ,
and T Te e0= .

First, we consider the parity of perturbation governed
by the linearized equations. We divide the field quantities
into an equilibrium part and a perturbed part f x y t, , =( )
f x f x y t, ,0 +( ) ˆ ( ). When the perturbation is sufficiently
small f f0ˆ , the equations can be linearized. We assume
the equilibrium parts have a symmetry/asymmetry as

x xx 0 0 y y=( ) ( ), n x n xx 0 0 = -( ) ( ), T x T xx i i0 0 = -( ) ( ),
v 00 0f = = , which are normally used in the analysis

of interactions between turbulence and magnetic islands.
Applying 1 x

1

2
( ) to the linearized equations gives

t

d p K p

, ,

, , 17i i

2

0
2 2

0

0
4

f
y y y y

b f m f

¶
¶

=  + 

-   - + 



  

 
ˆ

[ ˆ ] [ ˆ ]

· [ ˆ ] [ ] ˆ ( )

n

t
n v d d

K p n

, , ,

,

18

i i

e

0 0
2 2

0

2

f y y y y

f m

¶
¶

+ = +  + 

+ - + 




  

  
ˆ [ ˆ ] [ ˆ ˆ ] [ ˆ ]

[ ] ˆ
( )

v

t
p p v, , , 190 0

2b y b y m
¶

¶
= + + 


 

ˆ
[ ˆ ] [ ˆ ] ˆ ( )

t
d p

d p

, ,

, , 20

i e

i e

0 0

0
2

y
f y b y

b y h y

¶
¶

+ = -

- + 

 


 

ˆ
[ ˆ ] [ ˆ ]

[ ˆ ] ˆ ( )

T

t
T v T

K T n T T

, 1 ,

1 , 21

i
i L i

i i i

0 0

2

f g y k

g f g m

¶
¶

+ = - - +

+ - + + + + 


 

    


ˆ

[ ˆ ] ( )( [ ˆ ] ˆ )

[( )( ) ] ˆ ( )

where

f f
1

2
1 . 22x=  ( ) ( )

A set of n v T, , , , if y+ - + - +( ) is referred to as the twisting
parity mode, and a set of n v T, , , , if y- + - + -( ) is referred to
as the tearing parity mode (table 4). Both of twisting and
tearing parities are conserved during the linear growth,
because they satisfy the linearized equations, respectively.

Next, we consider the parity symmetry of the nonlinear
equations (12)–(16). We apply the parity operator x to
equations (12)–(16), and by using f g f g, ,x x x  = -[ ] [ ],
we have

t
d p

K p

,

, ,

, 23

x
x x

x x i x x i

x x

2
2

2

4


 

   

 

f
f f

y y b f
m f

¶ -
¶

+ -  -

=  -   - -

- - +  -

( ) [ ( )]

[ ] · [ ( ) ]
[ ] ( ) ( )

n

t
n v d

K p n
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,

24

x
x x x x i x

x x e x

2

2


    

  

f y y

f m

¶ -
¶

+ - - = + 

+ - - - +  -


( ) [ ] [ ]

[ ( )] ( )
( )

v

t
v p v, , , 25

x
x x x x x

2


    f b y m
¶

¶
+ - = - + 

 [ ] [ ] ( )

t
d p, , ,

26

x
x x i x x e x

2
    

y
f y b y h y

¶
¶

+ - = - - + [ ] [ ]

( )

T

t
T v

T

T K T n

T

, 1 ,

1

.

27

x i
x x i x x

L x i

x i x x i x

x i

2


   



   



f g y

k
m g f

g

¶ -
¶

+ - - = - -

+ -
+  - + - - - -

+ -


( ) [ ] ( )( [ ]

( ))
( ) [( )( )

( )]
( )

These equations imply that when n v T, , , , if y ( ) satisfy the
five-field equations, then n v T, , , ,x x x x x i    f y- - -( )
satisfy the same equations. Hence, the tearing parity modes
( n v T, , , ,x x x x x i    f y- - -- + - + - ) n v T, , , , if y= - + - + -( )
satisfy the nonlinear equations, and can remain tearing parity
for all time, and thus the tearing parity mode is able to get
saturated in its nonlinear evolution. On the other hand,
( n v T, , , , if y  ) and ( n v T, , , ,x x x x x i    f y- -  ) do not
satisfy the same equations. Thus, the pure twisting parity
mode does not satisfy the nonlinear equations, and therefor
the twisting parity mode produces tearing parity modes
through nonlinear terms in the nonlinear evolution. That is
referred to as the nonlinear parity mixing.

3.2. Parity symmetry along a magnetic field line

Here, we consider the parity of ballooning type perturbations.
This parity is discussed in local gyrokinetic simulations
recently [7, 81], so we discuss the parity of gyrokinetic
equations, which is used in the studies on interactions
between turbulence and magnetic islands [55, 57–63].
We divide the distribution function into the Maxwellian
part and a perturbed part f F fa Ma a= + ˆ where FMa =

expn

T m

m v

T

B

T2 2a a

a

a a

0
3 2

2

- -
p

m⎜ ⎟
⎛
⎝

⎞
⎠( )

and a denotes particle

species. The perturbation is expressed as f v tX, , ,a m =ˆ ( )
f k k z v t S, , , , , exp ia x yk k kmå

^ ^ ^ˆ ( ) ( ), where S kk = ^^ . The
non-adiabatic part of the perturbed distribution function

Table 4. Parities of perturbations in slab plasmas, where
f fx l=   and λ±=±1.

Twisting parity f+ ψ−or A - n+ v - T+ or p+
Tearing parity f- ψ+ or A + n- v + T- or p-
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h f F Ja a Ma
q

T ak k k 0
a

a
f= +^ ^ ^

ˆ ˆ ˆ obeys the gyrokinetic equation

h

t
h v H h q

F

T t

q
F

T
h C h

v k

v k

i ,

i , ,

28

a
da a Ta a a

Ma

a

a

a a
Ma

a
a a a a a

k
k k

k

k k k*

c

c c

¶
¶

=- - +
¶

¶

+ + +

^

^

^
^ ^

^

^ ^ ^


ˆ

· ˆ [ ˆ ]
ˆ

· ˆ [ ˆ ˆ ] ( ˆ )
( )

where v v A Ja Ta ak k k 0c f= -
^ ^ ^ ˆ ( ˆ ˆ ) , vda, v a* , Ca, v, μ,

v T mTa a a= are the generalized potential, the magnetic
drift velocity, the diamagnetic drift velocity, the collision
operator, the parallel velocity, the magnetic moment, and the
thermal velocity, respectively. The operators are f g, k º^[ ]

k k f gbk k k k k kk, ,då ¢ ´ ¢  ¢ +  ^ ^ ¢ 
^ ^ ^ ^ ^ ^ ^

· , H h H, a
h

vk
akº  -¶

¶^
^

 


[ ˆ ]
ˆ

h v h BH

v a a
h

vk k
akm =  - ¶

¶

¶

¶^ ^
^

   
 

ˆ ˆ ˆ
, b =  · , where H =

v B22 m+ , and J J ka a0 0 r= ^( ) is the 0th order Bessel func-
tion. We use magnetic flux coordinates, the magnetic flux label
s, the poloidal angle θ, and the toroidal angle ζ, and the
perpendicular wavenumber can be written as k sk s=  +^
k q sz q -a ( ( ) ), where q sa z q= - ( ) is the magnetic field
line label. We omit the parallel component of magnetic per-
turbation for simplicity. The Poisson equation and Ampere’s
law are

k q h J v
q

T
d , 29Di

a
a a a

a

a
k k k

2 2
0

3òål f f= -^ ^ ^ ^

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ ( )

k A q v v h J v
2

d . 30i

a
a Ta a ak k

2
0

3òåb
=^ ^ ^ ˆ ˆ ( )

The normalizations are tv RTi 0( , k Tir^ , v vTa , F v nMa Ta
3

0,

f R v na Ta Ti0
3

0rˆ ( ), eR TTi i0f rˆ ( ), A R BTi0
2

0rˆ ( ), ma/mi, Ta/Ti,

n/n0, B/B0, qa/e, Di Til r )  t( , k ,^ v ,a FMa, f ,â ,f̂ A ,ˆ Ma, Ta,

n, B, qa, λDi), where T e n4Di i
2

0l p= ( ) and βi is
the normalized ion pressure. We rewrite coordinates
s x y z, , , ,a q ( ) ( ), so that k k k kk , ,s x y= a^ ( ) ( ). The
parity operator is defined by using this coordinate

Q k k z v t Q k k z v t, , , , , , , , , , . 31x y x y m m= - - - ˆ ( ) ˆ ( ) ( )

We assume that the equilibrium magnetic field strength
B B= ∣ ∣ is invariant under this transformation B B = and
there is no E×B flow shear.

We will show that when the perturbed gyro-center dis-
tribution function f z v t, , ,ak m

^ ˆ ( ), the perturbed electrostatic

potential z t,kf ^
ˆ ( ), and the perturbed vector potential A z t,k̂

ˆ ( )
satisfy equations (28)–(30) then f A, ,ak k k

  f- -
^ ^ ^

( ˆ ˆ ˆ ) also

satisfy equations (28)–(30). In addition, f A, ,ak k k
  f -

^ ^ ^
( ˆ ˆ ˆ )

also satisfy the equations when the equations are linearized, so
that both of tearing and twisting parities are conserved in the
linear growth of instabilities. Each part in the equation is
transformed as  = - , k k =^ ^, v k v kda da =^ ^· · ,

v k v ka a* * =^ ^· · , F z v F z v, , , ,Ma Ma m m= ( ) ( ). These
are easily confirmed, for instance, for large aspect ratio toka-

maks k Bv k 1a y
T

q L B

v
a2

3

2
a

a n

2

* m h= + + -^
- · [ ( ) ], v kda =^·

v B k z k z sz zsin cos sinT

q RB x y
2a

a
m+ + +-

( )( ( ˆ )), k k 1y
2 2= +^ [

s k szk kk x y y
2 2 2 2q q- = + +ˆ ( ) ] ( ˆ ) , where k k sk x yq = - ( ˆ).

By applying the operator  to the Poisson equation and
Ampere’s law, equations (29) and (30), we have

k q h J v
q

T
d , 32Di

a
a a s

a

a
k k k

2 2
0

3  òål f f= -^ ^ ^ ^
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2

. 33i

a
a Ta a sk k

2
0

3 òåb
= -^ ^ ^ ˆ ( ˆ ) ( )

These imply that the electrostatic potential kf ^
ˆ has the same

parity as the perturbed distribution function fak̂
ˆ , while the vector

potential A k̂ˆ has the opposite parity, and thus the generalized

potential kc ^
ˆ has the same parity as fak̂

ˆ as summarized in
table 5. Next, we apply the operator  to the gyrokinetic
equation (28) and have

h

t
h v H h

q
F
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· ( ˆ )
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When f A, ,ak k k
f

^ ^ ^
( ˆ ˆ ˆ ) satisfy the nonlinear gyrokinetic

equation, f A, ,ak k k
  f- -

^ ^ ^
( ˆ ˆ ˆ ) also satisfy the same

equation, and therefore tearing parity modes f ,ak-
-

^
( ˆ

A f A, , ,ak k k k k
 f f- =

- + - - +

^ ^ ^ ^ ^
 ˆ ˆ ) ( ˆ ˆ ˆ ) satisfy the nonlinear gyro-

kinetic equation, where

f f
1

2
1 . 35a ak k= 



^ ^
ˆ ( ) ˆ ( )

On the other hand, the twisting parity mode f ,ak
+

^
( ˆ

A f A, , ,ak k k k k
 f f- =

+ - + + -

^ ^ ^ ^ ^
 ˆ ˆ ) ( ˆ ˆ ˆ ) does not satisfy the non-

linear equation. However, when the gyrokinetic equation
equation (28) is linearized, i.e. nonlinear term h,a a kc ^[ ˆ ˆ ] is
neglected, it is shown that the twisting parity mode also satisfies
the equation by multiplying −1 to equation (34) and using
equation (35). Hence, both the tearing and twisting parity modes
satisfy the linearized equation, and the parity is conserved during
the linear growth of instabilities. In other words, we can divide
the perturbed distribution function into the twisting and tearing
parity parts f f fa a ak k k= +

+ -
^ ^ ^

ˆ ˆ ˆ and they are independent in the
linear growth. For instance, the ITG mode, TEM, and KBM are
the twisting parity mode, and their electrostatic potentials kf

+

^

ˆ

(vector potential A
k

-

^
̂ ) are the even (odd) function of z as shown

in figures 4 and 5 in [7], while MTM is the tearing parity mode.
When the amplitude of instability becomes finite and the non-
linearity plays a role, then the tearing parity mode can keep its
parity. However, the twisting parity mode cannot keep its parity,

Table 5. Parities of perturbations, where f fp l=  ˆ ˆ and 1pl =  .

Twisting parity fsk
+

^
ˆ , kf

+

^
ˆ , A k

-
^

ˆ , skc+
^

ˆ , hsk
+
^

ˆ

Tearing parity fsk
-

^
ˆ , kf

-

^
ˆ , A k

+
^

ˆ , skc-
^

ˆ , hsk
-
^

ˆ
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and the energy is transferred from the twisting parity mode to
tearing parity modes. For instance, when the ITG mode gets
saturated, the tearing parity modes must be produced, and the
excitation of stable tearing parity modes influences the amplitude
of ITG turbulence [81]. The nonlinear parity mixing is ubiqui-
tous in drift-wave turbulence, and it also happens in nonlinear
evolution of instabilities driven by energetic particles [82]. This
nonlinear parity mixture is represented by the equations for
tearing parity mode hak

-
^

ˆ and twisting parity mode hak
+

^
ˆ obtained

by applying 11

2
( ) to the gyrokinetic equation equation (28)

t
h q

F

T
h h, , , 36a a
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a
a a a a ak k k kc c c

¶
¶

+ = +
- - + + - -

^ ^ ^ ^

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ [ ˆ ˆ ] [ ˆ ˆ ] ( )

t
h q

F

T
h h, , , 37a a

Ma

a
a a a a ak k k kc c c

¶
¶

+ = +
+ + + - - +

^ ^ ^ ^

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ [ ˆ ˆ ] [ ˆ ˆ ] ( )

where the linear terms are omitted because they conserve the
parity. Equation (36) implies that tearing parity modes are pro-
duced by nonlinear interactions between the same parity modes,
and thus the tearing parity mode satisfy the nonlinear gyrokinetic
equation, because their nonlinear interactions are represented by

h,a a kc- -
^[ ˆ ˆ ] . Equation (37) implies, on the other hand, that

twisting parity modes are produced by nonlinear interactions
between opposite parity modes, and equation (36) clearly

demonstrates that nonlinear interactions between twisting parity
modes h,a a kc+ +

^[ ˆ ˆ ] produce tearing parity modes ha ak kc
- -

^ ^
( ˆ ˆ ).

4. Unstable against TM

In this section we present multi-scale interactions between
turbulence and magnetic islands caused by the TM and their
influence on turbulent transport by reviewing a flux-driven
electromagnetic simulation [30] and by discussing each part
of interactions in subsections.

4.1. Flux driven electromagnetic turbulence with TM

We review three-dimensional numerical simulations of flux-
driven turbulent transport in a toroidal plasma controlled by
external heat source and sink [30] as a typical multi-scale
simulation of turbulence and magnetic islands. This is also a
self-consistent calculation of the interactions between turbu-
lence, zonal flows, GAM and magnetic islands by numerically

Figure 8. Initial equilibrium profiles.

Figure 9. Linear growth rate as a function of toroidal mode number n
for the initial equilibrium of the flux-driven simulation. The tearing
mode is represented by n=1 and the KBMs are 7�n�20.
Reproduced courtesy of IAEA. Figure from [30]. Copyright
2009 IAEA.

Figure 10. Color-map of electrostatic potential on a poloidal cross
section. The quasi-equilibrium of micro-turbulence is formed at
t=245. The mixture of micro-turbulence and magnetic islands due
to the tearing mode is established at t=324. Reproduced courtesy
of IAEA. Figure from [30]. Copyright 2009 IAEA.

Figure 11. Toroidal mode number spectrum of E×B flow energy,
where n is the toroidal mode number. Magnetic islands due to the
tearing mode is denoted by n=1, and the peak of KBMs is located
at n=10. The n=2−8 modes are the coherent stable modes.
Reproduced courtesy of IAEA. Figure from [30]. Copyright
2009 IAEA.
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solving a reduced set of two-fluid equations (1)–(5). The flux-
driven simulation enables us to investigate the influence of the
temperature profile flattening inside the separatrix of island,
which is controlled by a balance among the heat source, the
turbulent transport and the violation of magnetic surfaces.

We consider a plasma which is unstable against a TM and
KBMs [30]. We set ò=0.25, ρi/a=1/80, T T 1e it º = ,
β=0.01, the artificial dissipation m 104 7m = - , and the nor-
malized resistivity η=4×10−4 which corresponds to the
Lundquist number S v a 1.6 10A

6hº = ´ . The q-profile is
set to have a q r 2s =( ) rational surface as shown in figure 8, so
that an (m, n)=(2, 1) TM can be unstable. The initial profile
in figure 8 is unstable against KBM/drift-resistive ballooning
mode and the TM (figure 9) [30]. Since the growth rate of the
KBM is much larger than the TM, the KBM driven turbulent
state is established at the beginning as shown in the color map
of electrostatic potential profile in figure 10. We have zonal
flows produced from the KBM, but the flows are not so strong
that the streamer of the KBM remains. Note that the coherent
(m, n)=(2, 1) mode is excited and has a similar level as the
other modes as shown in figure 11, however this mode is not a
coherent (m, n)=(2, 1) magnetic island but narrow magnetic
islands with W=a which is a part of turbulence as shown by
contours of magnetic flux and Poincare map of magnetic field
lines in figure 12 [25]. The details are discussed in the next

section. This quasi-steady KBM turbulent state continues until
the magnetic islands of TM appears.

After the magnetic islands of TM appear, violated magn-
etic surfaces form into the (m, n)=(2, 1) islands shown in
figure 12. Then, turbulent perturbations appearing at the bad
curvature region are transformed to the perturbations reflecting
the (m, n)=(2, 1) magnetic island in the electrostatic potential
profile in figure 10. The turbulence can be strong at the X-point
because the gradient is kept [57], while it can be also strong
around the O-point because the magnetic perturbation of the
island reduces the magnetic shear at the O-point as suggested
by the equation B x B L kyd d cosy s0= + Y [32]. In this
simulation there is little difference of turbulent fluctuation in
the poloidal direction at t=324 as shown in figure 10, and
thus the difference of the turbulence intensity between the X
and O points is small.

Although the KBM is suppressed by the appearance of
the magnetic islands, the mutual interactions between turbu-
lence and islands enhance heat transport as shown by the ion
heat diffusivity profile in figure 13. The ion heat diffusivity

Q T rd di i ic = - á ñ( ) is calculated with respect to the
unperturbed flux surfaces, i.e. it is averaged over the poloidal
angle. We omit the parallel streaming along the magnetic field
line and evaluate the heat flux by Q a Ti i f= - á  ñq˜ ˜ ˜ in order to
eliminate the transport due to the magnetic perturbation of the
island. The diffusivity χi increases at r/a=0.6, where the
magnetic islands appear. The enhancement of χi takes place
at the inside of the separatrix of the island, while the diffu-
sivity is a little decreased just outside of the separatrix of
the island, which is located at r/a=0.55 and 0.7.
The enhancement of diffusivity is mainly attributed to the
appearance of coherent mode described in detail in the next
subsection.

As a results of the multi-scale interactions, χi is enhanced
inside the separatrix of the magnetic islands, however, the ion
temperature profile is not completely flattened inside the
island as shown by the profile of ion temperature gradient

T rd di- in figure 14 [30], in addition, the profile is steepened
just outside of the island. It is noted that the profile is aver-
aged over the poloidal angle, and thus the flattening and
steepening of the profile results from the average over the O
and X points. When a magnetic island appears in the absence
of turbulence, we expect that the profile is steepened outside
and flattened inside the island around the O-point, and the

Figure 12. Equi-contours of helical flux function of m/n=2 on a poloidal cross section (left two frames). Poincare map of magnetic field
lines (right two frames), where red solid line indicates q=2 rational surface. There is no magnetic islands at t=245. Magnetic islands with
(m, n)=(2, 1) appear at t=324. Reproduced courtesy of IAEA. Figure from [30]. Copyright 2009 IAEA.

Figure 13. Profile of χi and zonal flows before and after the
appearance of magnetic islands in flux-driven electromagnetic
turbulence. The magnetic islands appear on q(rs)=2 rational
surface at rs/a=0.6. Reproduced courtesy of IAEA. Figure from
[30]. Copyright 2009 IAEA.

10

Plasma Phys. Control. Fusion 61 (2019) 054006 A Ishizawa et al



profile is steepened around the X-point. The interaction
between turbulence and magnetic island causes deviation
from these profiles around the island. The turbulent fluctua-
tions mix the difference of temperature at the O and X points,
and result in the flattening inside and steepening outside the
island. The incomplete ion temperature profile flattening
inside the island and the steepening at outside are consistent
with the experimental observation of the ion temperature
profile around magnetic islands interacting with turbulence in
DIII-D plasmas [69]. In addition [69], reports increased fluxes
when the gradients are decreased inside the island. This
implies that the power balance effective radial diffusivities are
increased at the rational surface of the island, and it is also
consistent with the increase of thermal diffusion χi profile in
figure 13. This incomplete flattening is also observed in non-
flux-driven simulations of interactions between turbulence
and magnetic islands [44–46, 55, 57]. Gyrokinetic simula-
tions show that the ion temperature is not completely flattened
by electrostatic toroidal ITG turbulence [55, 57]. Similar
incomplete flattening of pressure profile is also observed as a
results of interactions between a magnetic island and the
resistive MHD interchange turbulence in slab plasmas [44].
Other fluid simulations also demonstrate that the electrostatic
ITG turbulence is also able to maintain finite temperature
gradient across the magnetic island [45, 46].

4.2. Coherent vortex flows

The violation of ballooning structure of turbulence is
observed in figure 10, and is also shown by the toroidal
wavenumber spectrum of E×B flow energy in figure 11
[30]. The peak of KBM occurs at n=10 in the quasi-steady
turbulent state, which is dominated by ballooning like tur-
bulent fluctuations. Then, after the magnetic islands due to the
TM appear, the peak at n=10 disappears and the spectrum is
broadened, so that the large-scale stable modes with
1<n<8 are excited resulting in coherent/meso-scale vor-
tex flow [30]. The excitation of coherent vortex flow by the
multi-scale interactions is clearly shown in [29], which made
comparison between the energy spectra of turbulence alone,

TM alone, and mixture of turbulence and TM. The energy
spectrum of the mixture of turbulence and TM has higher
amplitude at low wavenumber than that of TM alone. This
coherent vortex formation is generally observed in interac-
tions between turbulence and magnetic islands: five-field fluid
simulations of KBM [8, 25], three-field fluid simulations of
resistive MHD IC in slab plasmas [39] and gyrokinetic
simulations of ITG turbulence [55, 57, 59].

Here we consider the energy transfer to coherent vortex
flow such as the (m, n)=(2, 1) mode. The energy transfer
from the KBM turbulence to the coherent modes is evaluated
[30], and the energy transfer from resistive MHD IC to the
coherent mode is investigated [34]. The equation of the (m, n)
flow energy is obtained from the (m, n) Fourier component of
the vorticity equation equation (1) as

t
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are contribution to the flow drive from the Reynolds stress, the
Maxwell stress, the nonlinear ion diamagnetic term, the tor-
oidal curvature term, the magnetic field line bending term, the
kink term, and the linear ion diamagnetic term, respectively. In
the equation V bE Bmn mnf= ´ ´ is the E×B flow velocity
of (m, n) mode, f a f,mn mnb y = -( ) ˜[ ], feq =( )

f a f,eq b y¶ -z ˜[ ], f f fe emn mn
m n

m n
m ni i i i= +q z q z-

- -
- +ˆ ˆ , where

fmn
ˆ is the (m, n) Fourier component of f. The ion diamagnetic
term comes from the gyro-viscous cancellation of gyro-stress
tensor[79, 83]. The line bending term T mnLB has a stabilizing
effect on MHD instabilities, and it is related to the propagation
of Alfvén wave along equilibrium magnetic field line. The
kink term has a destabilizing effect on current-driven MHD
instabilities, such as tearing instability. By evaluating each term
in equation (38) we found the energy transfer from turbulent
fluctuations to coherent vortex flow such as VE B21´ . The
Reynolds stress drives the coherent vortex flow, while the
Maxwell stress and ion diamagnetic term suppress the flow
production [8]. Hence, the Maxwell stress counteracts with the
Reynolds stress in producing coherent vortex flow related to
the magnetic islands. That is similar to the energy transfer from

Figure 14. Ion temperature gradient profile T rd di- before and after
the appearance of magnetic islands (MHD) in flux-driven electro-
magnetic turbulence. The magnetic islands appear at r/a=0.6.
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turbulence to zonal flows VE B00´ that is driven by the Rey-
nolds stress and suppressed by the Maxwell stress and ion
diamagnetic term.

The coherent vortex flow can be caused not only by
small-scale turbulence but by the stagnation of E×B flow to
magnetic islands as expected by equation (4). This flow
generation process is related to zonal flow modification by
magnetic island and is discussed in the next subsection.

4.3. Zonal flows

Zonal flows play a role in the nonlinear interactions of drift-
wave turbulence, although they are not strong in finite β

plasmas, they regulate turbulence and also reduce the growth
of islands by shearing the radial structures [84]. On the other
hand, zonal flows are influenced not only by the turbulence
but also by magnetic islands because the fluid flow tends to
follow the reconnected magnetic surfaces, which is related to
the polarization current.

The suppression of heat diffusivity just outside of the
separatrix of magnetic island is consistent with the change of
zonal flow profile in figure 13. The zonal flow profile is
corrugated with meso-scale radial wavelength in the turbulent
state before the islands appear in figure 13 [30]. After the
appearance of magnetic islands, the flow profile is changed to
have strong flow shear at the separatrix of the island, because
the flow is stagnated around the O-point of the island. The
zonal E×B flow modification is also observed in gyrokinetic
simulations with stationary magnetic islands, and the shearing
of flow modified by the island is strong enough to suppress
TEMs [63]. The influence of the multi-scale interactions on
the zonal flow is extensively investigated by using five-field
model in a slab plasma [29, 40]. Interactions between
electromagnetic sITG and TM cause oscillatory electro-
magnetic torque, and this torque causes oscillatory zonal
flows that are different from GAM because it appears in slab
plasmas. Since the zonal flows become oscillatory, the

turbulent transport is not efficiently suppressed by the zonal
flows [29]. As a back reaction to the magnetic island, the
oscillatory zonal flows make magnetic islands oscillate, and
that is called the magnetic island seesaw [40]. The oscillatory
flow is also observed in gyrokinetic simulations [59].

4.4. Magnetic field stochasticity

The appearance of magnetic island at q=2 rational surface is
clearly shown by the equi-contours of m/n=2/1 helical flux
in figure 12 [30]. The equi-contours represent the magnetic
surfaces when the magnetic perturbations have single helicity,
which is m/n=2/1 in this case, in cylindrical/slab plasmas.
When magnetic perturbations have multi-helicity in torus
plasmas, the Poincare map obtained by field line tracing is
different from the equi-contours as shown in figure 12. It is
remarked that points with same color are on a magnetic field
line in the Poincare map in figure 12. Before the magnetic
islands appear (t= 245), the Poincare map reflects the tur-
bulent magnetic perturbation due to KBM. Then, after the
growth of TM (t= 324), the (m, n)=(2, 1) magnetic islands
appear on the q=2 rational surface represented by a red line.
The field line orbit passing around the separatrix is unstable,
as indicated by the blue points. Thus, the stochasticity of field
line around the X-point is enhanced. This enhancement of the
stochasticity around the X-point is also observed in gyroki-
netic simulations [61].

4.5. Anomalous current drive

We have seen that coherent magnetic islands dominate tur-
bulent fluctuations when TMs are unstable. However, when
the islands are small, i.e. when the TM is growing, the tur-
bulence can influence the growth of TM by anomalous cur-
rent drive. Here we present the anomalous current drive due
to the KBM turbulence. Figure 15 shows time evolution of
the amplitude of each term on the q=2 rational surface for
the (m, n)=(2, 1) mode of the generalized Ohm’s law
equation (4). The resistive diffusion term 2h y^

˜ is repre-
sented by the red line, and the anomalous turbulent drive
terms, which are the nonlinear terms ,y f[ ˜ ˜ ] and p, ey[ ˜ ˜ ], are
denoted by blue and gray lines, respectively. The nonlinear
terms are significantly larger than the normal resistivity term,
and thus the turbulence causes anomalous current drive. The
anomalous current drive by sITG turbulence is also observed,
and it is evaluated to be 10 or 100 times of the normal
resistivity [50]. Nonlinear mixing of magnetic flux by E×B
flow influence the magnetic island not only by enhancing
growth rate but also by causing the oscillation of magnetic
island, which is caused by small-scale dynamo-generated
current and is referred to as magnetic island seesaw [40].

4.6. Non-flux-driven simulations

Most of the simulations of multi-scale interactions between
turbulence and magnetic islands are non-flux-driven simula-
tions as shown in table 2. Some of interactions between tur-
bulence and magnetic islands are lost in non-flux-driven
simulations, for instance, once the profile is completely

Figure 15. Time evolution of the absolute value of each term in the
(m, n)=(2, 1) component of Ohm’s law on the q=2 rational
surface. The turbulent diffusion terms ,y f[ ˆ ˆ ] and n,y[ ˆ ˆ] (blue and
gray lines) are significantly larger than the normal resistive diffusion
term ηJ (red line).
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flattened inside of the separatrix of the islands, then the drive
of turbulence is lost after the appearance of the islands. Thus,
the non-flux-driven simulations do not capture an essential
part of interactions between magnetic islands and turbulence
driven by the temperature and density gradients. On the other
hand, the initial process of magnetic island appearance in
turbulent state is not sensitive to the profile flattening, and
thus the non-flux-driven simulations well describe the process
of the interactions, for instance, the energy transfer from
small-scale turbulence to coherent modes is a general feature.
This feature is observed not only for TMs but also for double
TM in the quasi-steady equilibrium formed by a balance
between micro-turbulence and zonal flow [25]. It is noted that
the energy transfer to coherent modes does not mean the
appearance of magnetic islands, because the mechanism of
double TM appearance is a positive feedback loop between
suppression of the zonal flow and growth of magnetic
reconnection [25]. The difference of double TM from the TM
is that the reduction of sheared flow caused by the turbulence
between two island chains is needed to the appearance of
islands. Thus, when the radial location of the peak of turbu-
lence intensity is away from the radial location of the rational
surface, where the island is expected to arise, zonal flows and
the excitation of non-resonant modes between these two
radial locations have significant impact on the interac-
tions [25, 47].

5. Stable to TM

We have reviewed interactions between electromagnetic tur-
bulence and magnetic islands, when TMs are unstable, and
discussed the influence of the interactions on turbulent
transport in the presence of magnetic islands in torus plasmas.
Here, we consider the multi-scale interactions between tur-
bulence and magnetic island, when TMs are stable. We will
present that large-scale magnetic islands are influenced by
small-scale turbulence, when the TM is stable/marginally
stable, then we will discuss the parity mixture in the
interactions.

This issue is linked to the excitation of NTMs [9, 74],
which restrict the achievable β of tokamak plasmas. The
NTM is nonlinearly destabilized by the perturbed bootstrap
current in the presence of seed magnetic island, even whenD¢
is negative. This seed magnetic island can be excited by
turbulence [22]. It is demonstrated that the ITG turbulence
can excite magnetic islands with widths equal to several times
the ion Larmor radius W ; 5ρi, which is similar to the
required seed island width [9] by fluid simulations in slab
plasmas [37]. Then gyrokinetic simulations [61, 62], which
include accurate finite Larmor radius effects, show that W ;
3.6ρi. Magnetic islands are also produced by an MHD IC for

0D¢ < in a slab plasma [37]. In addition, it is presented that
islands are formed by an MHD IC with diamagnetic effects
when the TM is marginally stable 0D¢  in slab plasmas
[39] (table 1), and the pressure profile flattening inside the
separatrix of the island is also investigated [52]. Such islands
formation is also shown by ICs appearing the location away

from the rational surface [47]. In addition, fluid simulations
show the growth of NTMs seeded by the MHD-interchange-
driven turbulence in slab geometry when a model of bootstrap
current is included [53]. The NTM excitation by drift-wave
turbulence such as ITG, TEM and KBM turbulence in torus
plasma is still an open problem, because magnetic stochasti-
city and toroidal nature of turbulence may cause difference.

5.1. Magnetic island production by turbulence

Here, we will show that the turbulence produces long wave-
length magnetic islands even when TM is stable/marginally
stable by numerical simulations of two-fluid equations (6)–(10)
in slab plasmas [37]. That implies that the turbulence modifies
the excitation threshold of magnetic islands predicted in
terms ofD¢ based on the conventional MHD theory [11]. It is
shown that magnetic islands are excited by ITG turbulence
for the magnetic field configuration that is stable to TMs

0D¢ < [37].
The conventional theory of TMs predicts that the mode is

unstable when the jump of perturbed poloidal magnetic field at

the neutral (rational) surface is positive 0
x

1 d

d
0

0
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y

y
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For instance,the stability parameter is kL
L kL s
2 1

s s
D¢ = -( ) for

a Harris current profile J x J x Lsech s0
2=( ) ( ), and D¢ is

positive (negative) for a low (high) wave-number perturbation
or a thin (thick) current sheet k<1/Ls (k>1/Ls). We con-
sider a sheared slab plasma,and magnetic shear length Ls is set
to be large enough, so that current density gradient is small and

0D¢ < ,indicating that TM is stable. The ITG is set to be
L L 2.5i n Ti h º ,so that the turbulence is driven by the

electromagnetic ITG mode. Parameters are set to be
β=0.01,L/ρi=80,and η=2.35×10−5. In the quasi-
steady turbulent state of the ITG turbulence,magnetic islands
appear on the neutral (rational) surface for the marginally stable
case 0D¢ = (figure 16). Figure 17 shows the produced island
width as a function of the TM stability parameter D¢. The
island width decreases with decreasing D¢ in 0D¢ > regime,
however, the island width W is finite even in 0D¢ regime
[37]. This implies that magnetic islands appear even when
there is no spontaneous magnetic reconnection, i.e. TMs are
stable. The width of the island caused by the ITG turbulence is
as large as five times of the Larmor radius (figure 17). Hence,
the turbulence modifies the threshold of magnetic island
appearance predicted by the conventional resistive MHD ana-
lysis in terms of D¢.

Next, we investigate the mechanism of the coherent
magnetic island formation. Figure 18 shows the time history of
the reconnected flux Ψ(t), which is the magnetic flux at the
X-point and represents the island width byW t t L4 s= Y( ) ( ) .
It is noted that magnetic reconnection rate (reconnection
electric field) is given by E(t)=dΨ(t)/dt. The growth rate of
the island and the saturated width of the island are enhanced by
increasing the ITG parameter ηi. This suggests that the growth
rate and the saturated width of magnetic islands are controlled
by the amplitude of ITG turbulence. Figure 19 shows the time
evolution of magnetic flux on the neutral sheet located at x=0
for 0D¢ = and ηi=3.5. The color is red (blue) around the
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X (O) points in figure 19(a), and the points indicate the location
of the X and O points in figure 19(b). At the beginning, there
are many X and O points representing small-scale magnetic
islands created by magnetic reconnection driven by the

electromagnetic ITG mode until t∼100. Then, the small-scale
islands merge into coherent islands indicated by coherent red
and blue regions appearing after t∼400. Hence, the coherent
magnetic islands are produced by merging of small-scale
magnetic islands produced by the ITG turbulence.

It is remarked that we have similar magnetic island
production by turbulence in a torus plasmas that is unstable
against micro-instabilities as shown in figure 20. The equili-
brium q-profile, density profile, and temperature profile are
q r a1.05 2 2= + ( ˜) , n r a0.8 0.2 exp 2eq

2= + -[ ( ˜) ], and
T r a0.35 0.65 1eq

2 2= + -[ ( ˜) ] , respectively. The q-profile
has a q=3/2 rational surface at r a 0.48=˜ , and the stability
parameter of TM for (m, n)=(3, 2) is 2D¢ » - . It is
remarked that the turbulence causes strong magnetic sto-
chasticity around the separatrix of the islands as mentioned in
section 4, so that the islands are not clear compared to those in
slab plasmas.

Figure 16. Equi-contours of magnetic flux representing long-
wavelength magnetic islands for the marginally stable case 0D¢ = .

Figure 17. Magnetic island width as a function of the stability
parameter of tearing mode D¢. Reprinted from [37], with the
permission of AIP Publishing.

Figure 18. Time history of reconnected flux for 3.4D¢ = - .
Reprinted from [37], with the permission of AIP Publishing.

Figure 19. Time evolution of (a) magnetic flux on the neutral sheet
x=0, where blue region represents the core parts of magnetic
islands around O-points, and (b) X-points and O-points for the case
ηi=3.5 and 0D¢ = , where black points are O-points and blue
points are X-points.

Figure 20. Color map of electrostatic potential of KBM turbulence
on a poloidal section and equi-contours of helical flux that indicates
magnetic islands of m n 3 2= , for the case the (m, n)=(3, 2)
tearing mode is stable, 2D¢ » - .
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5.2. Propagation of magnetic islands

Here, we discuss the rotation of magnetic islands in poloidal
direction. Figure 19 demonstrates the reverse of propagation
direction of magnetic islands. The islands propagate in the ion
diamagnetic direction at the beginning because the ITG mode
propagates in the ion diamagnetic direction, then the propa-
gation direction is reversed, and they propagate in the electron
diamagnetic direction. The reverse of the propagation is due
to the zonal flows induced by the ITG mode. The magnetic
islands control not only the propagation of magnetic pertur-
bation of ITG turbulence but also the propagation of the
resistive MHD IC [35], which is equal to the electron fluid
velocity [54], and thus the direction change is generally
expected. This is because the zonal flows on the neutral/
rational surface have significant impact on the propagation of
magnetic islands [85]. This nonlinear process is essential in
reproducing the propagation velocity of the IC observed in
the Large Helical Device experiment, because the linear cal-
culations of resistive ICs do not reproduce the propagation
velocity. The propagation velocity strongly depends on the
island width. When the island width is small W=ρi, the
islands propagate with the same frequency as the real-fre-
quency of the instability producing the islands. When the
island width becomes finite W≈ρi, then the island propa-
gates with electron fluid velocity V V V Ve E B eisland *= = +´
as shown in figure 14 of [54]. When the island width becomes
large W ? ρi, then the propagation velocity is the same as the
zonal flow velocity V V Ve E Bisland = = ´ as expected from the
MHD theory which is valid in the wide island limit W ? ρi.

5.3. Nonlinear parity mixture

Let us discuss nonlinear parity mixture which is responsible
for magnetic island formation by turbulence, that is pointed
out in [26]. There are two types of magnetic island formation
by parity mixture: the direct nonlinear mixture and a mod-
ulational instability [54]. These two types correspond to the
two types of zonal flow production mechanisms by turbulence
[86]. The growth rate is twice of the micro-instability

2island turg gµ for the former case, while the growth rate is
proportional to the saturated amplitude of micro-turbulence

island turg µ F∣ ∣ for the latter case.

5.3.1. Direct nonlinear parity mixture. First, we describe the
direct nonlinear production of tearing parity mode from
the twisting parity mode which is referred to as interchange
parity mode in [54]. We can divide the electrostatic potential
f, the magnetic flux function ψ, the electron density n, the
parallel velocity v, and the ion temperature Ti into the
twisting and tearing parity parts f f f= ++ -, y y= ++
y-, n n n= ++ -, v v v= ++ -   , and T T Ti i i= ++ -,
respectively, where f± is defined by equation (22). The
twisting parity mode is represented by a set of

n v T, , , , if y+ - + - +( ), while the tearing parity mode is
denoted by a set of n v T, , , , if y- + - + -( ). The nonlinear
two-fluid equations for the tearing and twisting parity modes
are obtained by applying the operator 1 x

1

2
( ) to

equations (12)–(16) and using equation (22) as
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where the linear terms are omitted because they are the same
as the r.h.s of equations (17)–(21) and conserve the parity as
shown in section 3. Equations (39)–(43) imply that nonlinear
interaction between the same parity modes produces the
tearing parity modes n v T, , , , if y- + - + -( ), and thus the
tearing parity modes satisfy the nonlinear equations as shown
in section 3. Hence, the tearing parity is conserved when the
initial state includes only tearing parity modes as shown by
many nonlinear simulations of TMs. On the other hand, the
twisting parity modes n v T, , , , if y+ - + - +( ) are produced by
the nonlinear coupling between the opposite parity modes
such as , 2f f+ -[ ] in equations (44)–(48), and thus pure
twisting parity mode does not satisfy the nonlinear equations
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as shown in section 3. Hence, twisting parity is not conserved
when the amplitude of the instability becomes large and
nonlinearity is prominent, and then the energy of the twisting
parity mode is transferred into tearing parity modes. This
process of tearing parity mode excitation is clearly shown by
nonlinear coupling between the twisting parity modes such as

, 2f f- -[ ] and , 2y y+ +[ ] terms in the equations of tearing
parity modes equations (39)–(43). Hence, magnetic islands,
which have tearing parity, are produced by turbulence, which
normally has twisting parity, through nonlinear parity
mixture. To be precise the production of tearing parity
mode does not mean the appearance of magnetic islands as
described in figure 21. The excited magnetic flux of tearing
parity mode vanishes at the rational surface ψ(x=0)=0 at
the beginning (figure 21(b)). Then, the magnetic islands
appear when magnetic reconnection takes place, i.e. the
magnetic flux at x=0 becomes finite x 0 0y = ¹( ) by
reconnection electric field produced by forced magnetic
reconnection E x 0 0z

x

t

d 0

d
= = ¹y =( ) ( ) (b)  (c).

5.3.2. Modulational parity instability. We have seen that the
nonlinearity of turbulence mixes the parities to produce
magnetic islands. Next, we present the modulational
instability analysis of magnetic island formation by
turbulence. The analysis is similar to the modulational
instability analysis of zonal flow production by turbulence
[86]. We examine the parity mixture by nonlinear terms of
two-field equations for simplicity

t
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We consider a situation that a twisting mode ,F Y+ -( ) get
saturated, and the fluctuation of zonal flows ,zf zff y+ -( ) with
twisting parity is driven by the saturated twisting mode, so
that zf sbf f f= F + ++ + - and zf sby y y= Y + +- - +,
where ,sb sbf y- +( ) is the side-band mode with tearing
parity. The equations for the zonal flow and the side-band
modes are obtained by assuming that they are much smaller
than the saturated twisting parity mode ,F Y+ - ( )
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where only , 2f f[ ] term is retained for simplicity.
Equation (51) implies the modulational instability of zonal
flows driven by the pump twisting mode Φ+, while
equation (52) implies the modulational instability of the
side-band mode that has the same growth rate as the zonal
flows. The magnetic perturbation of this side-band produces
the magnetic islands because it has tearing parity sby +. Hence,
the magnetic islands are produced by turbulence through the
modulational parity instability, and that is confirmed by
numerical simulation (figure 8 of [54]). It is remarked that
twisting parity modes can be produced from a saturated state
of tearing parity modes through the nonlinear terms in
equations (44)–(48), when the saturated state is unstable
against twisting parity mode [87].

6. Static magnetic islands

A part of the influence of turbulence on the growth of
magnetic islands should be attributed to the polarization
current effects due to the flows produced by turbulence,
because the polarization current is induced by the flow
acceleration around the separatrix of a magnetic island. It is
hard to distinguish the polarization current effect from other
nonlinear interactions in electromagnetic simulations. We can
extract the polarization current effect by means of electrostatic
simulations with a static magnetic island, because we can
eliminate nonlinear excitation of coherent magnetic island
from turbulence through the merging of small-scale islands
shown in figure 19. This method is first used in [28, 31], and
it is found that the polarization current due to turbulence can
destabilize magnetic islands. The simulation model is
obtained by setting the magnetic field to represent a static
magnetic island, and it is assumed that the magnetic field does
not evolve.

6.1. Polarization current due to turbulence

In this section we consider a static magnetic island in the
presence of turbulence to elucidate the polarization current
effects driving the islands. First, we briefly review the

Figure 21. Magnetic island production process from twisting parity
mode by nonlinear parity mixing. (a) Linear growth of perturbed
magnetic flux ψ−and electrostatic perturbation f+ of a twisting
mode. (b) Tearing parity mode (ψ+, f−) production by nonlinear
parity mixing. (c) The magnetic flux ψ+ becomes finite at the
resonant surface x=0 implying magnetic reconnection, i.e. the
production of magnetic islands.
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magnetic island equation, i.e. Rutherford equation, to eluci-
date the role of the polarization current [9, 88]. By neglecting
the density, ion temperature, and parallel velocity
n T v 0i= = = , the five-field equations (6)–(10) are reduced
to the two-field equations, i.e. the reduced MHD equation

t
J, , 53

2
2f

f f
¶
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+  =  [ ] ( )

t
J , 54

y
f h

¶
¶
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where f f,y = - [ ] and J J 2yº - = - . The magnetic
flux including a magnetic island can be written as

x k ycosB

L y2
2

s

0y = + Y around a rational surface, where

k k L2y yp= and k=1. We have J 0 =  , when the
polarization terms (inertia terms), which is the left-hand side
of the vorticity equation (53), is neglected. This implies that
the current density is a flux function J J Jy= = á ñ( ) , where
áñ denotes the average over a flux surface deformed by the
magnetic island. When the inertia terms are retained, the
current density deviates from the flux function

J J J , 55pol= á ñ + ( )

and the deviation is the polarization current. The
flux averaged Ohm’s law (equation (54)) leads to

k y x J J k y xcos d cos d
t y ypolò òh= -y¶

¶
( ) ( ) ( ) by using

f f, 0yá ñ = -á ñ = [ ] and equation (55). By using the
constant-ψ approximation, this equation can be written in
terms of the island width W L4 s= Y as

C W

t

d

d
, 56pol

h
= D¢ + D ( )

where C is the constant caused by the average on the flux
surface deformed by the island and is approximated to 0.8 [83],
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[28, 31, 42] . In general, the vorticity equation includes terms
other than inertia terms, and thus Δpol is replaced by Δ which
includes not only the polarization term but also the curvature
term and the ion diamagnetic term in equation (6). Then, the
Rutherford equation is rewritten as
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The first termD¢ represents the drive from an external current,
while the second term is the drive from the internal current
including the polarization current
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The last line implies that the twisting parity mode, i.e. pure IC,
does not produce the polarization current. Hence, tearing parity

fluctuations

J d p
1

, , 61i eh
f y b y= ++ - + + +([ ] [ ]) ( )

caused by nonlinear parity mixture produce the polarization
current, because the turbulence is driven by IC/ITG mode that
normally has the twisting parity n v T, , , , if y+ - + - +( ) and the
tearing parity mode n v T, , , , if y- + - + -( ) is produced by the
nonlinear parity mixing. The internal drive caused by nonlinear
terms such as the polarization current term and ion diamagnetic
term, and by linear terms such as the curvature term. That is
similar to the energy transfer to the coherent vortex flow dis-
cussed in section 4.2. The Reynolds stress T mnR , the ion dia-
magnetic term T mnID , and the curvature term T mnC in
equation (38) correspond to the contribution of polarization
current term, the ion diamagnetic term, and curvature term to
the internal drive Δ, respectively. The influence of Maxwell
stress T mnM does not appear in Δ because we consider the
electrostatic turbulence. It is noted that the influence of the
magnetic field line bending term T mnLB and the kink term T mnKI

are summarized to the drive from an external current D¢.
The polarization current is controlled by plasma flow

around the magnetic island, and thus a background flow
against the static magnetic island is crucial for the evaluation
of the polarization current. The background plasma flow
consists of the E×B flow and ion and electron diamagnetic
flows. The background diamagnetic flow is specified by the
equilibrium density and temperature profiles. The background
E×B flow is introduced by imposing a potential difference
across the simulation region. The potential difference is pro-
portional to the total flux of plasma V xdE ByòG = ´ through
the simulation region because of V eE B z f= ´ ´ . The flux
is parametrized by corresponding unperturbed velocity

u
x
b= f¶

¶
, where uxbf = is the background electrostatic

potential. The choice of unperturbed velocity u corresponds to
the setting of boundary conditions on the electrostatic
potential x L 2 0xf = - =( ) and x L 2x bf f= =( ) , and is
linked to the magnetic island propagation in the poloidal
direction.

There are two situations of the magnetic island propaga-
tion. One is the free propagation in the poloidal direction,
which is normally realized in a saturated state of magnetic
island growth due to a TM. Another is the forced propagation,
in which the island has relative velocity against the background
plasma flow. That is normally realized when magnetic islands
are produced by an external applied magnetic field such as
RMP. The mode locking is a transition from the free propa-
gation to the forced propagation. These two situations are
identified by electromagnetic force in the poloidal direction
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The last line implies that the twisting parity mode does not cause
the electromagnetic force. Thus, tearing parity fluctuations
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J d p, ,i e
1 f y b y= +
h+ - + + +([ ] [ ]) generated by the nonlinear

parity mixture cause the electromagnetic force, when the IC/
ITG mode drive the turbulence. The forced propagation is
represented by F 0y ¹ in steady state, while Fy=0 indicates the
free propagation. The free propagation velocity of the island is
the same as the E×B flow velocity for large magnetic islands
W ir [41, 78], while the propagation of small islandsW ir»
is significantly influenced by the diamagnetic flow. When the
island is produced by turbulence, the propagation direction is
reversed at nonlinear evolution as shown by figure 19 in
section 5.2, that is explained by the appearance of zonal flows,
i.e. the E×B flow produced by the turbulence.

6.1.1. Forced propagation. We present the electromagnetic
force Fy and internal drive Δ for a static magnetic islands in
sITG turbulence obtained by solving the five-field fluid
equations in slab plasmas, equations (6)–(10), [42]. First, we
present results for forced propagation case that corresponds to
magnetic islands induced by an externally applied magnetic
field such as RMP. Figure 22 shows the time averaged
electromagnetic force Fy and internal drive Δ as a function of
the unperturbed velocity normalized by the equilibrium
electron diamagnetic velocity u V e* for a magnetic island
with W=3.5ρi in the presence of ITG turbulence with
ηi=2.5. The results in the absence of ITG turbulence
ηi=κ=0 is added as a reference in the figure. The slopes of
Fy for turbulent conditions are much larger than without
turbulence ηi=κ=0 in figure 22(a), and are almost
independent on the viscosity μ. This may be interpreted that
the turbulence enhances the force acting on the magnetic
island in terms of anomalous viscosity that is proportional to
the slope

F

u

d

d
y . Figure 22(b) shows that the amplitude of the

internal drive Δ with turbulence (ηi=2.5) is larger than
without turbulence ηi=κ=0. This implies that the ITG
turbulence has a destabilizing effect on magnetic islands. The
destabilizing effect is larger for the cases with unfavorable
curvature 0k ¹ than for the case κ=0.

6.1.2. Freely propagating magnetic island. The natural
(unforced) propagation velocity ufree is obtained from
F u u 0y free= =( ) obtained by interpolating the data in
figure 22(a). It is noted that there is another way to obtain
ufree. The natural velocity ufree is obtained by modifying the
boundary conditions on ub at each time step of the simulation
to reduce Fy∣ ∣, then the natural velocity should be u ubfree = -
when the electromagnetic force vanishes F 0y =∣ ∣ . The natural
propagation velocity is significantly modified by the presence
of turbulence 0ih ¹ , especially for the cases with unfavorable
curvature 0k ¹ . This is because the sITG turbulence
produces strong zonal flows. Figure 23 shows the slope of
time averaged electromagnetic force at u ufree= ,

u u
F

u

d

d free
y- =( ) as a function of the viscosity μ, which is

evaluated from figure 22(a). The slope of the force with the
ITG turbulence weakly depends on the viscosity compared to
the slope without the turbulence ηi=0, and this suggests the
turbulent diffusion of momentum. Figure 23 shows that the

slope for μ=0.01 with turbulence is similar to that for
μ=0.2 without turbulence, thus, as measured by the viscous
force acting on the island, we see that the turbulence creates
an effective turbulent momentum diffusivity of magnitude

v L0.2 i Ti n
2m r» [ ], which corresponds to 1.3m » ´

L v10 n A
5- [ ] in the MHD normalization.
Next we present the influence of turbulence on the

internal drive Δ. Figure 24 shows the internal drive term Δ as
a function of the viscosity μ for a freely propagating magnetic
island with the width W=3.5ρi, which is normally realized
in the mixture of turbulence and magnetic islands presented in
section 5. The internal drive is negative for the case without
turbulence κ=ηi=0, whereas the internal drive is positive
in the presence of ITG turbulence κ=0 and ηi=2.5. The
drive is dominated by the polarization current, and therefore
the polarization current due to the turbulence drives magnetic
islands. Similar destabilizing effect of turbulence driven by
electrostatic IC is presented by figure 17 of [31]. It is
remarked that the internal drive is enhanced when we take

Figure 22. Comparison of the time averaged (a) electromagnetic
force Fy and (b) internal drive Δ for a magnetic island with
W=3.5ρi in the presence of ITG turbulence (ηi=2.5) with the
curvature κ=0.2 and without the curvature κ=0. The line labeled
by ηi=κ=0 represents the case without ITG turbulence. Dotted
vertical (horizontal) lines indicate the values of u (Δ) for freely
propagating island, and μ is the viscosity. Reprinted from [42], with
the permission of AIP Publishing.
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into account the Pfirsch–Schluter current due to the averaged
curvature κ=0.2.

The internal current term can be approximated by
W

t

W

tITG
d

d 0
d

d 0i i
D D º -h h¹ = ∣ ∣ for ITG turbulence and is

evaluated numerically by assuming W

t

d

d 0i
~ D¢h =∣ [43]. The

magnetic island evolution with ITG turbulence 0ih ¹ and
without ITG turbulence ηi=0 is calculated by means of
electromagnetic five-field simulations, and it is found that the
island is destabilized ΔITG>0 for W>3.5ρi [43], which is
consistent with the results in [41]. It is also found that the ion
viscosity reduces the influence of ITG turbulence on the
island [49].

6.2. Influence of island on turbulence

The influence of magnetic island on drift-wave instability is
elucidated by using static islands. The problem of this

analysis is that it is hard to prescribe the pressure profile,
because of the lack of knowledge about the pressure profile
inside the separatrix of the island. In fact, the flux-driven
simulation shows that a partially but not completely flattened
profile is created inside the separatrix as a result of the
interaction of turbulence and islands as demonstrated in
figure 14 in section 4. In addition, the flattening influences the
poloidal angle dependence of turbulence intensity. The tur-
bulence can be strong at the X point of the island [50]. The
flux-driven simulation, by contrast, shows that there is little
difference of the amplitude of small-scale turbulence around
those points (figure 10). In numerical simulations of interac-
tions of turbulence with magnetic islands, we normally con-
sider two extreme pressure profiles: the completely flattened
one and the one not flattened at all. When the profile is
assumed not to be influenced by the appearance of the island,
we use the same profile as the one without the island
[32, 42, 50]. The advantage of using this profile is that we are
able to directly investigate the influence of the change of
magnetic field due to the island on turbulence. In these
investigations it is found that magnetic islands with small
width reduce the growth rate of ITG mode, while the islands
with large width enhance the growth rate because of reduced
magnetic shear [32]. When the profile is completely flattened
inside the separatrix of magnetic island, the drift-wave
instabilities are not excited inside the island. On the other
hand, the gradient is enhanced just outside the separatrix, and
it causes higher growth rate of micro-instability at the
separatrix.

7. Summary

We have reviewed multi-scale nonlinear interactions of small-
scale turbulence and large-scale magnetic islands. The inter-
actions are especially important for understanding turbulent
transport in finite beta plasmas which exhibit electromagnetic
fluctuations.

The multi-scale nonlinear interactions can excite the long
wavelength coherent perturbation, however, the excitation of
coherent magnetic perturbation (low (m, n) modes) does not
mean the production of coherent magnetic islands. Magnetic
islands appear only when a coherent mode has tearing parity
and magnetic reconnection takes place on a neutral/rational
surface. Thus, the multi-scale interactions strongly depend on
the stability of TM, which is a spontaneous magnetic recon-
nection and identified by the stability parameterD¢. It is noted
that we distinguish the production of finite magnetic island
from a positive linear stability parameter of TM 0D¢ > . The
conventional linear resistive MHD stability theory of TM
implies that 0D¢ > corresponds to the production of magn-
etic islands. On the other hand, the turbulence modifies the
threshold of magnetic island appearance predicted by the
conventional resistive MHD analysis in terms of D¢. When
the TM is unstable, the excited fluctuations have tearing
parity, and the instability produces magnetic islands which is
much wider than the Larmor radius W ? ρi to release the free

Figure 23. The slope of time averaged electromagnetic force at
u=ufree, u u

F

u

d

d free
y- =( ) as a function of the viscosity μ with

W=3.5ρi for the presence of ITG turbulence (ηi=2.5) and the
absence of ITG turbulence ηi=κ=0. Reprinted from [42], with
the permission of AIP Publishing.

Figure 24. Time averaged internal drive Δ for freely propagating
island with W=3.5ρi for ITG turbulence with curvature (ηi=2.5
and κ=0.2) for ITG turbulence without curvature (ηi=2.5 and
κ=0), and without ITG turbulence ηi=κ=0. Reprinted from
[42], with the permission of AIP Publishing.
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energy of equilibrium current density gradient. When the TM
is stable, a part of excitation from turbulence has tearing
parity and produces magnetic island on the resonant (rational)
surface. The island width is several times as large as the
Larmor radius W≈5ρi. First we summarize the former, then
explain the latter.

When the TM is unstable, it causes large magnetic
islands W ? ρi, and coherent vortex flows caused by the
interaction between turbulence and magnetic islands dominate
turbulent fluctuations even if the growth rate of TM is smaller
than drift-wave instability TM drift waveg g ‐ (figure 9) [8, 30].
In the multi-scale interactions, magnetic islands due to TM
suppress drift-wave instability by violating the ballooning
structure and the spectrum of turbulence is broadened to
produce the coherent vortex flows [30]. The violation of
ballooning structure can be explained as follows. The drift-
wave instabilities such as the ITG mode and KBM appear at
the bad curvature region located at the weak field side of the
torus because of the magnetic drift term r fcos , q[ ] in the
vorticity equation described in section 2. Magnetic islands
with poloidal wavenumber m modify the parallel gradient
term to f f m fcos ,eq q =  - Y  [ ( ) ], where eq is the
parallel gradient in the absence of the magnetic islands, and Ψ

represents the amplitude of the island by W µ Y . This
implies similarity between the bad curvature region controlled
by r fcos , q[ ] and the island region by m fcos ,qY[ ( ) ], and
thus the drift-wave turbulence appearing at the bad curvature
region cos 1q » can spread over the poloidal direction by the
perturbed magnetic field due to the magnetic islands because

mcos 1q » can be satisfied at the good curvature region. The
interaction between turbulence and magnetic islands causes
coherent vortex flow, which is represented by low (m, n)
stable modes, inside the separatrix of the island
[8, 25, 36, 55, 57, 59].The coherent vortex flow is also pro-
duced from zonal flows because the flow tends to follow the
violated magnetic surfaces [8, 25, 29, 40, 59, 63]. In addition,
zonal flows oscillates by the presence of the island because
the influence of the island through m fcos ,qY[ ( ) ] causes the
magnetic island induced GAM which is corresponding to the
GAM caused by the toroidicity r fcos , q[ ]. The magnetic
field lines around the separatrix of the island is sensitive to the
perturbation, and thus the stochasticity of the field lines is
enhanced by turbulent fluctuations around the separatrix
[30, 61]. As a result of these complicated process, total
fluctuation is enhanced around the magnetic island by the
nonlinear mutual interactions between turbulence and the
magnetic island, and thus turbulent transport is enhanced
inside the separatrix of the island. Since the coherent vortex
flow and turbulence penetrate inside the magnetic islands, it

causes incomplete flattening of temperature and density pro-
files inside the islands as observed in many numerical simu-
lations and experiments [30, 44–46, 55, 57, 69]. The
difference of turbulent fluctuation level between O and X
points is small in the flux driven simulations [30], while the
difference is large in non-flux driven simulations [32, 57].
From the view point of multi-scale interactions, macro-scale
vortex of MHD is normally stronger than small-scale turbu-
lence, so that macro-scale MHD dominates turbulent transport
even if its growth rate is smaller than micro-turbulence
(figure 25(a)). Small scale turbulence influences magnetic
island growth when the island width is small and growing.
The growth rate of the magnetic islands is enhanced by the
anomalous current drive due to turbulence [27, 40, 50].

Even when TM is stable/marginally stable, turbulence
excites long wavelength magnetic islands with the width of
several times as large as the ion Larmor radius [37, 39, 47,
51–53] because turbulent fluctuations become electro-
magnetic at finite β. The turbulent magnetic perturbations
cause magnetic reconnection, i.e. the violation of magnetic
surfaces through nonlinear interactions leading to the pro-
duction of magnetic islands (figure 25(b)). The excited long
wavelength magnetic islands can be the seed magnetic islands
of NTMs that limit the achievable β of the high-β discharge
of tokamaks. This is because the NTM is a nonlinear
instability and its excitation threshold island width is eval-
uated to be several times as large as the ion Larmor radius
from experimental data [13]. The coherent islands are formed
by merging of small-scale islands produced by the turbulence
[37]. The detailed process of the formation of the coherent
islands is divided into three steps. First is the energy transfer
from high-wavenumber modes to low-wavenumber modes
through nonlinear mode coupling. This excitation of the
low-wavenumber modes does not mean the formation of
the coherent islands. Second is the energy transfer from
the twisting parity mode such as ITG, KBM, and ICs to the
tearing parity mode through the nonlinear parity mixture.
The third process is the magnetic reconnection that changes the
topology of the magnetic field lines, then coherent magnetic
islands are formed. The propagation of magnetic perturbation
is changed by the appearance of magnetic islands, because the
zonal flows produced by turbulence have significant influence
on the propagation of the islands (figure 19) [37]. Hence,
micro-turbulence influences macro-scale magnetic islands,
when the plasma is stable/marginally stable to TMs. This
suggests small-scale turbulence affects large-scale mode, when
the larger scale mode is stable/marginally stable. That is a
general feature of multi-scale interactions in magnetized

Figure 25.Multi-scale interactions among turbulence, magnetic islands, and zonal flows in cases: (a) tearing mode is unstable and (b) tearing
mode is stable.
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plasmas, for instance, ITG turbulence is influenced by ETG
turbulence when the ITG mode is marginally stable [89].

Nonlinear parity mixture is the fundamental mechanism
of magnetic island production by turbulence which has
twisting parity, especially when the TM is stable [54]. The
nonlinear parity mixture transfers the energy from the twisting
parity mode to the tearing parity mode resulting in magnetic
islands, where twisting parity modes are IC, ITG mode and
KBM. The parity of the twisting parity mode is conserved
during its linear growth. However, when the amplitude of the
mode becomes large, the twisting parity mode does not satisfy
the nonlinear two-fluid equations, while the tearing parity
mode does. Thus, the nonlinear energy transfer occurs from
the twisting parity mode to tearing parity modes, and then
magnetic islands are produced by turbulence which has the
twisting parity. The mechanism is divided into two groups:
the direct excitation by nonlinear parity mixture and the
modulational parity instability.

A part of the mechanism of coherent magnetic island
formation by turbulence is attributed to the polarization cur-
rent effect. By using the static magnetic island model in
section 6, the polarization current effect is extracted from
interactions between turbulence and magnetic islands. It is
found that the polarization current produced by electrostatic
interchange turbulence and by electrostatic sITG turbulence
has destabilizing effect on the island, i.e. it drives the island
[31, 42]. The effective turbulent momentum diffusivity is
evaluated to be v L0.2 i Ti n

2m r» [ ] as measured by the vis-
cous force acting on the island [42]. This diffusivity is
important when we use turbulent viscosity to investigate the
mode-locking in tokamak plasmas, and the effective viscous
force is important in calculating magnetic island formation by
RMPs in strong E×B flow.
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