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Abstract. We have investigated drift-wave instability and nonlinear turbulent

transport in two configurations with different magnetic field structure by means of

electromagnetic gyrokinetic simulations. Here, one is the neo-classically optimized

Large Helical Device (LHD) plasma and the other is the Heliotron J (HJ) plasma.

First, we present that the validation against the turbulent transport in the LHD plasma

is successful, and that the neoclassically optimized configuration has smaller turbulent

transport. Second, the neoclassical optimization through an enhanced toroidal mirror-

ratio, which is a capability of non-axisymmetric plasma, is found to improve the

turbulent transport in the HJ plasma, which is qualitatively consistent with the

observation in the HJ. Hence, the neoclassical optimization reduces the turbulent

transport in both the LHD and the HJ plasmas. Third, as a trial in evaluating

the performance of helical system designed with different concepts for stability, we

compared turbulent transport in these plasmas and found that both the mixing length

estimated diffusion and nonlinear turbulent transport of the HJ plasma are smaller than

those of the LHD plasma in gyro-Bohm units. The significant difference is stronger

zonal flows in the HJ plasma than the LHD plasma.

PACS numbers: 52.35.Ra, 52.65.Tt, 52.25.Fi, 52.35.Mw
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1. Introduction

Stellarator and heliotron plasmas have been studied for optimization by reducing MHD

instabilities and by improving neoclassical transport properties [1]. The Wendelstein 7-

X (W7-X) is optimized against neoclassical transport as well as MHD stability [2, 3, 4],

and the Heliotron J (HJ) is optimized against MHD stability by producing the magnetic

well [5]. The Large Helical Device (LHD) has lower neoclassical transport for the

inward-shifted magnetic axis configuration, while it has better MHD stability for the

outward-shifted one [6, 7]. It has been pointed out in the nonlinear MHD simulation

that the β-value can be larger exceeding the critical value estimated from linear MHD

stability due to the local flattening of pressure profile around rational surfaces, which

is consistent with the LHD experiment aiming at high-β [8]. In addition to the aspect

of neoclassical transport and MHD stability, recently, optimization against turbulent

transport becomes a hot topic [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In the analysis of

the LHD plasma, the ITG turbulence is examined by gyrokinetic simulation using the

adiabatic electron approximation, and in addition to be neoclassically optimized, the

turbulence is suppressed by zonal flows in the inward-shifted magnetic axis configuration

[9, 10, 11, 12]. On the other hand, in W7-X the trapped electron region which is the

straight section with weak magnetic field, and bad curvature region which is the corner

section with strong magnetic field, are well separated, so that the trapped electron

mode (TEM) can be avoided [13, 14, 15, 16, 17]. The Heliotron J has a similar magnetic

structure with W7-X, i.e. the corner section with strong magnetic field and the straight

one with weak magnetic field, and the ratio of the field strengths is called as the toroidal

mirror ratio.

In this paper we investigate turbulent transport in helical plasmas in two devices,

namely the LHD and the Heliotron J. One of the significant difference between these

plasmas is the magnetic shear which represents the variation of the magnetic field line

pitch from a magnetic surface to the next. The drift-wave and MHD instabilities are

strongly influenced by the magnetic shear. The LHD has finite shear as well as the

CHS[20] and Heliotron E, while the Heliotron J, W7-X, TJ-II[21, 22], and HSX[23]

have weak shear. It is remarked that typical tokamaks have moderate magnetic shear,

however the turbulent transport in weak shear regime is important even for tokamaks

because the reversed shear configuration is a candidate of steady-state operation with

large bootstrap current fraction [24]. Another difference between the LHD and the HJ

plasmas is the magnetic well/hill characteristics which is the variation of magnetic field

strength across the surface in terms of the normal curvature of the field line. The LHD

has a magnetic hill as well as the CHS and Heliotron E, while the Heliotron J, W7-X, TJ-

II, and HSX have magnetic wells. The magnetic well/hill is linked to the MHD instability

such as the pressure driven interchange mode since the helical system confines a plasma

by magnetic field without net toroidal plasma current, so that the current driven MHD

modes are not important. Thus, the suppression of the MHD instability by producing

the magnetic well is an important optimization for helical systems.
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In order to evaluate turbulent transport in helical plasmas, the gyrokinetic

modeling and simulation are of importance and is a great challenge in computational

science because of complicated kinetic ion and electron dynamics interacting with the

electromagnetic perturbation in complex three-dimensional non-axisymmetric magnetic

structures. Here, the kinetic electron dynamics is of specific importance since the effect

of trapped electrons enhances the growth rate of the drift-wave instability. In order to

perform such a simulation while accurately capturing the mode structure along a field

line, a large number of grid-points is needed, and thus the simulations require much

more computational resources than for comparable simulations of tokamak plasmas.

This is the reason why most of the nonlinear gyrokinetic simulations of helical systems

are limited to the adiabatic electron response approximation [12, 13, 17, 25, 26], and

nonlinear gyrokinetic simulations including kinetic electrons for helical systems have

been just started [27, 28, 29, 30].

In our simulation study, we examine four plasmas, two for the neoclassically

optimized LHD and two for the HJ configurations by using the GKV code [25, 27, 31, 32].

Two plasmas are in one discharge #88343 in the inward-shifted configuration of LHD,

and are before (LHD-L) and after (LHD-H) additional NBI heating [33]. Furthermore,

two HJ plasmas are the standard configuration (HJ-ST) and the high-bumpiness

configuration (HJ-HB) established by higher mirror-ratio between corner section and

straight one to reduce neo-classical transport.

The paper is organized as follows. Our simulation model is described in Sec. 2. The

validation of turbulent transport of energy and particles in the LHD plasmas is presented

in Sec. 3. The first analysis of turbulent transport in Heliotron J (HJ) plasma is reported

in Sec. 4. Comparison between them are discussed in Sec. 5. Summary is given in Sec.

6.

2. Gyrokinetic simulation model

Here, we briefly describe the gyrokinetic simulation model used in our work. We

consider micro-turbulence in a flux tube represented by the coordinates (x, y, z), where

x = q(ψ0)
B0r(ψ0)

(ψ−ψ0), y = −r(ψ0)
q(ψ0)

(α−α0), and z = θ, (ψ, θ, ζ) is a flux coordinate system,

α = ζ − q(ψ)θ is the magnetic field line label, ψ is the magnetic flux, θ is the poloidal

angle, and the tube is located on a field line with ψ = ψ0 and α = α0. The gyro-center

distribution function for a species s is divided into the Maxwellian and the perturbed

parts fs(x, y, z, v‖, µ) = FMs + δfs, where FMs = n0

(2πTs/ms)3/2
exp(−

msv2

‖

2Ts
− µB

Ts
). The

gyrokinetic equation for perturbed ion and electron gyro-center distribution functions

δfsk⊥
, the gyrokinetic Poisson equation for electrostatic potential φk⊥

, and gyrokinetic

Ampère’s law for parallel component of perturbed vector potential A‖k⊥
are

∂δfsk⊥

∂t
+ vTsv‖(b

∗
s · ∇δfs)k⊥

− vTsµb · ∇B
∂δfsk⊥

∂v‖

= −ivds · k⊥

(

δfsk⊥
+

qs

Ts

FMsφk⊥
J0s

)

− (ṽEs · ∇δfs)k⊥
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+ iv∗s · k⊥
qs

Ts

FMs

(

φk⊥
− vTsv‖A‖k⊥

)

J0s + vTsv‖
qs

Ts

FMsE‖sk⊥
+ Cs, (1)

λ2
Dik

2
⊥φk⊥

=
∑

s

qsδn
(p)
sk⊥

, (2)

k2
⊥A‖k⊥

=
βi

2

∑

s

qsvTsδu
(p)
sk⊥

, (3)

respectively, where ρs = vTs/Ωs and Ωs = qsB/msc, E‖sk⊥
= −(b∗

s · ∇J0sφ)k⊥
−

∂
∂t

A‖k⊥
J0s, δn

(p)
sk⊥

=
∫

δfsk⊥
J0sd

3v − qs

Ts
(1 − Γ0s)φk⊥

, δu
(p)
sk⊥

=
∫

v‖δfsk⊥
J0sd

3v, are the

parallel component of the perturbed electric field, the perturbed density measured at

the particle position, and the parallel component of perturbed velocity measured at

the particle position, respectively. Nonlinear terms are included in the convective

derivative by perturbed the E×B flow (ṽEs · ∇f)k⊥
= [φJ0s, f ]k⊥

and the parallel

component of spatial gradient including the magnetic perturbation (b∗
s · ∇f)k⊥

=

b · ∇fk⊥
+ (b̃s · ∇f)k⊥

= b · ∇fk⊥
− [A‖J0s, f ]k⊥

, where b̃s = −b × ik⊥A‖k⊥
J0s.

The unit vector of the equilibrium magnetic field is b = B0/B0, and b∗
s = b + b̃s

includes the perturbed part of the magnetic field. The subscript 0 of the equilibrium

magnetic field is omitted below. Poisson bracket and the zeroth order Bessel function

are [f, g]k⊥
=

∑

k′
⊥

,k′′
⊥

δk⊥,k′
⊥

+k′′
⊥
b · k′

⊥ × k′′
⊥fk′

⊥
gk′′

⊥
and J0s = J0(ρsk⊥) respectively.

The magnetic drift, the diamagnetic drift, and the perturbed E×B drift velocities

are vds = 1
qsB

b × (µ∇B + msv
2
‖b · ∇b), v∗s = Ts

qsB
b × ∇ ln FMs, and ṽEsk⊥

=

− 1
B

(ik⊥φk⊥
J0s) × b, respectively. The collision operator is denoted by Cs(hsk⊥

),

where hsk⊥
= δfsk⊥

+ qs

Ts
φk⊥

J0sFMs is the non-adiabatic part of the perturbed part

of the gyro-center distribution function. The normalization used in the equations are

(tvT i/R0, k⊥ρT i, v‖/vTs, FMsv
3
Ts/n0, δfsR0v

3
Ts/(ρT in0), eφR0/(ρT iTi), A‖R0/(ρ

2
T iB0),

ms/mi, Ts/Ti, n/n0, B/B0, qs/e, λDi/ρT i) → (t, k⊥, v‖s, FMs, δfs, φ, A‖, Ms, Ts, n, B,

qs, λDi), where λDi =
√

Ti/(4πe2n0) and vTs =
√

Ts/ms, and the leading order term in

the Larmor radius expansion ρi is written as ρT i = vT i/Ωi. The polarization effects due

to finite Larmor radius is represented by 1 − Γ0s term in the Poisson equation through

n
(p)
sk⊥

, where Γ0s = e−ρ2
sk2

⊥I0(ρ
2
sk

2
⊥) and I0 is the zeroth order modified Bessel function.

Temperature and density gradients are assumed to be uniform in local simulations and

in the radial direction x, and the gradients are represented in terms of density scale

length Ln = −(d ln n/dx)−1 and temperature scale lengths LTs = −(d ln Ts/dx)−1.

3. Turbulent transport in LHD plasma

The LHD plasma has ten periods in the toroidal direction as shown in the top-view of

a magnetic surface of the LHD plasma (Fig. 1). In the analysis of LHD, we investigate

plasmas before and after an additional NBI heating in the shot No. 88343. Before

and after the additional NBI, the density profiles are similar, but the electron and

ion temperatures are doubled as shown in Fig. 2. We call the low-temperature state as

LHD-L (t = 1.8[s], Ti0 = 1.7[keV]) and the high-temperature state as LHD-H (t = 2.2[s],

Ti0 = 3.9[keV]). The q profile represents the finite magnetic shear in Fig. 2. The typical
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non-dimensional parameters of the LHD-H and LHD-L plasmas are shown in Table 1.

The profiles of magnetic field strength B, the square of perpendicular wavenumber k2
⊥,

and the magnetic drift frequency ωdi along the field line at ρ = 0.68 of LHD-L and

at ρ = 0.65 of LHD-H plasmas are shown in Fig. 3. The square of perpendicular

wavenumber k2
⊥ increases along the field line in the LHD plasma because of finite

magnetic shear. The magnetic drift frequency is negative around the bad curvature

region z = 0, where the outside of the torus, so that instabilities appear at the bad

curvature region.

3.1. Linear stability

Here, we examine the drift-wave instability of the LHD plasmas by solving the linearized

gyrokinetic equations numerically. We found that the LHD plasmas are unstable against

the ion temperature gradient (ITG) mode. Although our simulations include magnetic

perturbation, the kinetic ballooning mode (KBM) and the micro-tearing mode (MTM)

do not appear, because β is small as shown in Table 1, and electromagnetic effects are

negligible in the LHD plasmas, and thus the turbulence is predominantly electrostatic.

Figure 4 shows the linear growth rate of the instability as a function of the minor radius

ρ and of the binormal wavenumber ky. The ITG mode is unstable, and the trapped

electron modes (TEMs) do not appear at ρ ≤ 0.83 because of the very low density

gradient R0/Ln ≪ 1. In the LHD-L and LHD-H plasmas, the kinetic electron (KE)

effect enhances the growth rate from the one obtained by using the adiabatic electron

response approximation (AE). The enhancement of the growth rate is crucial to the

validation as shown in the next subsection.

The mode structure along the magnetic field line is represented by the electrostatic

potential profile of the ITG mode in Fig. 5, and the profile of the mode in a typical

tokamak plasma using the Cyclone base case (CBC) parameter is also shown as a

reference [27, 30]. The structure of ITG mode in LHD and in CBC plasmas has one

peak at the bad curvature region z = 0. The profile of the ITG mode in LHD expands

as wide as that in CBC because of finite magnetic shear of these plasmas. In addition,

the mode structure has oscillations because of the helical ripples.

3.2. Nonlinear analysis

We performed nonlinear gyrokinetic simulations of turbulence driven by the instabilities

described in the previous subsection in the LHD-L and LHD-H plasmas. The typical

profile of the ITG turbulence on the cross section at z = 0 is shown in Fig. 6. The

turbulent fluctuation of the ITG mode is elongated in the radial direction and is also

sheared by zonal flows.

Here, we present our results on the validation study by evaluating the turbulent

energy transport of ions and electrons as well as the turbulent particle transport. The

turbulent energy fluxes are shown in Fig. 7 (a) as a function of the minor radius.

The symbols are from the gyrokinetic simulations, QTurb
s , and the curves are from the
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experiments subtracted by the neoclassical transport, QExp
s − QNeo

s , calculated by the

FORTEC-3D code [34], where s denotes the species. In the LHD-L plasma (t = 1.8[s],

Ti0 = 1.6 [keV]), the electron energy flux from the simulation is in good agreement with

the experimental observation at ρ > 0.65. The ion energy flux from the simulation is

also in good agreement with the experiment at ρ > 0.65. On the other hand, the flux

from the simulation is much smaller than that from the experiment because of weak ITG

instability at ρ < 0.65. When we artificially increase the temperature gradient about

20%, the linear growth rate of the ITG mode at ρ = 0.57 is close to the one at ρ = 0.68,

where the simulation reproduces the experimental result, and thus it is expected that

the energy flux at ρ = 0.57 can be reproduced by increasing the temperature gradient

about 20%. The influence of the error bars of the observation is discussed later. In

the LHD-H plasma (t = 2.2[s], Ti0 = 3.9 [keV]), the electron energy flux from the

simulation is in good agreement with the experimental observation. On the other hand,

the ion energy flux from the simulation overestimates the experimental observation.

When we reduce the temperature gradient about 20%, then we have an agreement

between the simulation and the experimental results [29]. Here, the turbulent energy

flux is compared with neoclassical energy flux in Fig. 7 (b). The turbulent energy flux

is much larger than the neoclassical energy flux at ρ = 0.83 both in the LHD-H and

LHD-L plasmas. The turbulent electron energy flux is comparable to the neoclassical

electron energy flux, while the turbulent ion energy flux is larger than the neoclassical

ion energy flux at ρ = 0.65 in the LHD-H plasma and at ρ = 0.68 in the LHD-L plasma.

The neoclassical energy flux is larger than the turbulent energy flux at ρ = 0.61 in the

LHD-L plasma, and they are comparable at ρ = 0.46 in the LHD-H plasma. Thus, the

turbulent transport dominates around the edge region, while the neoclassical transport

is important in the core region.

The turbulent particle flux and the neoclassical particle flux are shown in Fig. 8.

The curves represent the neoclassical particle flux from the FORTEC-3D code, and

symbols represent the turbulent particle flux from the gyrokinetic simulation. The

turbulent particle flux is negative and it has pinch effects at ρ > 0.5 in the LHD-H

plasma. This is explained by the balance between the turbulent particle flux and the

neoclassical particle flux ΓTurb + ΓNeo ≈ 0, which is expected because the discharge of

the LHD plasma (discharge No. 88343) is in a steady state and there is little fueling at

t = 1.8 and 2.2 [s]. On the other hand, the turbulent particle flux is positive at ρ < 0.5 of

the LHD-H and in the LHD-L plasmas, and the balance between the turbulent transport

and the neoclassical one is clearly violated. This can not be explained even by taking

the error bars described below into account, and we need to study the particle flux in

future work.

Here, we summarize the validation of turbulent transport against the experimental

LHD plasma. The ion and electron temperature gradients obtained from the

flux-matching method for the LHD-H and LHD-L plasmas are in agreement with

experimental observations[33] within a 20% error. The error would be reduced by

introducing the influence of the global radial electric field shear to the GKV code,
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because the LHD-H plasma is in the electron root of the ambipolarity condition with

strong global radial electric field at 0.4 < ρ < 0.9 in contrast to the LHD-L plasma

which is in the ion root with weak radial electric field. It is noted that the observation

error of the ion temperature is presented in Fig. 2, and it is about 4% at 0.45 < ρ < 0.85

in LHD-H and about 2% at 0.5 < ρ < 0.85 in LHD-L. The error of the observation can

cause about 10% error in the gradient of the temperature. This error can result in the

error of turbulent energy flux about 30%, and the error of the neoclassical transport is

about three times of the error of temperature. It is also noted that, in the validation

against LHD plasmas, there is no short-fall problem at the edge region, which has been

observed in some tokamaks [35, 36, 37]. A possible explanation for this is that the

typical discharge of LHD plasma is not unstable against the TEM but unstable against

the ITG mode from the core to the edge due to the flat density profile.

Here, we compare the turbulent transport in the LHD-L and LHD-H plasmas. Table

1 shows that the energy diffusion coefficients χi and χe in the LHD-L plasma are smaller

than those in the LHD-H plasma, in spite of the fact that the mixing length estimated

diffusion γ/k2
⊥ in the LHD-L plasma is larger than that in the LHD-H plasma in Fig.

9, which shows γ/k2
⊥ as a function of the binormal wavenumber kyρT i at ρ = 0.65

of the LHD-H and at ρ = 0.68 of the LHD-L plasmas. It is noticed that the most

unstable mode has kx = 0 in the linear calculation, so that k2
⊥ = k2

y. We expect that

the difference between diffusion coefficients is due to the zonal flows. Figure 10 shows

the spectrum of the square of the electrostatic potential 〈|φk|
2〉 averaged over a time

period in the statistical steady state as a function of the binormal wavenumber ky, the

radial wavenumber kx, and in (kx, ky) space. The amplitude of the ITG mode and

that of zonal flow are comparable in (kx, ky) space, and is rather broad in the radial

wavenumber direction kx in the LHD-L plasmas. Comparison of the spectra between

the LHD-L and LHD-H plasmas in ky implies that the partition of zonal flow is larger

in the LHD-L plasma than that in the LHD-H plasma. The ratio of the zonal-flow

component to the ITG mode is 〈|φZF|
2〉/〈|φITG|

2〉 = 〈|φky=0|
2〉/〈|φky=0.23|

2〉 = 1.2 in the

LHD-L and 〈|φky=0|
2〉/〈|φky=0.17|

2〉 = 0.74 in the LHD-H, and thus the ratio is larger in

the LHD-L than the LHD-H. This explains the lower turbulent transport in the LHD-L

plasma than in the LHD-H plasma. A possible explanation is the zonal flow response in

Fig. 11 which shows the zonal flow damping history in the LHD-L and LHD-H plasmas

for several radial wavenumbers kxρT i = 0.1, 0.2, 0.3, and 0.4. The longer damping

time scale of zonal flow in the LHD-L plasma than in the LHD-H plasma in Fig. 11

contributes to larger zonal flows in the LHD-L plasma. By assuming that the nonlinear

drive from the turbulence in the LHD-L and LHD-H plasmas are similar, it explains the

larger zonal flows in the LHD-L, and thus the smaller χi and χe of the LHD-L plasma

compared to the LHD-H plasma. This is similar to the mechanism of turbulent transport

reduction in the inward-shifted LHD plasma shown in Refs. [9, 10, 11, 12], because the

magnetic axis of the LHD-L plasma is more inward-shifted than the LHD-H plasma,

and the magnetic field strength profile of the LHD-L plasma implies lower neoclassical

transport than in the LHD-H plasma in Fig. 3.
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4. Turbulent transport in Heliotron J plasma

The Heliotron J (HJ) plasma has four periods in the toroidal direction and it consists

of four straight sections and four corner sections as shown in the top-view of a magnetic

surface in Fig. 12. In this analysis, the standard (HJ-ST) and a strong toroidal ripple

(high-bumpiness) configurations (HJ-HB) are examined. Figure 13 shows the profiles of

the safety factor q, density, and temperatures of the HJ plasmas. The q profile is very

flat with q ≈ 1.8, so that the magnetic shear is very weak. The typical non-dimensional

parameters of the HJ-ST and HJ-HB plasmas are summarized in Table 2. Figure 14

shows the profiles of magnetic field strength B, the square of perpendicular wavenumber

k2
⊥, and the magnetic drift frequency ωdi along the field line at ρ = 0.5 of HJ-ST and

at ρ = 0.5 of HJ-HB plasmas. The magnetic field strength ratio between the corner

and straight sections are indeed enhanced in the HJ-HB compared with HJ-ST. The

strength of mirror-ratio is measured by the variation of the field strength along the field

line, and the high mirror-ratio configuration is considered to improve the neo-classical

transport [5]. The square of perpendicular wavenumber k2
⊥ increases very slowly in the

HJ plasmas because of the weak magnetic shear.

4.1. Linear stability

Here, we examine the linear stability of drift-waves in the HJ-ST and HJ-HB plasmas.

These plasmas are unstable against the ITG mode, which rotates in the ion diamagnetic

direction as indicated by the negative real frequency in Fig. 15. We confirmed that the

trapped electron modes do not appear at ρ < 0.6 in the HJ plasmas.

The suppression effect of higher toroidal mirror-ratio (bumpiness) on the ITG mode

is revealed by the smaller growth rate γ = 0.26[vT i/R0] in the HJ-HB plasma compared

to γ = 0.4 in the HJ-ST plasma in Fig. 15, which shows the linear growth rate of the

instabilities as a function of the binormal wavenumber kyρT i at ρ = 0.5. The suppression

of the ITG mode can be explained by the finite Larmor radius stabilizing effects k2
⊥ρ2

T i

through Γ0i(k
2
⊥ρ2

T i) and J0i(k
2
⊥ρ2

T i) in the gyrokinetic equation, Eqs. (1)-(3), because the

amplitude of k2
⊥ρ2

T i is enhanced around the bad curvature region z = 0 in the HJ-HB

plasma as shown in Fig. 14. The enhancement of k2
⊥ is caused by the high magnetic field

strength at the bad curvature region compared to weak magnetic field at the straight

section through the metric tensor. The details of the suppression mechanism will be

reported elsewhere.

We found that the mode structure in the HJ plasma is much more elongated along

the field line than the one in the CBC plasma. Figure 16 shows that the electrostatic

potential profile of the ITG mode along the magnetic field line is elongated. This is

because the HJ plasma has weak magnetic shear. The weak magnetic shear causes

very slow increase of k2
⊥ρ2

T i along the field line as shown in Fig. 14, and it leads to

slow increase of the finite Larmor radius stabilizing effects Γ0i(k
2
⊥ρ2

T i) and J0i(k
2
⊥ρ2

T i)

in Eqs. (1)-(3) along the field line, and results in the elongated mode structure. The

mode structure of the instability in the HJ plasma has a peak around the bad curvature
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region z = 0 that is the outside of the corner part, and is elongated along the magnetic

field line with oscillations. Thus, the weak magnetic shear elongates the mode structure.

The stabilizing effect of the magnetic shear is confirmed by the reduction of the growth

rate from γ = 0.4 to 0.3 [vT i/R0] by artificially increasing ŝ from 0.023 to 0.064 in the

HJ-ST plasma.

4.2. Nonlinear analysis

Here, we firstly report the gyrokinetic simulation of turbulent transport in the Heliotron

J (HJ) plasma. We have performed nonlinear gyrokinetic simulations of turbulence in

the HJ-ST and HJ-HB plasmas. Figure 17 shows the color map of electrostatic potential

of the ITG turbulence in the HJ-ST plasma. The striped pattern exhibits the very

elongated mode structure of the ITG turbulence along the field line. The electrostatic

potential profile on a cross section shows that the turbulent structure is sheared by

zonal flows. The strong zonal flow is clearly presented by the color map of electrostatic

potential perturbation on the cross section z = 0 in Fig. 18. The zonal flows share

the ITG mode structure in the figure. The strong zonal flows are also shown by the

spectra of electrostatic potential in the HJ-ST and HJ-HB plasmas as a function of ky

in Fig. 19. The square of zonal flow potential amplitude 〈|φk(ky = 0)|2〉 is given by

filled circles in the figure. It implies that the zonal flow energy partition is high, and

thus the strong zonal flow is expected to suppress the turbulent transport. Figure 19

also shows the spectrum as a function of the radial wavenumber kx and in (kx, ky) space.

The ITG modes appear at kyρT i ≈ 0.35, and strong zonal flows appear at kyρT i = 0 in

the HJ plasmas. The spectra imply that the peak of the zonal flow potential is located

at kxρT i = 0.06.

Here, we evaluate the turbulent energy transport of ions and electrons. The

turbulent energy transport coefficients of the HJ-HB plasma are smaller than those of the

HJ-ST plasma in Table 2. The tendency, i.e. the reduction of transport, coincides with

that of linear analysis, which is the reduction of the ITG mode and of the mixing length

estimated diffusion γ/k2
⊥ shown in Fig. 15. The reduction of the transport through the

suppression of the ITG mode is qualitatively consistent with the observation in the HJ

experiment[38]. Since it is considered that the high toroidal mirror-ratio (bumpiness)

improves the neo-classical transport in the HJ plasma, the neoclassical and turbulent

transport optimizations are compatible in the HJ plasma.

5. Discussion on comparison between turbulent transport in LHD and the

one in HJ

The study of micro-instability and associated turbulent transport in different magnetic

configurations which exhibit different response to neo-classical dynamics and MHD

instability is important and even urgent to know the integrated performance of each

helical system. From this viewpoint, as a trial, here we focus on two parameters, i.e.
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the magnetic shear ŝ = 1
q

dq
dr

and the magnetic well parameter indicating the influence

of normal curvature on the Mercier index, Dwell = −β′〈κn〉〈B
2
0/|∇ψ|2〉 [39], which are

both related to magnetic structure and influence instabilities in different way, where β′

is the radial gradient of the plasma beta. The parameter Dwell is linked to the averaged

magnetic drift frequency 〈ωd〉 through the normal curvature of the magnetic field line

κn, where ωd ≡ vd · k⊥ = ωdi. This is because Dwell is proportional to κn which is a

part of the magnetic field line curvature κ = b · ∇b in the magnetic drift frequency

ωd. The toroidal ITG mode is normally unstable when ωdω∗ > 0, where ω∗ = v∗ · k⊥

is the diamagnetic drift frequency and is proportional to −β′. When a plasma has a

magnetic hill Dwell < 0, then the normal curvature is negative 〈κn〉 < 0, and thus the

contribution of the normal curvature to the magnetic drift frequency ωd is negative and

destabilizing. This is confirmed by averaging the magnetic drift frequency in Figs. 2

and 13. We have 〈ωdi〉 = -7.5 in the LHD-H, -7.4 in the LHD-L, 3.30 in the HJ-HB, and

3.31 in the HJ-ST. They are consistent with Dwell = -0.02 in the LHD-H, -0.01 in the

LHD-L, 0.64 in the HJ-HB, and 0.74 in the HJ-ST in Tables 1 and 2.

It can be seen that helical devices are roughly categorized into two families, one is

the moderate shear and magnetic hill realized in neoclassically optimized LHD plasma,

CHS, and Heliotron E, and the other the weak shear and magnetic well realized in

W7-X, Heliotron J, TJ-II, and HSX. The characteristics of the former result from

emphasizing the magnetic shear stabilization with axisymmetric magnetic axis, while

those latter result from the non-axisymmetric magnetic-axis producing the magnetic

well for optimized stability. Therefore, it is worthwhile to study the micro-instability

and associated turbulent transport paying attention to the parameter region for these

two families. The neo-classically optimized LHD plasma can be a representative of the

former case (moderate shear, hill) and the Heliotron J plasma of the latter (weak shear,

well). We compared, for the first time, the characteristics in two configurations to find a

guideline in evaluating the performance of a helical system. The typical non-dimensional

parameters of the LHD-H, LHD-L, HJ-ST, and HJ-HB plasmas are shown in Tables 1

and 2. It is found that many parameters of the LHD and HJ plasmas, the aspect ratio

R0/a, safety factor q, normalized Larmor radius ρ∗, and temperature ratio Te/Ti, are

similar. On the other hand, the Mercier magnetic well measure Dwell and the magnetic

shear ŝ, which are tightly related to magnetic structure, are significantly different, where

a positive (negative) Dwell indicates the magnetic well (hill). The LHD plasmas exhibit

a magnetically ”hill” with moderate magnetic shear ŝ while the HJ plasmas a ”well”

with extremely small ŝ. It is noted that the normalized collision frequency ν∗ and the

density gradient length Ln are also significantly different.

The linear growth rate of the ITG mode in the HJ-ST plasma is larger than those

in the LHD (LHD-H and LHD-L) plasma as shown in Figs. 9 and 15, while the mixing

length estimated diffusion γ/k2
⊥[vT iρ

2
T i/R0] of the ITG mode in the HJ plasma is smaller

than that in the LHD plasma, because the wavenumber of the most unstable ITG mode

in the HJ plasma is higher than that in the LHD plasma. The turbulent energy transport

coefficients χi and χe of the HJ plasma are smaller than those of the LHD plasma in terms
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of the gyro-Bohm unit [vT iρ
2
T i/R0] (Tables 1 and 2). The difference can be explained by

the smaller mixing length estimated diffusion (Figs. 9 and 15) and the strong zonal flow

in the HJ plasma. The amplitude of the zonal flow is controlled by two mechanisms,

because the gyrokinetic equation for the zonal-flow component consists only of two parts

as shown by Eq. (1) in Ref. [9]. One is the linear damping caluculated by the zonal

flow damping test shown below. The other is the source term representing the nonlinear

drive from instabilities. The residual level of zonal flow damping depends on q and

R0/a [9], which are similar in the LHD and HJ plasmas, and large ν∗ of the HJ plasma

may reduce the zonal flow amplitude, and thus it is expected that the residual level

of the zonal flow in the HJ plasma is not larger than that in the LHD plasma. This

is confirmed by the zonal flow damping history in the HJ and LHD plasmas in Figs.

11 and 20. The residual level of the zonal flows in the HJ and the LHD plasmas are

similar and very small, and the damping time scales of the HJ plasmas are similar to the

LHD-H plasma and smaller than that of the LHD-L plasma. These zonal flow damping

results imply that the nonlinear drive is the only cause of the stronger zonal flow in the

HJ plasma. It is expected that the strong nonlinear zonal flow production is caused

by the mode structure of the instability like that in Ref. [40], and the elongated mode

structure along the magnetic field line shown in Fig. 16 may be responsible for the

strong zonal flow production. In addition, the slow decrease of the linear growth rate

with kx in Fig. 15 can be a possible mechanism of the strong zonal flow production in

the HJ plasmas, because the nonlinear zonal flow production is caused by the interaction

between the most unstable mode (kITG
y , 0) and the side-band mode (−kITG

y , ksideband
x )

which has a finite radial wavenumber. The stronger zonal flow in the HJ plasma is

a possible explanation of a higher deviation of temperature gradient from the linear

threshold of the ITG mode R0/LT − R0/LT crit in the HJ plasma than that in the LHD

plasma shown in Tables 1 and 2.

6. Summary

We investigated linear drift-wave instability and nonlinear turbulent transport in two

helical systems, namely the neoclassically optimized LHD and the Heliotron J (HJ), by

means of the electromagnetic gyrokinetic simulations. Linear analysis revealed that both

plasmas have unstable ITG modes however TEMs are stable from the core to the edge. In

the validation, the enhancement of the linear growth rate by the kinetic electron effects

is crucial, and thus the turbulent transport is calculated by the nonlinear simulations

including kinetic electrons. The validation of the predicted turbulent transport in LHD

plasmas is successful except for an underestimate at the core region of the LHD-L. It

is found that the inward-shifted configuration, which is more optimized for neoclassical

transport, has smaller turbulent transport in the LHD plasma because of stronger zonal

flows. It is also found that the neoclassical optimization for the HJ plasma by producing

a high toroidal mirror-ratio reduces the turbulent transport because of lower ITG mode

growth rate. Hence, the neoclassical optimization reduces the turbulent transport in
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both the LHD and the HJ plasmas, while the reduction mechanisms are different. When

we compare the LHD plasma with the HJ plasma, the turbulent transport in the HJ

plasma is smaller than that in the LHD plasma in gyro-Bohm units [vT iρ
2
T i/R0]. This

can be explained by stronger zonal flows and lower mixing length estimated diffusion in

the HJ plasma.
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LHD-H LHD-L

R/a 6.2 6.2

ρ = r/a 0.65 0.68

q 1.7 1.5

ρ∗[10−3] 3. 2.

ν∗
i 0.025 0.083

β[%] 0.3 0.2

Te/Ti 1.1 0.96

R0/Ln -0.90 2.7

R0/LT i 9.7 8.7

R0/LTe 7.2 9.1

ŝ 1.1 1.2

Dwell -0.02 -0.01

Instability ITG ITG

γ [vT i/R0] 0.19 0.27

χi [vT iρ
2
T i/R0] 13. 11.

χe [vT iρ
2
T i/R0] 5.4 4.8

R0/LT − R0/LT crit 2.4 2.6

Table 1. The dimensionless parameters at minor radius ρ: the safety factor q, the

normalized Larmor radius ρ∗, the normalized collision frequency ν∗, the plasma beta

β, the temperature ratio Te/Ti, the inverse of the gradient length R0/Ln and R0/LTs
,

and parameters representing magnetic field structure, the magnetic shear ŝ and the

magnetic well contribution to the Mercier index Dwell. In addition, simulation results

including the linear growth rate γ, the inverse of the gradient length measured from

the critical one R0/LT − R0/LT crit, the transport coefficients χi and χe are given.

Figure 1. Top view of a magnetic surface of the LHD plasma. The striped pattern

of the electrostatic potential perturbation on the surface shows the elongated mode

structure of the ITG mode along the field line.
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electron density ne, and safety factor q of the LHD plasma with shot number 88343

before (LHD-L) and after (LHD-H) the additional NBI heating.
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Figure 6. The profile of the electrostatic potential on the cross section at z = 0 in

the LHD-L and LHD-H plasmas.
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HJ-ST HJ-HB

R/a 7.3 7.3

ρ = r/a 0.5 0.5

q 1.7 1.8

ρ∗[10−3] 4.5 4.4

ν∗
i 3.2 3.4

β[%] 0.05 0.05

Te/Ti 1.3 1.3

R0/Ln 9.3 9.3

R0/LT i 13. 13.

R0/LTe 17. 17.

ŝ 0.023 0.021

Dwell 0.74 0.64

Instability ITG ITG

γ [vT i/R0] 0.4 0.26

χi [vT iρ
2
T i/R0] 5.9 4.2

χe [vT iρ
2
T i/R0] 2.4 1.7

R0/LT − R0/LT crit 5.2

Table 2. The parameters and simulation results for the standard configuration (HJ-

ST) and the high-mirror ratio configuration (HJ-HB) of the Heliotron J.
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Figure 12. Top view of a magnetic surface of the Heliotron J (HJ) plasma. The

striped pattern of the electrostatic potential perturbation on the surface shows the

elongated mode structure of the ITG mode along the field line.
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the HJ plasmas. The HJ-ST and HJ-HB represent the standard and high toroidal

mirror-ratio (high-bumpiness) configurations, respectively.
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perpendicular wavenumber k2
⊥

/k2
y, and the normalized magnetic drift frequency ωdi/ky

at ρ = 0.5 of the HJ-ST and HJ-HB plasmas along a magnetic field line.
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Figure 16. Electrostatic potential profile of the ITG mode along a magnetic field line

in the HJ and a typical tokamak (CBC) plasmas. The oscillation reflects the influence

of particles trapped into the helical ripples.

Figure 17. Three-dimensional view of the electrostatic potential perturbation of

the ITG turbulence on a magnetic surface and on a cross section of the standard

configuration of the HJ plasma (HJ-ST).

Figure 18. The profile of the electrostatic potential on the cross section at z = 0 in

the HJ-ST plasmas.
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Figure 19. The spectra of the electrostatic potential 〈|φk|
2〉 perturbation in the HJ-
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are the radial and binormal wavenumbers, respectively. The square of the zonal flow

potential amplitude 〈|φk(ky = 0)|2〉 is represented by circles.
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Figure 20. Time history of the normalized zonal component of the electrostatic

potential 〈φ(ky = 0, t)〉/〈φ(ky = 0, t = 0)〉 for several radial wavenumbers kxρTi = 0.1,

0.2, 0.3, and 0.4 in the HJ plasmas.


