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Abstract Numerical analyses of the second-order Knudsen layer are car-
ried out on the basis of the linearized Boltzmann equation for hard-sphere
molecules under the diffuse reflection boundary condition. The effects of the
boundary curvature have been clarified in details, thereby completing the nu-
merical data required up to the second order of the Knudsen number for the
asymptotic theory of the Boltzmann equation (the generalized slip-flow the-
ory). A local singularity appears as a result of the expansion at the level of
the velocity distribution function, when the curvature exists.
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1 Introduction

Study on the connection between the kinetic theory and the fluid-dynamics has
a long history [1–3] and a number of important results have been obtained for
a small or a vanishing limit of the Knudsen number, e.g., [4–9]. A systematic
asymptotic theory has been established in the late 1960s and early 1970s [4,5]
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and developed further [6] since then. It provides not only the fluid-dynamic de-
scription in the bulk region but also the slip/jump boundary condition and the
non-fluid-like correction in a thin layer adjacent to the boundary (the Knud-
sen layer) for small Knudsen numbers. We call the linear case of that theory
the generalized slip-flow theory in the present paper. The generalized slip-flow
theory contains rich information on the gas rarefaction effect, giving a fluid-
dynamical interpretation to various phenomena occurring for small Knudsen
numbers. It also motivates recent studies on time-dependent problems in its
framework [10–12]. In the meantime, mathematical studies are also develop-
ing to include the argument of boundary condition for the fluid-dynamical
equation [13–15].

The generalized slip-flow theory has been applied to various fundamen-
tal problems and was revealed to be practical. However, such applications
have been limited mostly to the studies based on the Bhatnagar–Gross–Krook
(BGK) [or Boltzmann–Krook–Welander (BKW)] model equation [16,17]. This
is due to lack of numerical data of the Knudsen layer at the second order of
the Knudsen number for the original Boltzmann equation. We have recently
obtained the required numerical data up to the second-order of the Knud-
sen number [18], except for the effects of boundary curvature, assuming the
hard-sphere molecules and the diffuse reflection boundary condition.

In the present paper, we take a step further to complete the full set of
numerical data that are required in applications up to the second order of
the Knudsen number expansion. They have been missing for nearly a half
century in applying the theory to specific problems on the basis of the original
Boltzmann equation. To be a little more specific, we focus on the effects of
curvature of the boundary that manifest themselves at the second order of the
Knudsen number. As will be clarified in the course of analyses, even though
the macroscopic quantities are finite and well defined, the velocity distribution
function diverges locally in the molecular velocity space in approaching or on
the boundary. This feature forced us to separate the present work from the
previous one [18]. The local but theoretical drawback behind the benefit of the
expansion will also be discussed. We have developed the numerical method
that handles such a singularity safely to complete the data required in the
generalized slip-flow theory.

2 Generalized Slip-Flow Theory: Outline and Present Concern

Let us consider a gas around smooth solid bodies which do not change in
time their shape and position under the following assumptions: (i) There is
no external force and the behavior of the gas is described by the Boltzmann
equation for monatomic molecules; (ii) The gas molecules are reflected locally
isotropically [6] on the surface of the solid bodies (no net flow across their
surface); (iii) The deviation from the reference equilibrium state at rest with
density ρ0 and temperature T0 is so small that the equation and the initial
and the boundary condition can be linearized around that equilibrium state;
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(iv) The mean free path `0 of a molecule at the reference equilibrium state is
much smaller than the characteristic length L of the physical system (i.e., the
Knudsen number Kn = `0/L � 1); (v) The time evolution is initiated by a
slow change of the surroundings from the reference equilibrium state.

The time scale of the change t0 in (v) is the same order as that of the viscous
and the thermal diffusion, and we set it as t0 = (2/

√
π)(L2/`0

√
2RT0), where

R is the specific gas constant (the Boltzmann constant k divided by the mass
of a molecule m). In the actual computations for the Knudsen-layer analysis,
we assume the hard-sphere molecules in (i) and the diffuse reflection boundary
condition in (ii). For hard-sphere molecules, `0 = [

√
2πd2m(ρ0/m)]−1, where dm

is the diameter of a molecule.

The generalized slip-flow theory consists of first considering the overall
behavior of the gas that changes in the scale of the characteristic length (and
time) of the system and then introducing the correction in the vicinity of
the boundary. The first part is conducted by the Hilbert (or Grad–Hilbert)
expansion to yield a set of fluid-dynamic equations. The solution of this set
is called the Hilbert part (or solution). The second part is conducted by the
expansion after stretching the spatial coordinate in the direction normal to the
boundary. This yields a set of slip/jump boundary condition and the associated
correction to the fluid-dynamic solution near the boundary. The correction is
called the Knudsen-layer correction, which is the present primary concern.

We shall denote by Lxi the space coordinates, by t0t the time, by ρ0(1+ω)
the density of the gas, by (2RT0)1/2ui the flow velocity, by T0(1 + τ) the
temperature, by p0(1+P ) the pressure with p0 = ρ0RT0, and by (2RT0)1/2uiw
and T0(1 + τw) the velocity and the temperature of the body surface. Since
solid bodies change neither the shape nor the position, uiwni = 0, where ni
is the unit vector normal to the surface, pointed to the gas. We denote the
Hilbert part and the Knudsen-layer correction of the macroscopic quantity
h (h = ω, ui, τ , P ) by hH and hK, respectively: h = hH + hK. Since the
Knudsen number is small, we use ε = (

√
π/2)Kn as a small parameter. The

Hilbert part and the Knudsen-layer correction are obtained by a power series
expansion in ε, which will be denoted as hH = hH0 + hH1ε+ hH2ε

2 + · · · and
hK = hK0 + hK1ε + hK2ε

2 + · · · . Actually, the expansion of hK starts from
O(ε), because no correction to the Hilbert solution is required at O(1).

The resulting set of fluid-dynamic equations, their slip/jump boundary
conditions, and the Knudsen-layer corrections up to the second order of the
expansion in ε are summarized as follows: [10]

Fluid-dynamic equations

∂PH0

∂xi
= 0, (1a)

∂uiHm
∂xi

+
∂ωHm−1

∂t
= 0, (1b)

∂uiHm
∂t

+
1

2

∂P ∗Hm+1

∂xi
− 1

2
γ1
∂2uiHm
∂x2j

+
1

4
(γ1γ10 − 2γ6)

∂4uiHm−2
∂x2j∂x

2
k

= 0, (1c)
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∂τHm
∂t

− 2

5

∂PHm

∂t
− 1

2
γ2
∂2τHm
∂x2j

+
1

10

(
γ2γ3 −

13

2
γ11

)
∂4τHm−2
∂x2j∂x

2
k

= 0, (1d)

P ∗Hm+1 = PHm+1 −
1

6
(γ2γ1 − 4γ3)

∂2τHm−1
∂x2j

+
1

5
γ1
∂PHm−1

∂t
, (1e)

PHm = ωHm + τHm, (1f)

where m = 0, 1, 2 and the quantities hH−1 and hH−2 (h = ω, ui, τ, P ) should
be read as zero. The γ’s occurring in the equations are positive constants
corresponding to the transport coefficients at the reference state; γ’s are all
unity for the BGK model, while they are respectively γ1 = 1.270042427, γ2 =
1.922284066, γ3 = 1.947906335, γ6 = 1.419423836, γ10 = 1.63607346, and
γ11 = 2.7931173 for hard-sphere molecules.
Slip/jump boundary condition and the Knudsen-layer correction

[
(uiHm − uiwm)ti

uiKmti

]
=
∂uiHm−1
∂xj

nitj

[
b
(1)
1

Y
(1)
1 (η)

]
+
∂τHm−1
∂xi

ti

[
b
(1)
2

Y
(1)
2 (η)

]

+
∂2τHm−2
∂xi∂xj

nitj

[
b
(1)
3

Y
(1)
3 (η)

]
+

∂

∂xi

∂ujHm−2
∂xk

ninjtk

[
b
(1)
4

Y
(1)
4 (η)

]

+ κ̄
∂uiHm−2
∂xj

nitj

[
b
(1)
5

Y
(1)
5 (η)

]
+ κij

∂ujHm−2
∂xk

nkti

[
b
(1)
6

Y
(1)
6 (η)

]

+ κij
∂τHm−2
∂xi

tj

[
b
(1)
7

Y
(1)
7 (η)

]
+ κ̄

∂τHm−2
∂xi

ti

[
b
(1)
8

Y
(1)
8 (η)

]
, (2a)

[
uiHmni
uiKmni

]
=

1

2

∂

∂xi

∂ujHm−2
∂xk

ninjnk

[ ∫∞
0
Y

(1)
1 (z)dz

−
∫∞
η
Y

(1)
1 (z)dz

]

+

[
2κ̄
∂τHm−2
∂xi

ni −
∂2τHm−2
∂xi∂xj

(δij − ninj)
][ ∫∞

0
Y

(1)
2 (z)dz

−
∫∞
η
Y

(1)
2 (z)dz

]
, (2b)

τHm − τwmωKm

τKm

 =
∂τHm−1
∂xi

ni

 c
(0)
1

Ω
(0)
1 (η)

Θ
(0)
1 (η)

+
∂uiHm−1
∂xi

 c
(0)
5

Ω
(0)
5 (η)

Θ
(0)
5 (η)


+
∂2τHm−2
∂xi∂xj

(δij − ninj)

 c
(0)
2

Ω
(0)
2 (η)

Θ
(0)
2 (η)

+
∂2τHm−2
∂x2j

 c
(0)
6

Ω
(0)
6 (η)

Θ
(0)
6 (η)


+

∂

∂xi

∂ujHm−2
∂xk

ninjnk

 c
(0)
3

Ω
(0)
3 (η)

Θ
(0)
3 (η)

+ κ̄
∂τHm−2
∂xi

ni

 c
(0)
4

Ω
(0)
4 (η)

Θ
(0)
4 (η)

 , (2c)

PKm = ωKm + τKm, (2d)
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where m = 0, 1, 2 and fij = fij +fji− (2/3)fkkδij (δij is the Kronecker delta).
In (2), the quantities with the subscript H or w denote their values at the
(dimensionless) surface position xiw, and ti (or ni) is a unit vector tangential
(or normal) to the surface at xiw. The quantities with the subscript K depend
on η as well as xiw, where η is the stretched spatial coordinate normal to the
surface at xiw such that the position xi in the Knudsen layer is expressed by
xi = xiw + εηni. The surface velocity and temperature are also expanded in
a power series of ε: hw = hw0 + hw1ε + hw2ε

2 + · · · (h = ui, τ). The effect of
surface curvature occurs through the terms with κ’s defined by

κ̄ =
1

2
(κ1 + κ2), κij = κ1`i`j + κ2mimj . (3)

Here κ1/L and κ2/L are the principal curvatures of the boundary, with κ1
and κ2 being taken negative when the corresponding center of curvature lies
on the gas side; `i and mi are the direction cosines of the principal directions
corresponding to κ1 and κ2 respectively. It is those terms that we are interested
in in the present paper.

Remark 1 Many terms degenerate from (1) and (2) when m = 0, 1. For in-
stance, the boundary condition at O(1), namely for m = 0, is none other than
the non-slip/non-jump condition; the slip/jump may occur at the first or higher
order of ε. The reader is referred to [6,10] for the discussions on the main fea-
tures of the above system. The system can be solved from the lowest order to
determine the time-dependent behavior of the gas under the considered situa-

tion, provided that the data of the slip/jump coefficients c
(0)
1 ∼ c(0)6 , b

(1)
1 ∼ b(1)8 ,∫∞

0
Y

(1)
1 (z)dz,

∫∞
0
Y

(1)
2 (z)dz and the elemental (or component) Knudsen-layer

functions Ω
(0)
1 (η) ∼ Ω

(0)
6 (η), Θ

(0)
1 (η) ∼ Θ

(0)
6 (η), Y

(1)
1 (η) ∼ Y

(1)
8 (η) are avail-

able. They are obtained by solving elemental (or component) half-space prob-
lems of the linearized Boltzmann equation, which may be homogeneous or
inhomogeneous depending on that component.

Since the first publication of the generalized slip-flow theory [4,5], the complete
set of the slip/jump coefficients and the associated Knudsen-layer corrections
has been available only for the BGK model. For the original Boltzmann equa-
tion, a part of the information have been reported in the late 1980s and early
1990s [19–21], assuming the hard-sphere molecules and the diffuse reflection
boundary condition. The present work reports the final step of our attempts
that follows these and our recent works [10, 18, 22]. Thanks to the theory of
symmetry relation [23], we have already obtained the complete set of slip/jump
coefficients up to the second order of ε in [10]. However, the information of the
Knudsen-layer structure is still incomplete, which motivates the present work.
As will become clear in the sequel, the numerical method developed in [18],
which is based on the integral formulation of the Boltzmann equation [24,25],
is really effective in the study of the Knudsen layer related to the curvature
effects of boundary.
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3 Knudsen-Layer Problems

Let us denote by (2RT0)1/2ζ the molecular velocity and introduce the nota-
tion ζ = |ζ| and µ = ζini/ζ, where −1 ≤ µ ≤ 1 and 0 ≤ ζ < ∞. Then,
the component problems for the Knudsen layer admit a similarity solution
of three arguments (η, µ, ζ) and are reduced to the following two types of
boundary-value problems by assuming the hard-sphere molecules and the dif-
fuse reflection boundary condition:

µζ
∂φα
∂η

= −ν(ζ)φα + C[φα]− Iα(η, µ, ζ), (4a)

φα = −σ(0)
α − c(0)α ζ2 + gα(µ, ζ), (µζ > 0, η = 0), (4b)

φα → 0, as η →∞, (4c)

and

µζ
∂ψβ
∂η

= −ν(ζ)ψβ + CS [ψβ ]− ISβ (η, µ, ζ), (5a)

ψβ = −2b
(1)
β + gSβ (µ, ζ), (µζ > 0, η = 0), (5b)

ψβ → 0, as η →∞. (5c)

Here

ν(ζ) =
1

2
√

2

[
exp(−ζ2) +

(
2ζ +

1

ζ

)∫ ζ

0

exp(−ξ2)dξ

]
;

C is an integral operator acting on a function of ζ to be defined soon later;
and gα, Iα, gSβ , and ISβ are given functions. Iα and ISβ are supposed to decay
fast in η. The solution φα (or ψβ) (α = 1, . . . , 6; β = 1, . . . , 8) is a function of

η, µ, and ζ. It is determined together with the constants σ
(0)
α and c

(0)
α [or b

(1)
β ]

for every given (Iα, gα) [or (ISβ , gSβ )] [26]. The operator C is defined by

C[φ](ζ) =

∫
[k1(ζ, ξ)− k2(ζ, ξ)]φ(ξ)dξ,

k1(ζ, ξ) =
1√

2π|ζ − ξ|
exp

(
−|ξ|2 +

|ξ × ζ|2

|ξ − ζ|2

)
,

k2(ζ, ξ) =
|ζ − ξ|
2
√

2π
exp

(
−|ξ|2

)
.

Thanks to its spherical and axial symmetry, C[φα] becomes a function of µ
and ζ (and η) for the function φα(η, µ, ζ). On the other hand, CS is defined
for functions of µ and ζ (and η) through C, making use of its axial symmetry:

ζitiCS [ψβ ] = C[ζitiψβ ].

Once the solutions are obtained, Ω
(0)
α (η), Θ

(0)
α (η), Y

(1)
β (η) occurring in (2) and

H
(1)
β (η) in Appendix A are obtained as their moment:

Ω(0)
α (η) = 〈φα〉, Θ(0)

α (η) =
2

3
〈(ζ2 − 3

2
)φα〉, (6)
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Y
(1)
β (η) =

1

2
〈ζ2(1− µ2)ψβ〉, H(1)

β (η) =
1

2
〈ζ2(1− µ2)(ζ2 − 5

2
)ψβ〉, (7)

where 〈f〉 =
∫
f(ξ)E(|ξ|)dξ with E(z) = π−3/2 exp(−z2).

Our present concern is the case α = 4 and β = 5 ∼ 8, for which (Iα, gα)
and (ISβ , gSβ ) are given as

I4 =ζ(1− µ2)
∂φ1
∂µ

(η, µ, ζ)− ζ2(1− µ2)ψ2(η, µ, ζ),

g4 =− 4µζ

∫ ∞
0

Y
(1)
2 (z)dz − b(1)2 ζ2(1− 3µ2)B(ζ), (8a)

IS5 =
1

2
ζ(1− µ2)

∂ψ1

∂µ
(η, µ, ζ), gS5 = −2D1(ζ)− 1

2
ζ2(1− µ2)D2(ζ), (8b)

IS6 =
1

2
ζ(1− µ2)

∂ψ1

∂µ
(η, µ, ζ)− µζψ1(η, µ, ζ),

gS6 =−D1(ζ)− 1

2
ζ2(1− 3µ2)D2(ζ), (8c)

IS7 =
1

2
ζ(1− µ2)

∂ψ2

∂µ
(η, µ, ζ)− µζψ2(η, µ, ζ) + φ1(η, µ, ζ), gS7 = 0, (8d)

IS8 =
1

2
ζ(1− µ2)

∂ψ2

∂µ
(η, µ, ζ), gS8 = 0. (8e)

Here φ1 is the solution of the problem (4) with I1 = 0 and g1 = µζA(ζ) (the
so-called temperature-jump problem [19]), while ψ1 and ψ2 are respectively
the solution of the problem (5) with IS1 = 0, gS1 = µζB(ζ), IS2 = 0, and
gS2 = A(ζ) (the so-called shear-slip and thermal-slip [6, 27] problems). The

pair (b
(1)
2 , Y

(1)
2 ) is the slip coefficient and Knudsen-layer function associated

with ψ2, which have already been obtained in [20]. Note that all of I4 and
IS5 ∼ IS8 in (8) indeed decay fast in η because of the fast decay of φ1, ψ1, and
ψ2. The functions A, B, D1, and D2 of ζ are familiar solutions of the following
integral equations:

L[ζiA(ζ)] = −ζi(ζ2 − 5/2), subsidiary condition: 〈ζ2A(ζ)〉 = 0,

L[ζijB(ζ)] = −2ζij ,

L[(ζiδjk + ζjδki + ζkδij)D1(ζ) + ζiζjζkD2(ζ)]

= γ1(ζiδjk + ζjδki + ζkδij)− ζiζjζkB(ζ),

subsidiary condition: 〈5ζ2D1(ζ) + ζ4D2(ζ)〉 = 0,

where L[f ] = −ν(ζ)f + C[f ] and ζij = ζiζj − (1/3)ζ2δij .
The essential difficulty which newly appears is that the inhomogeneous

term Iα or ISβ contains the derivative of the first order Knudsen-layer solution,
i.e., ∂φ1/∂µ, ∂ψ1/∂µ, or ∂ψ2/∂µ, because φ1, ψ1, and ψ2 behave like µζ ln |µζ|
for µζ ∼ −0 on the boundary and thus their derivatives logarithmically diverge
[25]. Our approach to be developed in the sequel follows the method in [18,25]
and, in addition, separates the difficult part essentially from the others, thereby
dealing with the problem safely numerically.
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4 Numerical Analysis

Because (4) and (5) are linear problems, they can be treated by first decom-
posing the sources Iα (or ISβ ) and gα (or gSβ ) as we like and then superposing
the individual results. In the present section, we shall concentrate on the cases
that all the terms without ∂φ1/∂µ, ∂ψ1/∂µ, and ∂ψ2/∂µ in those sources are
absent. Hence, we drop the subscript α from (4) and put I = ζ(1−µ2)∂φ1/∂µ
and g = 0, while we put β = A, B in (5) with ISA = ζ(1 − µ2)∂ψ1/∂µ,
ISB = ζ(1−µ2)∂ψ2/∂µ, gSA = 0 and gSB = 0. Note that ψ8 = 1

2ψB . The remain-
ing parts φ̄4 ≡ φ4−φ, ψ̄5,6 ≡ ψ5,6− 1

2ψA, and ψ̄7 ≡ ψ7− 1
2ψB can be handled

without difficulty by the method in our previous paper [18], the explanation
of which is omitted here.

4.1 Integral Formulation

Multiplied by E(ζ) and integrated with respect to η, both of the problems (4)
and (5) are transformed into

Φ(η, µ, ζ) =G(µ, ζ) exp(−ν(ζ)η

µζ
) +

1

µζ

∫ η

0

C[Φ](s, µ, ζ) exp(
ν(ζ)(s− η)

µζ
)ds

+
1

µζ

∫ η

0

C[Ψ ](s, µ, ζ) exp(
ν(ζ)(s− η)

µζ
)ds, (µζ > 0), (9a)

Φ(η, µ, ζ) =
1

µζ

∫ η

∞
C[Φ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds

+
1

µζ

∫ η

∞
C[Ψ ](s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ < 0), (9b)

with

Φ(η, µ, ζ)→ 0, as η →∞, (9c)

Ψ(η, µ, ζ) =


− 1

µζ

∫ η

0

I(s, µ, ζ) exp(
ν(ζ)(s− η)

µζ
)ds, (µζ > 0),

− 1

µζ

∫ η

∞
I(s, µ, ζ) exp(

ν(ζ)(s− η)

µζ
)ds, (µζ < 0).

(9d)

Here, Φ, C, I, and G should be read as Φ = φE − Ψ , C[f ] = C[fE−1]E,
I = IE, and G = (−σ(0) − c(0)ζ2)E for problem (4), while they should be

read as Φ = ψβE − Ψ , C[f ] = CS [fE−1]E, I = ISβE, and G = −2b
(1)
β E for

problem (5), where β = A, B. Remember that I decays fast in η, so does Ψ . In
the above, the original solution φE, ψAE, or ψBE is split into the given part Ψ
and unknown part Φ. The equation for Φ is none other than the integral form of
the inhomogeneous Boltzmann equation with C[Ψ ] being its inhomogeneous
term. The conditions (4c) and (5c) are reduced to (9c), because Ψ → 0 as

η →∞. The condition (9c) is required, otherwise the constants σ(0), c(0), b
(1)
A ,

and b
(1)
B are not determined [26].
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Since C is the integral operator, C[f ] is milder than f . Nevertheless, be-
cause of the singular nature of I considered here, a special attention should
be made in the present analysis. In fact, the most difficult part in the present
work is the computation of Ψ and C[Ψ ], especially their values in approaching
the boundary (η → 0).

Using the facts that φ1 is the solution of (4) with I1 = 0, g1 = µζA(ζ)
and that ψ1 and ψ2 are the solutions of (5) with IS1 = 0, gS1 = µζB(ζ), IS2 =
0, gS2 = A(ζ), Ψ can be written as

Ψ =(1− µ2)ζ

{
−(
∂h0
∂µ

+
ζν

2η
| η
µζ
|2h0︸ ︷︷ ︸)

η

µζ
e−

νη
µζ +

1

|µζ|2

×
∫ η

0

{ζ(1− ν

2
|η − s
µζ
|)C[h]︸ ︷︷ ︸−|µζ|

∂C[h]

∂µ
}|η − s

µζ
|e−ν|

η−s
µζ |ds

}
, (µζ > 0),

(10a)

Ψ =− (1− µ2)ζ

|µζ|2

∫ ∞
η

{ζ(1− ν

2
|η − s
µζ
|)C[h]︸ ︷︷ ︸+|µζ|∂C[h]

∂µ
}

× |η − s
µζ
|e−ν|

η−s
µζ |ds, (µζ < 0), (10b)

where h is φ1E, ψ1E, or ψ2E, while h0 its value at η = 0; accordingly C[h] =
C[φ1]E, CS [ψ1]E, or CS [ψ2]E. Note that C[h] is a function of s, µ, and ζ
and that the argument ζ of ν and E has been omitted just for conciseness in
the above. The parts with the underbrace require a special attention in the
computation, which we explain in Sect. 4.2.

4.2 Singular Properties of Ψ

Let us introduce the following notation:

W [f ] ≡− (1− µ2)
ζ2ν

2η
f(µ, ζ)| η

µζ
|3e−

νη
µζ , (µζ > 0), (11a)

T [f ] ≡

{
(1−µ2)ζ2

|µζ|2
∫ η
0
|η−sµζ |(1−

ν
2 |
η−s
µζ |)f(s, µ, ζ)e−ν|

η−s
µζ |ds, (µζ > 0),

− (1−µ2)ζ2

|µζ|2
∫∞
η
|η−sµζ |(1−

ν
2 |
η−s
µζ |)f(s, µ, ζ)e−ν|

η−s
µζ |ds, (µζ < 0).

(11b)

The parts with the underbrace in (10) are then written as W [h0] and T [C[h]],
respectively; the equation (10) is recast as

Ψ =W [h0] + T [C[h]]− (1− µ2)ζ

{
∂h0
∂µ

η

µζ
e−

νη
µζ

+
1

|µζ|

∫ η

0

∂C[h]

∂µ
|η − s
µζ
|e−ν|

η−s
µζ |ds

}
, (µζ > 0), (12a)
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Ψ =T [C[h]]− (1− µ2)ζ

|µζ|

∫ ∞
η

∂C[h]

∂µ
|η − s
µζ
|e−ν|

η−s
µζ |ds, (µζ < 0). (12b)

We consider the behavior of W [h0] and T [C[h]] in three limiting processes:
(i) η → 0 with |µζ|(> 0) fixed, (ii) |µζ| → 0 with η(> 0) fixed, and (iii)
η, |µζ| → 0 with z ≡ | νηµζ |(> 0) fixed. Note that z → 0 in the limit (i), while

z →∞ in the limit (ii).
As is clear from its form, W [h0] behaves well in the limits (i) and (ii). It

grows, however, in proportion to η−1 in the limit (iii). Therefore, W [h0] is
singular for µζ = +0 and η = 0.

As to T [C[h]], we need to pay attention to that, even though C[h] behaves
well with respect to µ and ζ, its derivative in s may diverge logarithmically
[18,25] as s→ 0. Therefore, as in [25], we put

C[h](s, µ, ζ) = a(µ, ζ) + b(µ, ζ)s ln s+ c(µ, ζ)s, (13)

for small s and estimate the behavior of T [C[h]] for η � 1. Then, for µζ > 0,
we have

ν3T [C[h]]

(1− µ2)ζ2
=
z3

2η
e−za(µ, ζ)− {(z

2

2
+ z + 1)e−z[Ei(z)− ln z − γ]− z

2

+ [(
z2

2
+ z + 1)e−z − 1] ln η︸ ︷︷ ︸−5

2
(1− e−z) + (

z2

2
+ 2z)e−z}b(µ, ζ)

+ {1− (
z2

2
+ z + 1)e−z}c(µ, ζ), (14)

where Ei(z) = p.v.
∫ z
−∞ y−1eydy, (z > 0) and γ is the Euler constant (γ =

0.577216 . . . ). Taking into account the properties Ei(z) − γ − ln z = O(z) for
z � 1 and e−zEi(z) = z−1 + O(z−2) for z � 1, we see that all the terms are
finite in the limit (i). In the limit (ii), the part with the underbrace approaches
− ln η; thus T [C[h]] grows in proportion to ln η as η → 0 at µζ = +0. In the
limit (iii), the terms with a and b grow in proportion to η−1 and to ln η,
respectively. On the other hand, for µζ < 0, we have

ν3T [C[h]]

(1− µ2)ζ2
=− w3e−w

2|η − η∗|
a(µ, ζ)− {(z − 1)ezE1(z)− ln η︸ ︷︷ ︸−z2 [zezE1(z)− 1]

+ (ln η∗)e
−w[(

z2

2
+
y2

2
− z + 1)(1 + y)− zy2]

+
y

2
[yeyE1(y)− 1]e−w − e−w[(y − 1)(1 + w)− w2

2
]eyE1(y)

− 5

2
(1− e−w) + e−w(

w2

2
+ 2w)}b(µ, ζ)

+ {1− [1 + w +
w2

2
(1 + z) +

w3

2
]e−w}c(µ, ζ)

− | ν
µζ
|2
∫ ∞
η∗

ν|η − s
µζ
|(1− ν

2
|η − s
µζ
|)C[h](s, µ, ζ)e−ν|

η−s
µζ |ds,

(15)
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where E1(z) =
∫∞
z
y−1e−ydy, (z > 0), w ≡ ν|η∗−ηµζ |, y ≡ z+w = |νη∗µζ |, and η∗

is a fixed positive constant such that 3η < η∗ � 1. In the above three limiting
processes, w and y behave respectively as (i) w → y with y(> 0) fixed, (ii)
w, y → ∞, and (iii) w, y → ∞; and in all cases z

w and y
w are finite. The

integral on the last line is seen to be bounded by

w

η∗ − η
(
1

2
w2 + 2w + 2)e−w max

η≥η∗
C[h],

and always remains finite in those limits. However, because of the properties
exE1(x) + γ + lnx = O(x lnx) for x � 1 and exE1(x) = x−1 + O(x−2) for
x � 1, it is seen that the part with the underbrace approaches γ + ln | νµζ | in

the limit (i) and grows in proportion to ln η in the limit (iii). The limit (i)
implies that T [C[h]] grows with the rate ln |µζ| as µζ → −0 on the boundary
η = 0. In the limit (ii), it approaches 1− ln η; thus T [C[h]] grows in proportion
to ln η as η → 0 at µζ = −0.

To summarize, Ψ exhibits the singular behavior and may diverge for η, µζ ∼
0. To be specific, when µζ < 0, it diverges with the rate ln η as η → 0 with | νηµζ |
fixed and with the rate ln |µζ| as µζ → 0 for η = 0. When µζ > 0, it diverges
with the rate η−1 as η → 0 with | νηµζ | fixed due to both W [h0] and T [C[h]],

especially the contribution from the part a(µ, ζ) of C[h] for the latter. When
µζ = ±0, it grows with the rate ln η as η → 0.

4.3 Influence of the Singularity of Ψ on Its Moments and C[Ψ ]

Due to the behavior studied in Sect. 4.2, C[Ψ ] and the moments of Ψ on the
boundary should be considered carefully. We define them as the values in the
limit η → 0. Then, a special attention should be made to the singularity in
the limit (iii); the order of the limit η → 0 and the integration with respect
to µ and ζ is not allowed to change naively. We have obtained the following
identities, by which the moments of Ψ for η = 0 can be computed appropriately
numerically:

lim
η→0

∫
µζ>0

P(µ, ζ)W [h0]dζ = 2π lim
η→0

∫ ∞
0

∫ 1

0

ζ2P(µ, ζ)W [h0]dµdζ

= −2π lim
η→0

∫ ∞
0

∫ 1

0

(1− µ2)
ζ4

2ν2
1

η
|νη
µζ
|3e−

νη
µζP(µ, ζ)h0(µ, ζ)dµdζ

= −π
∫ ∞
0

ζ3

ν
P(0, ζ)h0(0, ζ)dζ = −π

∫ ∞
0

ζ3

ν
P(0, ζ)h(0,+0, ζ)dζ, (16a)

lim
η→0

∫
µζ<0

P(µ, ζ)T [C[h]]dζ = 2π lim
ε↓0

∫ ∞
0

∫ −ε
−1
P(µ, ζ) lim

η→0
ζ2T [C[h]]dµdζ,

(16b)

lim
η→0

∫
µζ>0

P(µ, ζ)T [C[h]]dζ = 2π lim
η→0

∫ ∞
0

∫ 1

0

ζ2P(µ, ζ)T [C[h]]dµdζ
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= π lim
η→0

1

η

∫ ∞
0

∫ 1

0

|νη
µζ
|3e−|

νη
µζ |P(µ, ζ)a(µ, ζ)

(1− µ2)ζ4

ν3
dµdζ

= π

∫ ∞
0

ζ3

ν2
P(0, ζ)a(0, ζ)dζ = π

∫ ∞
0

ζ3

ν2
P(0, ζ)C[h](0, 0, ζ)dζ, (16c)

where P is a regular function of its arguments [see Appendix B for the deriva-
tion of (16)]. Therefore, we have

lim
η→0

∫
P(µ, ζ)Ψ(η, µ, ζ)dζ = 2π lim

ε↓0

∫ ∞
0

∫ −ε
−1
P(µ, ζ)ζ2Ψ(0, µ, ζ)dµdζ

+ π

∫ ∞
0

ζ3

ν2
P(0, ζ){C[h](0, 0, ζ)− νh(0,+0, ζ)}dζ. (17)

As for C[Ψ ], it can be written in the form

C[Ψ ](η, µ, ζ) =

∫ ∞
0

∫ 1

−1

∫ 2π

0

ξ2K(M, ξ, θ;µ, ζ)Ψ(η,M, ξ)dθdMdξ,

where θ is the angle between the projections of ξ and ζ onto the plane normal
to their common polar direction (M = µ = 1). The key difference of the above
K from P is that it has a singularity of |ξ − ζ|−1. Fortunately, however, the
singularity can be removed by transformation of integral variables, so that we
obtain the identity similar to (17):

C[Ψ ](0, µ, ζ) ≡ lim
η→0

∫ ∞
0

∫ 1

−1

∫ 2π

0

ξ2K(M, ξ, θ;µ, ζ)Ψ(η,M, ξ)dθdMdξ

= lim
ε↓0

∫ ∞
0

∫ −ε
−1

∫ 2π

0

K(M, ξ, θ;µ, ζ)ξ2Ψ(0,M, ξ)dθdMdξ

+

∫ ∞
0

∫ 2π

0

ξ3

2ν2
K(0, ξ, θ;µ, ζ){C[h](0, 0, ξ)− νh(0,+0, ξ)}dθdξ. (18)

The required calculation becomes lengthy and we omit it in the present paper.

4.4 Discretization and Some Details of Numerical Method

Thanks to the factor E, both of Φ and Ψ are expected to decay rapidly in ζ,
as well as in η. We thus truncate the ζ- and η-spaces at ζ = Z and η = d for
properly chosen positive constants Z and d and restrict the computation in
the region −1 ≤ µ ≤ 1, 0 ≤ ζ ≤ Z, and 0 ≤ η ≤ d. The chosen values of Z
and d are justified a posteriori from the results. Non-uniform discretization is
made for each variables. The grid in molecular velocity space (µ, ζ) is arranged
two-fold: one is the grid for capturing the milder function C[Φ] (and C[Ψ ]),
while the other is that for capturing Φ (and Ψ) to compute C[Φ] (and C[Ψ ])
enough accurately. The latter grid should be finer than the former. In the case
of the standard grid, i.e., (S1,M1) in [18], we set Z = 5.0 and d = 44.46, and
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arrange 251 grid points in η space; the two-fold grid in µ-ζ space consists of
257× 141 and 449× 161 points.1 More details are found in [18].

For the spatial coordinate η, we arrange 2Nη + 1 grid points, say η(i)

(i = 0, 1, . . . , 2Nη), in the region 0 ≤ η ≤ d:

0 = η(0) < η(1) < · · · < η(2Nη) = d. (19)

As the primary grid for the molecular velocity space, we arrange (4Nµ + 1)×
(2Nζ + 1) points, say (µ(j), ζ(k)) (j = −2Nµ, . . . , 2Nµ; k = 0, . . . , 2Nζ) in the
region −1 ≤ µ ≤ 1 and 0 ≤ ζ ≤ Z:

0 = µ(0) < µ(1) < · · · < µ(2Nµ−1) < µ(2Nµ) = 1,

µ(−j) = −µ(j), (1 ≤ j ≤ 2Nµ),

0 = ζ(0) < ζ(1) < · · · < ζ(2Nζ) = Z,

while, as the secondary grid, we arrange (4NM + 1)× (2Nξ + 1) points in µ-ζ
space, say (M (l), ξ(m)) (l = −2NM , . . . , 2NM ; m = 0, . . . , 2Nξ):

0 = M (0) < M (1) < · · · < M (2NM−1) < M (2NM ) = 1,

M (−l) = −M (l), (1 ≤ l ≤ 2NM ),

0 = ξ(0) < ξ(1) < · · · < ξ(2Nξ) = Z.

Note that NM > Nµ and Nξ > Nζ . Once the reliable data of C[Ψ ] is obtained,
the solution method for (9) is the same as that in [18]. Hence, we explain below
how to obtain Ψ and C[Ψ ].

As is obvious from (9), in order to compute Φ, the information of C[Ψ ]
on all grid points (η(i), µ(j), ζ(k)) is required. For η(i) with i 6= 0, C[Ψ ] is
computed in the same way as the computation of C[Φ], which is based on
the piecewise quadratic interpolation of Ψ in the molecular velocity space (see
also [18]). For η(0), however, C[Ψ ] is computed in accordance with (18) in
Sect. 4.3, where C[h](0, 0, ξ) is interpolated piecewise quadratically in ξ in the
last integral. As to the first integral, the region of integration with respect to
M is truncated from −1 < M < −ε with ε→ +0 to −1 < M < M (−2) for the
integration of T [C[h]] in Ψ [see (12)]; no truncation is made for the integration
of the reminder Ψ − T [C[h]]. In both integrations, T [C[h]] or Ψ − T [C[h]] is
interpolated piecewise quadratically both in M and ξ. The truncation causes
the error of O(M (−2) ln |M (−2)|), which can be controlled to be small enough
by a proper arrangement of the secondary grid. In computing the contribution
from Ψ to the Knudsen-layer functions at η = 0, (17) is treated in the same
way.

Finally, we turn to the computation of Ψ . As is clear from the previous
paragraph, we have already handled with the divergence of Ψ at η = 0 and do
not have to worry about it. When computing Ψ by (12), we use the following

1 Using the notation appearing soon below, Nη = 125, Nµ = 64, Nζ = 70, NM = 112,
and Nξ = 80.
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(a) η = 0.015 (b) η = 0.58

(c) η = 3.0

Fig. 1 ψAE and its contour plots at three spatial points. (a) η = 0.015, (b) η = 0.58, and
(c) η = 3.0. In the contour plots, the curves are drawn with the intervals 1 in (a), 0.04 in
(b), and 0.01 in (c).

piecewise interpolation with respect to s for the part T [C[h]] in the range
0 < s ≤ η(2σ), where σ is a certain small natural number, [see (13)]:

C[h](s, µ(j), ζ(k)) = a(µ(j), ζ(k)) + b(µ(j), ζ(k))s ln s+ c(µ(j), ζ(k))s,

for η(2i) < s ≤ η(2i+2), i = 0, 1, . . . , σ − 1.

Here the coefficients a, b, and c are determined in such a way that C[h](s, ·, ·)
takes the values C[h](η(2i), ·, ·), C[h](η(2i+1), ·, ·), and C[h](η(2i+2), ·, ·) at s =
η(2i), η(2i+1), and η(2i+2). As to the remaining part Ψ − T [C[h]] in that range
and Ψ in the remaining range, we use a piecewise quadratic interpolation with
respect to s, as in [18]. The value of η(2σ) is about 0.1 in all of our computations.

5 Numerical Results

The results in the present section are obtained by the standard grid (S1,M1)
in [18], unless otherwise stated. The measure of accuracy of the present com-
putations is given in Appendix C. Further data, in addition to those covering
the results in [10,18], are available from the authors.
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(a) η = 0 (b) η = 0.015

(c) η = 0.58 (d) η = 3.0

Fig. 2 ψ̄5E and its contour plots at four spatial points. (a) η = 0, (b) η = 0.015, (c) η =
0.58, and (d) η = 3.0. In the contour plots the curves are drawn with the intervals 0.1 in (a)
and (b), 0.05 in (c), and 0.005 in (d). The white vertical surface at µζ = 0 in (a) shows the
discontinuity.

5.1 Velocity Distribution Functions

As an illustrative example, we show ψAE at three spatial points η = 0.015,
0.58, 3.0 in Fig. 1 and ψ̄5E at four spatial points η = 0, 0.015, 0.58, 3.0 in
Fig. 2. It should be reminded that ψ5 = 1

2ψA + ψ̄5 (see the first paragraph of
Sect. 4) and that ψA contains a diverging part at η ∼ 0 and µζ ∼ 0, while ψ̄5

does not. Due to this fact, the scale of the vertical axis is changed largely in
Fig. 1, while it is not changed in Fig. 2. In Fig. 1, ψAE on the boundary η = 0
is not drawn by the same fact.

In Fig. 2, the discontinuity is clearly observed along the line µζ = 0 on
the boundary η = 0, which is the line corresponding to the molecular velocity
tangential to the boundary (see Fig. 2a). The discontinuity vanishes immedi-
ately away from the boundary with keeping the other part almost unchanged.
Accordingly, a continuous but steep variation appears in the molecular veloc-
ity space near the boundary (see Fig. 2b). These features are also observed in
φ̄4, ψ̄6, ψ̄7, and the solutions obtained in [18].

In order to see the singular behavior of the velocity distribution functions
more closely, we show in Fig. 3 ηφ, ηψA, and ηψB for small η as a function
of µ/η(> 0). It is seen that the profiles of ηφ, ηψA, and ηψB tend to con-
verge individually as η decreases. This confirms that φ, ψA, and ψB diverge
in proportion to η−1 for µζ > 0 in the limit (iii) of Sect. 4.2, due to the corre-
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(a) (b) (c)

Fig. 3 Behavior of φ, ψA, and ψB for small η. (a) ηφE vs µ/η, (b) ηψAE vs µ/η, and (c)
ηψBE vs µ/η. Three different lines are drawn for each value of ζ in each panel: the solid line
represents the result for η = 7.3 × 10−7, the dashed line that for η = 1.4 × 10−4, and the
dash-dotted line that for η = 1.5× 10−2. The dashed line almost agrees with the solid line
and is invisible for ζ = 0.90. Three lines almost agree with one another and the difference
is invisible for ζ = 2.1.

(a) (b) (c)

Fig. 4 Behavior of φE, ψAE, and ψBE for µ . 0 on the boundary η = 0, with ζ being
fixed (ζ = 0.90). (a) φE, (b) ψAE, and (c) ψBE. The solid line represents the numerical
solution of φE, ψAE, and ψBE, while the dashed line (φE)asy , (ψAE)asy , and (ψBE)asy
predicted theoretically [see (20)].

sponding property of the part Ψ . Another close observation can be made for
the limit (i) of Sect. 4.2 for µζ < 0. From (15), we see that for |µ| � 1

T [C[h]](η = 0, µ < 0, ζ) =
ζ2

ν3
[(

5

2
− γ − ln

ν

|µζ|
)b(0, ζ) + c(0, ζ)] +O(µ ln |µ|),

which in turn leads to the following asymptotic behavior:

ϕ(η = 0, µ < 0, ζ)→ (ϕ)asy ≡
ζ2

ν3
[(

5

2
− γ − ln

ν

|µζ|
)b(0, ζ) + c(0, ζ)]

− ζ

ν2
∂C[h]

∂µ
(0, 0, ζ) +

1

ν
C[ϕ](0, 0, ζ), as µ↗ 0, (20)

where ϕ = φE, ψAE, ψBE for h = φ1E, ψ1E, ψ2E. Note that b and c depend
on h. We show in Fig. 4 the numerical data of ϕ(η = 0, µ < 0, ζ) for small |µ|
by the solid line. It is clearly observed that, as µ↗ 0, the numerical solution
of φE, ψAE, or ψBE on the boundary approaches (φE)asy, (ψAE)asy, or
(ψBE)asy, i.e., the dashed line. This again shows that our numerical method
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Table 1 Slip/jump coefficients. The data in [10] obtained by the use of the symmetry
relation [23] are also shown for comparisons.

c
(0)
4 b

(1)
5 b

(1)
6 b

(1)
7 b

(1)
8

Present results 4.6180 -0.66012 0.24381 0.44728 -0.23353
Symmetry relation [10] 4.6181 -0.6601 0.2438 0.4472 -0.2336

(a) (b)

Fig. 5 Knudsen-layer functions. (a) Knudsen-layer functions for φ4, ψ5, and ψ8, (b) those
for ψ6 and ψ7.

works consistently enough to capture the logarithmic divergence of the solution
in |µ| for µ↗ 0 on the boundary discussed in Sect. 4.2.

5.2 Slip/Jump Coefficients and Knudsen-Layer Functions

Slip/jump coefficients are shown in Table 1. The data in [10], which are ob-
tained from the information about the first-order Knudsen layer by the theory
of symmetry relation [23], are also shown for comparisons. Excellent agreement
ensures the consistency of the present results to the theory.

The Knudsen-layer functions Ω
(0)
4 , Θ

(0)
4 , Y ’s, and H’s are shown in Fig. 5

and Table 2 [see Appendix A for H’s and (2) for the others]. Corresponding
to the behavior of the velocity distribution functions in η, they decay fast as

η → ∞, mostly monotonically except for Ω
(0)
4 , Θ

(0)
4 and H

(1)
7 (see Table 2).

From the table, the 90% thickness of the Knudsen layer is seen to be about

4 ∼ 5 for Ω
(0)
4 , about 1 ∼ 1.5 for Θ

(0)
4 , about 2.5 ∼ 3 for Y

(1)
5 , H

(1)
5 , Y

(1)
6 ,

H
(1)
6 , and Y

(1)
7 , about 0.5 ∼ 1 for H

(1)
7 , and about 6 ∼ 7 for Y

(1)
8 and H

(1)
8 ,

measured in η.

6 Concluding Remarks

In the present paper, we have investigated the curvature effects in the gener-
alized slip-flow theory [4–6], which occur at the second order of the Knudsen
number expansion, and thereby complete the series of data required for its
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Table 2 Knudsen-layer functions.

η Ω
(0)
4 −Θ(0)

4 Y
(1)
5 −H(1)

5 Y
(1)
6 −H(1)

6 −Y (1)
7 −H(1)

7 Y
(1)
8 −H(1)

8
0.00000 0.55644 1.64676 0.89334 1.09051 0.26440 0.52114 0.13408 0.55360 0.35551 0.82712
0.02348 0.49619 1.49739 0.84419 1.03017 0.25697 0.49034 0.12204 0.47299 0.36279 0.85993
0.05165 0.45041 1.38089 0.80432 0.98148 0.24826 0.46490 0.11350 0.41545 0.36798 0.88355
0.09881 0.39296 1.23232 0.75158 0.91763 0.23478 0.43116 0.10319 0.34719 0.37368 0.90999
0.15009 0.34442 1.10501 0.70457 0.86124 0.22146 0.40119 0.09471 0.29286 0.37744 0.92837
0.19315 0.31052 1.01520 0.67030 0.82045 0.21118 0.37946 0.08886 0.25677 0.37929 0.93838
0.27263 0.25885 0.87696 0.61554 0.75576 0.19403 0.34503 0.08000 0.20477 0.38048 0.94786
0.30336 0.24169 0.83072 0.59662 0.73353 0.18795 0.33322 0.07705 0.18834 0.38032 0.94915
0.33632 0.22469 0.78471 0.57748 0.71110 0.18172 0.32133 0.07413 0.17248 0.37985 0.94935
0.40911 0.19136 0.69409 0.53874 0.66587 0.16896 0.29743 0.06838 0.14267 0.37784 0.94624
0.58327 0.12898 0.52281 0.46115 0.57572 0.14297 0.25031 0.05739 0.09170 0.36901 0.92453
0.79673 0.07444 0.37133 0.38637 0.48902 0.11774 0.20590 0.04734 0.05289 0.35324 0.88155
0.98271 0.03963 0.27370 0.33389 0.42799 0.10013 0.17539 0.04054 0.03135 0.33694 0.83648
1.19037 0.01031 0.19072 0.28550 0.37133 0.08407 0.14777 0.03442 0.01549 0.31729 0.78240
1.41884 -0.01360 0.12222 0.24175 0.31957 0.06978 0.12326 0.02899 0.00439 0.29495 0.72169
1.58214 -0.02669 0.08419 0.21530 0.28793 0.06127 0.10867 0.02574 -0.00085 0.27897 0.67881
1.84260 -0.04235 0.03766 0.17973 0.24482 0.05003 0.08934 0.02142 -0.00616 0.25400 0.61276
2.02594 -0.05037 0.01298 0.15869 0.21893 0.04351 0.07807 0.01887 -0.00836 0.23705 0.56858
2.51495 -0.06324 -0.03017 0.11479 0.16369 0.03027 0.05505 0.01361 -0.01064 0.19528 0.46183
2.61756 -0.06476 -0.03612 0.10739 0.15417 0.02809 0.05123 0.01272 -0.01071 0.18722 0.44156
3.04221 -0.06800 -0.05292 0.08182 0.12065 0.02073 0.03824 0.00967 -0.01023 0.15655 0.36544
3.26234 -0.06820 -0.05785 0.07121 0.10643 0.01776 0.03294 0.00841 -0.00969 0.14234 0.33068
3.48717 -0.06766 -0.06096 0.06188 0.09371 0.01519 0.02833 0.00730 -0.00905 0.12897 0.29825
3.94956 -0.06482 -0.06301 0.04651 0.07230 0.01106 0.02086 0.00547 -0.00762 0.10486 0.24051
4.06758 -0.06383 -0.06285 0.04328 0.06769 0.01021 0.01931 0.00509 -0.00726 0.09939 0.22753
5.04166 -0.05361 -0.05575 0.02407 0.03952 0.00534 0.01031 0.00281 -0.00465 0.06326 0.14297
6.06059 -0.04205 -0.04428 0.01321 0.02264 0.00276 0.00543 0.00153 -0.00277 0.03888 0.08708
7.11725 -0.03144 -0.03298 0.00716 0.01276 0.00141 0.00283 0.00082 -0.00158 0.02321 0.05169
8.07087 -0.02364 -0.02459 0.00415 0.00762 0.00078 0.00158 0.00047 -0.00094 0.01447 0.03212

10.06348 -0.01245 -0.01269 0.00135 0.00260 0.00023 0.00048 0.00015 -0.00031 0.00530 0.01175
15.00856 -0.00220 -0.00216 0.00009 0.00018 0.00001 0.00003 0.00001 -0.00002 0.00042 0.00093
20.05147 -0.00034 -0.00033 0.00001 0.00001 0.00000 0.00000 0.00000 0.00000 0.00003 0.00007
25.14669 -0.00005 -0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
30.05092 -0.00001 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
35.11181 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

application to practical problems. This also completes our recent studies on
the time-dependent slip-flow theory [10, 18] for a slightly rarefied gas. In the
course of analyses, we have also clarified that the curvature effects induce the
local divergence singularity of the velocity distribution function, even though
it is integrable to make macroscopic quantities well defined. We have obtained
the precise information on the singularity and thereby have established a nu-
merical method that handles it appropriately.

The occurrence of the local divergence above can be understood physically
from the viewpoint of the boundary geometry. In the generalized slip-flow the-
ory, the study of the Knudsen-layer structure is reduced to a series of spatially
half-space problems. It implies that the boundary is approximated as if the
boundary were flat at each stage of the analysis. As a result, the solution at
the first order of the Knudsen number is forced to be discontinuous on the
boundary in the tangential direction of molecular velocity, resulting in the
divergence singularity at the second order through the inhomogeneous term.
Actually, however, if the curvature exists, the behavior of that discontinuity
dramatically changes. For instance, when the boundary is the surface of a
convex body, that discontinuity exists but propagates into the gas region in
the tangential directions of the boundary. Then, the implicit assumption of
continuous solution in the analysis breaks down. The region with this break-
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down, which is thinner by one order of the Knudsen number in its thickness,
is called the S-layer [6], which was discovered in [28] and was recognized later
in [29] as the manifestation of the discontinuity propagation. The estimate
of corrections to the generalized slip-flow theory in the S-layer can be found
in [6,29]. When the boundary is a surface of concave body, the velocity distri-
bution function becomes continuous even on the boundary. These facts near
the convex/concave boundary illustrate that the flattened boundary treatment
in the asymptotic analysis does not capture the very local structure of the ve-
locity distribution function, when the curvature exists. Improvement of the
local analytical drawback could be an interesting subject in the mathematical
physics.

Acknowledgements The present work is supported in part by KAKENHI from JSPS
(Nos. 23360083 and 13J01011). The authors thank Professor Kazuo Aoki, Kyoto University,
for his interest and encouragement.

A Stress and Heat Flow

The stress tensor and heat-flow vector are also familiar fluid-dynamic quantities that become
necessary, most typically, in computing the momentum and energy exchange with the body
surface. Denoting the former by p0(δij+Pij) and the latter by p0(2RT0)1/2Qi, their Hilbert
part hH = hH0 + hH1ε + · · · and Knudsen-layer correction hK = hK0 + hK1ε + · · · (h =
Pij , Qi) up to the second order in ε are summarized as follows:

PijHm = PHmδij − γ1
∂uiHm−1

∂xj
+

1

2
γ3
∂2τHm−2

∂xi∂xj
, (m = 0, 1, 2), (21a)

QiHm = −
5

4
γ2
∂τHm−1

∂xi
+

1

2
γ3
∂2uiHm−2

∂x2j
, (m = 0, 1, 2), (21b)

and

PijKm =
3

2

∂τHm−1

∂xk
nk(δij − ninj)[Ω

(0)
1 (η) +Θ

(0)
1 (η)], (m = 0, 1), (22a)

PijK2ninj = −3κ̄
∂τH0

∂xi
ni

∫ ∞
η

[Ω
(0)
1 (z) +Θ

(0)
1 (z)]dz, (22b)

PijK2nitj =
3

2

( ∂2τH0

∂xi∂xj
nitj + κijtj

∂τH0

∂xi

)∫ ∞
η

[Ω
(0)
1 (z) +Θ

(0)
1 (z)]dz, (22c)

QiKmti =
∂uiHm−1

∂xj
nitjH

(1)
1 (η) +

∂τHm−1

∂xi
tiH

(1)
2 (η)

+
∂2τHm−2

∂xi∂xj
nitjH

(1)
3 (η) +

∂

∂xi

∂ujHm−2

∂xk
ninjtkH

(1)
4 (η)

+ κ̄
∂uiHm−2

∂xj
nitjH

(1)
5 (η) + κij

∂ujHm−2

∂xk
nktiH

(1)
6 (η)

+κijtj
∂τHm−2

∂xi
H

(1)
7 (η) + κ̄

∂τHm−2

∂xi
tiH

(1)
8 (η), (m = 0, 1, 2), (22d)
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QiKmni =

[
∂2τHm−2

∂xi∂xj
(δij − ninj)− 2κ̄

∂τHm−2

∂xi
ni

] ∫ ∞
η

H
(1)
2 (z)dz

−
1

2

∂

∂xi

∂ujHm−2

∂xk
ninjnk

∫ ∞
η

H
(1)
1 (z)dz, (m = 0, 1, 2). (22e)

Here the quantities with the subscript H in (22) denote their value on the boundary. The

functions H
(1)
1 ∼ H

(1)
4 have already been obtained in [18, 20, 21]. The present work newly

provides the data of H
(1)
5 ∼ H(1)

8 , which are included in Table 2 and Fig. 5.

B Sketch of Derivation of (16)

The non-trivial equality in (16a) is

lim
η→0

∫ ∞
0

∫ 1

0
(1− µ2)

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ P(µ, ζ)h0(µ, ζ)dµdζ =

∫ ∞
0

ζ3

ν
P(0, ζ)h0(0, ζ)dζ. (23)

Once (23) is proved, the still non-trivial equality in (16c) is

2 lim
η→0

∫ ∞
0

∫ 1

0
ζ2P(µ, ζ)T [C[h]]dµdζ

= lim
η→0

1

η

∫ ∞
0

∫ 1

0
|
νη

µζ
|3e−|

νη
µζ
|P(µ, ζ)a(µ, ζ)

(1− µ2)ζ4

ν3
dµdζ. (24)

We show below the outline of the proof for (23), (24), and (16b).

Proof of (23) We first split the region of integration with respect to µ into (0, δ) and
(δ, 1), where 0 < δ < 1 is a constant. Then for the second part, we see that

|
∫ ∞
0

∫ 1

δ

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ {(1− µ2)P(µ, ζ)h0(µ, ζ)− P(0, ζ)h0(0, ζ)}dµdζ|

≤
∫ ∞
0

∫ 1

δ

ζ4

ν2
1

η
|
νη

δζ
|3e−

νη
ζ max

µ
(|P(µ, ζ)h0(µ, ζ)|+ |P(0, ζ)h0(0, ζ)|)dµdζ

≤ δ−3

∫ ∞
0

ηζ2|
νη

ζ
|e−

νη
ζ max

µ
(|P(µ, ζ)h0(µ, ζ)|+ |P(0, ζ)h0(0, ζ)|)dζ

≤ δ−3η

∫ ∞
0

ζ2 max
µ

(|P(µ, ζ)h0(µ, ζ)|+ |P(0, ζ)h0(0, ζ)|)dζ → 0, as η → 0.

On the other hand, by applying to P and h0 the mean-value theorem with respect to µ, we
have

|
∫ ∞
0

∫ δ

0

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ {(1− µ2)P(µ, ζ)h0(µ, ζ)− P(0, ζ)h0(0, ζ)}dµdζ|

≤
∫ ∞
0

∫ δ

0

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ (|P ′h0(0, ζ)|µ+ |P(0, ζ)h′0|µ+ |Ph0|µ2 + |P ′h′0|µ2)dµdζ

≤
∫ ∞
0

∫ δ

0

ζ3

ν
|
νη

µζ
|2e−

νη
µζ max

µ
(|P ′h0(0, ζ)|+ |P(0, ζ)h′0|)dµdζ

+ η

∫ ∞
0

∫ δ

0
ζ2|

νη

µζ
|e−

νη
µζ max

µ
(|Ph0|+ |P ′h′0|)dµdζ

≤ δ
∫ ∞
0

ζ3

ν
max
µ

(|P ′h0(0, ζ)|+ |P(0, ζ)h′0|)dζ + ηδ

∫ ∞
0

ζ2 max
µ

(|Ph0|+ |P ′h′0|)dζ
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→ δ

∫ ∞
0

ζ3

ν
max
µ

(|P ′h0(0, ζ)|+ |P(0, ζ)h′0|)dζ, as η → 0,

where P ′ (or h′0) is the partial derivative of P (or h0) with respect to µ at µ = µP (or µh),
and µP (or µh) is a certain value in the interval [0, µ] that depends on µ and ζ. Therefore,
we have

lim
η→0

∫ ∞
0

∫ 1

0
(1− µ2)

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ P(µ, ζ)h0(µ, ζ)dµdζ

= lim
η→0

∫ ∞
0

∫ 1

0

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ P(0, ζ)h0(0, ζ)dµdζ +O(δ)

= lim
η→0

∫ ∞
0

ζ3

ν
(1 +

νη

ζ
)e
− νη
ζ P(0, ζ)h0(0, ζ)dζ +O(δ)

= lim
η→0

∫ ∞
0

ζ3

ν
e
− νη
ζ P(0, ζ)h0(0, ζ)dζ +O(δ). (25)

Now, in the most right-hand side of (25), we can change the order of the limit and integration,
because

|
∫ ∞
0

ζ3

ν
(1− e−

νη
ζ )P(0, ζ)h0(0, ζ)dζ| ≤

∫ ∞
0

ζ

ν
(1− e−

νη
ζ )ζ2|P(0, ζ)h0(0, ζ)|dζ

≤η
∫ ∞
0

ζ2|P(0, ζ)h0(0, ζ)|dζ → 0, as η → 0.

Here, we have used the fact that 0 ≤ x−1(1 − e−xη) ≤ η for x ≥ 0. Therefore, we finally
arrive at

lim
η→0

∫ ∞
0

∫ 1

0
(1− µ2)

ζ4

ν2
1

η
|
νη

µζ
|3e−

νη
µζ P(µ, ζ)h0(µ, ζ)dµdζ =

∫ ∞
0

ζ3

ν
P(0, ζ)h0(0, ζ)dζ +O(δ).

In the course of estimates, δ is a positive constant, arbitrary as far as smaller than unity;
thus it can be made small as we wish, which proves (23).

Proof of (24) We use the expression (13) of C[h] for small η and its consequence (14) for
µζ > 0, namely

ν3T [C[h]]

(1− µ2)ζ2
=

1

η
h1(z)a(µ, ζ) + h2(z)b(µ, ζ) ln η + h3(z)b(µ, ζ) + h2(z)c(µ, ζ),

where

h1(z) =
1

2
z3e−z , h2(z) = 1− (

1

2
z2 + z + 1)e−z ,

h3(z) = −(
1

2
z2 + z + 1)e−z [Ei(z)− ln z − γ] +

1

2
z +

5

2
(1− e−z)− (

1

2
z2 + 2z)e−z ;

and h1 ∼ h3 are O(z3) for z � 1 and O(1) for z � 1 (remember that z = νη
µζ

). Then,

2

∫ ∞
0

∫ 1

0
ζ2P(µ, ζ)T [C[h]]dµdζ = 2

∫ ∞
0

∫ 1

0

ζ4

ν3
(1− µ2)P(µ, ζ)[

1

η
h1(z)a(µ, ζ)

+ h2(z)b(µ, ζ) ln η + h3(z)b(µ, ζ) + h2(z)c(µ, ζ)]dµdζ. (26)

For f(z) that follows the same estimate for both z � 1 and z � 1 as h1 ∼ h3 and for
Q(µ, ζ) that is regular and decays rapidly in ζ, we have

|
∫ ∞
0

∫ 1

0

ζ4

ν3
(1− µ2)f(z)Q(µ, ζ)dµdζ| ≤

∫ ∞
0

ζ4

ν3
max
µ
|Q|
∫ 1

0
|f(z)|dµdζ

≤ η
∫ ∞
0

ζ3

ν2
max
µ
|Q|
∫ ∞
νη
ζ

z−2|f(z)|dzdζ ≤ η
∫ ∞
0

ζ3

ν2
max
µ
|Q|dζ

∫ ∞
0

z−2|f(z)|dz.
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Therefore, taking the limit η → 0, all the terms, except the first, on the right-hand side of
(26) are seen to vanish. We are left with

lim
η→0

2

∫ ∞
0

∫ 1

0
ζ2P(µ, ζ)T [C[h]]dµdζ = 2 lim

η→0

1

η

∫ ∞
0

∫ 1

0

ζ4

ν3
(1−µ2)P(µ, ζ)h1(z)a(µ, ζ)dµdζ,

which is none other than (24).

Proof of (16b) We use again the expression (13) of C[h] for small η and its consequence
(15) for µζ < 0. We first rewrite (15) as

T [C[h]] = [f1(w, η, η∗)a(µ, ζ) + f2(z, η)b(µ, ζ) + f3(w, z, y, η∗)b(µ, ζ)

+ f4(w, z)c(µ, ζ) + f5(µ, ζ, η, η∗)]
(1− µ2)ζ2

ν3
, (27)

f1 =−
w3e−w

2|η − η∗|
, (28)

f2 = ln η − (z − 1)ezE1(z) +
z

2
[zezE1(z)− 1], (29)

f3 =− (ln η∗)e
−w[(

z2

2
+
y2

2
− z + 1)(1 + y)− zy2]−

y

2
[yeyE1(y)− 1]e−w

+ e−w[(y − 1)(1 + w)−
w2

2
]eyE1(y) +

5

2
(1− e−w)− e−w(

w2

2
+ 2w), (30)

f4 =1− (1 + w +
w2

2
(1 + z) +

w3

2
)e−w, (31)

f5 =− |
ν

µζ
|2
∫ ∞
η∗

ν|
η − s
µζ
|(1−

ν

2
|
η − s
µζ
|)C[h](s, µ, ζ)e

−ν| η−s
µζ
|
ds, (32)

and consider the limit (i) in Sect. 4.2 (remember that y = | νη∗
µζ
| and w = y − z). Then, in

this limit we have

T [C[h]]→ [f1(y, 0, η∗)a(µ, ζ) + f2(0, 0)b(µ, ζ) + f3(y, 0, y, η∗)b(µ, ζ)

+ f4(y, 0)c(µ, ζ) + f5(µ, ζ, 0, η∗)]
(1− µ2)ζ2

ν3
≡ T [C[h]]0.

Here a special attention should be paid to the limit for f2. It yields f2(0, 0) = −γ − ln ν +
ln |µζ|. The limits for the others are straightforward. As a result,

∫
µζ<0 P(µ, ζ)T [C[h]]0dζ

converges, because the integrand diverges only at the rate ln |µ|. Thanks to the regularity in

ζ, the integral is identical to 2π limε↓0
∫∞
0

∫−ε
−1 P(µ, ζ)T [C[h]]0ζ2dµdζ, so that all we have

to do is just to show that

|
∫
µζ<0

P(µ, ζ)(T [C[h]]− T [C[h]]0)dζ| → 0, as η → 0. (33)

To prove this, we estimate the differences occurring in T [C[h]]− T [C[h]]0. Firstly,

∆f1 ≡|a||f1(w, η, η∗)− f1(y, 0, η∗)| =
y3e−y

2η∗
|1− (1−

η

η∗
)2e

η
η∗
y ||a|

≤
y3e−y

2η∗
|1− e

η
η∗
y

+
η

η∗
(2−

η

η∗
)e

η
η∗
y ||a| ≤ [C1(e

η
η∗
y − 1) + C2

η

η∗
e
η
η∗
y
]|a|e−y/2,

(34)
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∆f3 ≡|b||f3(w, z, y, η∗)− f3(y, 0, y, η∗)|

=|b||(ln η∗)e−y{(
y2

2
+ 1)(1 + y)− e

η
η∗
y
[(
y2

2

η2

η2∗
+
y2

2
−

η

η∗
y + 1)(1 + y)−

η

η∗
y3]}

+ (
5

2
−
y

2
)e−y(1− e

η
η∗
y
) + E1(y){1 + [(y − 1)(1 + |1−

η

η∗
|y)

−
y2

2
|1−

η

η∗
|2 −

y2

2
]e

η
η∗
y} −

y

2
e−y [e

η
η∗
y |1−

η

η∗
|(|1−

η

η∗
|y + 4)− (y + 4)]|

≤|b|{| ln η∗|(1 + y)3(e
η
η∗
y − 1 +

2η

η∗
ye

η
η∗
y
)e−y + (3 + y)(e

η
η∗
y − 1)e−y

+ [e
η
η∗
y − 1 +

η

η∗
y(1 + y)e

η
η∗
y
]E1(y) +

y

2
(y + 4)(e

η
η∗
y − 1 +

2η

η∗
e
η
η∗
y
)e−y}

≤|b|[C1(e
η
η∗
y − 1) + C2

η

η∗
e
η
η∗
y
]e−y/2, (35)

∆f4 ≡|c||f4(w, z)− f4(y, 0)| = |c|e−y |y{1−
1

2
y[y − 2 +

η

η∗
(1− 2y) +

η2

η2∗
y]

+
1

2
y2(3− 3

η

η∗
+
η2

η2∗
)}
η

η∗
e
η
η∗
y

+ (1 + y +
1

2
y2 +

1

2
y3)(1− e

η
η∗
y
)|

≤|c|(1 + y)2[6y
η

η∗
e
η
η∗
y

+ (1 + y)(e
η
η∗
y − 1)]e−y

≤|c|[C1(e
η
η∗
y − 1) + C2

η

η∗
e
η
η∗
y
]e−y/2, (36)

∆f5 ≡|f5(µ, ζ, η, η∗)− f5(µ, ζ, 0, η∗)|

=|
ν

µζ
|3|
∫ ∞
η∗
{(s− η)(1−

ν

2

s− η
|µζ|

)e
νη
|µζ| − s(1−

ν

2

s

|µζ|
)}e−

νs
|µζ|C[h](s, µ, ζ)ds|

≤|
ν

µζ
|3
∫ ∞
η∗
|s(1−

ν

2

s

|µζ|
)(e

νη
|µζ| − 1)− η(1−

ν

2

2s− η
|µζ|

)e
νη
|µζ| |e−

νs
|µζ| ds max

s≥η∗
|C[h]|

≤|
ν

µζ
|3
∫ ∞
η∗
{s(1 +

ν

2

s

|µζ|
)(e

νη
|µζ| − 1) + η(1 +

νs

|µζ|
)e

νη
|µζ| }e−

νs
|µζ| ds max

s≥η∗
|C[h]|

=
y

η∗
{

1

2
(2 + y)2(e

η
η∗
y − 1) +

η

η∗
y(2 + y)e

η
η∗
y}e−y max

s≥η∗
|C[h]|

≤[C1(e
η
η∗
y − 1) + C2

η

η∗
e
η
η∗
y
]e−y/2 max

s≥η∗
|C[h]|, (37)

where C1 and C2 are positive constants, common to ∆f1 and ∆f3 ∼ ∆f5, and the arguments
of a(µ, ζ), b(µ, ζ), and c(µ, ζ) are omitted for conciseness. In the above estimates, we have
used that z = (η/η∗)y and 0 < η/η∗ < 1/3(< 1). Therefore, for i = 1, 3 ∼ 5, we have

|
∫
µζ<0

P(µ, ζ)∆fi
(1− µ2)ζ2

ν3
dζ| ≤ 2π

∫
µζ<0

|P(µ, ζ)|∆fi
ζ4

ν3
dµdζ

≤2π

∫
µζ<0

P̃ (µ, ζ)(C1|e
η
η∗
y − 1|+ C2

η

η∗
e
η
η∗
y
)e−y/2

ζ4

ν3
dµdζ

=2πη∗

∫ ∞
0

max
µ
|P̃ |

ζ3

ν2

∫ ∞
η∗ν
ζ

(C1|e
η
η∗
y − 1|+ C2

η

η∗
e
η
η∗
y
)y−2e−y/2dydζ

≤2πη∗

∫ ∞
0

max
µ
|P̃ |

ζ5

ν4
1

η2∗

2C1(e
ην
ζ − 1) + 2 η

η∗
(C2e

ην
ζ + 2C1)

1− 2 η
η∗

e
− η∗ν

2ζ dζ

≤
12π

η∗

∫ ∞
0

max
µ
|P̃ |

ζ5

ν4
[C1(e

ην
ζ − 1)e

− η∗ν
2ζ +

η

η∗
(C2 + 2C1)]dζ
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=
12π

η∗
{
∫ √η
0

+

∫ ∞
√
η
}max

µ
|P̃ |

ζ5

ν4
C1(e

ην
ζ − 1)e

− η∗ν
2ζ dζ +O(η)

≤
12π

η∗
C1

∫ √η
0

max
µ
|P̃ |

ζ5

ν4
(e
ην
ζ − 1)e

− η∗ν
2ζ dζ

+
12π

η∗
C1

∫ ∞
√
η

max
µ
|P̃ |

ζ5

ν4
(e
ηc1(1+

1√
η
) − 1)dζ +O(η) = O(

√
η)→ 0, as η → 0,

where P̃ (µ, ζ) = max(|a|, |b|, |c|,maxs≥η∗ |C[h]|)|P|. In the last line we have used that there
exist positive constants c0 and c1 s.t. c0(1 + ζ) < ν(ζ) < c1(1 + ζ). As to the remaining

∆f2 ≡ |f2(z, η)− f2(0, 0)| = | ln z − (z − 1)ezE1(z) +
1

2
z[zezE1(z)− 1] + γ|,

we have, as in the case of (24),

∫
µζ<0

|P(µ, ζ)b(µ, ζ)∆f2|
(1− µ2)ζ2

ν3
dζ ≤ 2π

∫ ∞
0

ζ4

ν3
max
µ
|P̃ |
∫ 1

0
∆f2dµdζ

= 2πη

∫ ∞
0

ζ3

ν2
max
µ
|P̃ |(

∫ ∞
νη
ζ

z−2∆f2dz)dζ ≤ 2πη

∫ ∞
0

ζ3

ν2
max
µ
|P̃ |(

∫ ∞
c0η

z−2∆f2dz)dζ.

Then, using the fact that ∆f2 is O(z) for z � 1 and O(ln z) for z � 1, we see that the first
and the second term of the following splitting∫ ∞

c0η
z−2∆f2dz =

∫ c0η∗

c0η
z−2∆f2dz +

∫ ∞
c0η∗

z−2∆f2dz,

are O(ln η) and O(1), respectively. And finally we obtain∫
µζ<0

|P(µ, ζ)b(µ, ζ)∆f2|
(1− µ2)ζ2

ν3
dζ ≤ O(η ln η)→ 0, as η → 0.

This completes the proof of (33), thus that of (16b).

C Data of Computations and Measure of Accuracy

For the check of numerical accuracy, besides the grids S1–S3 and M1–M7 in [18], we have
introduced a new grid S4 for η space, which is defined by setting (N,Nη) = (200, 250) in
(B.1) of [18] and is twice as fine as the standard spatial grid S1.

The truncation of the ζ and η spaces is justified by confirming the sufficient decay of
the velocity distribution function at η = d and ζ = Z. Table 3 shows the results in the
case of the standard grid (S1,M1), for which d = 44.46 and Z = 5.0. The sufficient decay
is actually observed. One may think that the decay at ζ = Z would not be enough for
φE, ψAE, and ψBE, when compared with the others. Actually, however, a small extension
of Z improves a lot. For instance, maxi≥1 |φ4E(η(i), ·, Z)| improves from 2.6 × 10−4 with
(S1,M1) to 3.9× 10−8 with (S1,M6) (remind that φ4 = φ̄4 + φ), where the arrangement of
grid points are common between M1 and M6 for 0 ≤ ζ ≤ 5.0 and M6 covers a wider region,
i.e., 0 ≤ ζ ≤ 5.8. As will be shown below, the difference of the results between (S1,M1) and
(S1,M6) is negligible, at least at the level of the macroscopic quantities like the slip/jump
coefficients.

Although the results in Sect. 5 are obtained by the splitting of solution explained at the
beginning of Sect. 4, we have also solved φ4 and ψ5 ∼ ψ8 directly without the splitting. The
results are hardly different from each other. Indeed, the difference of the results between
the two manners in the Knudsen-layer functions is less than 7.9× 10−10 in the case of grid
(S1,M1). Therefore, we have examined the grid dependence of the results by the computation
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Table 3 Data for the decay assessment of the velocity distribution function at the edge of
the computational region.

F max |F (·, ·, Z)| max |F (d, ·, ·)| max |F |
φ̄4E 4.0× 10−10 6.3× 10−10 2.0

ψ̄5E 3.8× 10−11 5.3× 10−13 1.1

ψ̄6E 3.1× 10−11 4.7× 10−12 0.36

ψ̄7E 4.1× 10−11 4.6× 10−10 0.95

F maxi≥1 |F (η(i), ·, Z)| max |F (d, ·, ·)| maxi≥1 |F (η(i), ·, ·)|
φE 2.6× 10−4 5.2× 10−9 1.7× 105

ψAE 1.3× 10−5 8.0× 10−12 1.3× 105

ψBE 8.7× 10−5 6.5× 10−11 2.8× 105

Table 4 Slip/jump coefficients c
(0)
4 and b

(1)
5 ∼ b(1)8 obtained by different grids.

Grid c
(0)
4 b

(1)
5 b

(1)
6 b

(1)
7 b

(1)
8

(S1,M1) 4.6180185 -0.6601218 0.2438061 0.4472751 -0.2335314
(S1,M2) 4.6180185 -0.6601218 0.2438061 0.4472751 -0.2335314
(S1,M3) 4.6180492 -0.6601221 0.2438051 0.4472728 -0.2335330
(S1,M4) 4.6180143 -0.6601211 0.2438071 0.4472741 -0.2335313
(S1,M5) 4.6180185 -0.6601218 0.2438061 0.4472751 -0.2335314
(S1,M6) 4.6180221 -0.6601220 0.2438061 0.4472750 -0.2335315
(S1,M7) 4.6178471 -0.6601224 0.2438091 0.4472922 -0.2335224
(S2,M1) 4.6180153 -0.6601231 0.2438053 0.4472744 -0.2335334
(S3,M1) 4.6180185 -0.6601218 0.2438061 0.4472750 -0.2335314
(S4,M1) 4.6180148 -0.6601233 0.2438052 0.4472743 -0.2335337
(S4,M3) 4.6180455 -0.6601236 0.2438041 0.4472720 -0.2335353

without splitting only. The grid dependence of the computed slip/jump coefficients is shown

in Table 4. The grid in ζ-space most affects the results, especially for c
(0)
4 , b

(1)
7 , and b

(1)
8

[compare the results by (S1,M1), (S1,M3), and (S1,M7), where M3 (or M1) is the grid about
twice (or 3/2) as many points as M7]. The accuracy down to the fourth or fifth decimal place
is expected from the table. M2 is the grid that refines M1 only in the range that M is small.
The comparison between (S1,M1) and (S1,M2) in the table shows that M1 is fine enough for
small M . The comparisons among (S1,M1), (S3,M1), and (S1,M6) in the table show that
the error due to the truncation of the ζ and η spaces is almost negligible.

The accuracy of the collision integral computation has already been assessed in [18] by
checking the identities C[(1, µζ, ζ2)E] = (1, µζ, ζ2)νE for C = ECE−1 and C[E] = νE for
C = ECSE−1. With the standard grid M1, these identities are confirmed to hold within the
error of 9.1× 10−8, 1.7× 10−8, 6.6× 10−8, and 8.9× 10−9 respectively, while the maximum
values of (1, µζ, ζ2)νE are 0.13, 0.064, and 0.062 respectively. [18]

The mass, momentum, and energy balances offer another measure of accuracy. They are
the following identities that are obtained from (4a) and (5a) by the integration in molecular
velocity space after multiplying the collision invariants:

〈µζφ4〉 = −2

∫ ∞
η

Y
(1)
2 (z)dz, 〈µ2ζ2φ4〉 = −

3

2

∫ ∞
η

[Ω
(0)
1 (z) +Θ

(0)
1 (z)]dz,

〈µζ(ζ2 −
5

2
)φ4〉 = −2

∫ ∞
η

H
(1)
2 (z)dz, (38a)

〈µ(1− µ2)ζ3ψ7〉 =
3

2

∫ ∞
η

[Ω
(0)
1 (z) +Θ

(0)
1 (z)]dz, (38b)

〈µ(1− µ2)ζ3ψi〉+ = −〈µ(1− µ2)ζ3ψi〉−, (i = 5, 6, 8). (38c)
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Here 〈·〉± is the half-range integral with respect to the molecular velocity defined by 〈f(ζ)〉± =
〈f(ζ)χ[0, 1](±µ)〉. With the standard grid (S1,M1), the identities in (38a) hold within the
error of 6.0× 10−7, 3.2× 10−6, and 5.0× 10−6, while the maxima of their left-hand side are
0.96, 0.29, and 2.6. In the case of (38b), the error is within 5.1×10−6, while the maximum of
the l.h.s. is 0.29. In the case of (38c), the error is within 7.6×10−7, 3.2×10−6, or 7.2×10−7

(i = 5, 6, or 8), while the maximum of the l.h.s. are 0.27, 0.12, and 0.13 (i = 5, 6, or 8).
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