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A Visual Analytics Approach for Ecosystem Dynamics based on
Empirical Dynamic Modeling
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Fig. 1. Schematic of visual analytics to study nonlinear interactions with empirical dynamic modeling (EDM). A dynamic graph of
changing interaction coefficients is first constructed using the (A) measured time series data and (B) interaction coefficients extracted
via EDM techniques. (C) Our proposed visual analytics system enables the detection and interpretation of system states using
dimension reduction and brush-link visualization techniques. (D) Using the process of annotation and summarization, the state
transition graph can be obtained for interpretation.

Abstract—An important approach for scientific inquiry across many disciplines involves using observational time series data to un-
derstand the relationships between key variables to gain mechanistic insights into the underlying rules that govern the given system.
In real systems, such as those found in ecology, the relationships between time series variables are generally not static; instead,
these relationships are dynamical and change in a nonlinear or state-dependent manner. To further understand such systems, we in-
vestigate integrating methods that appropriately characterize these dynamics (i.e., methods that measure interactions as they change
with time-varying system states) with visualization techniques that can help analyze the behavior of the system. Here, we focus on
empirical dynamic modeling (EDM) as a state-of-the-art method that specifically identifies causal variables and measures changing
state-dependent relationships between time series variables. Instead of using approaches centered on parametric equations, EDM is
an equation-free approach that studies systems based on their dynamic attractors. We propose a visual analytics system to support
the identification and mechanistic interpretation of system states using an EDM-constructed dynamic graph. This work, as detailed in
four analysis tasks and demonstrated with a GUI, provides a novel synthesis of EDM and visualization techniques such as brush-link
visualization and visual summarization to interpret dynamic graphs representing ecosystem dynamics. We applied our proposed
system to ecological simulation data and real data from a marine mesocosm study as two key use cases. Our case studies show that
our visual analytics tools support the identification and interpretation of the system state by the user, and enable us to discover both
confirmatory and new findings in ecosystem dynamics. Overall, we demonstrated that our system can facilitate an understanding of
how systems function beyond the intuitive analysis of high-dimensional information based on specific domain knowledge.

Index Terms—Visual analytics, empirical dynamic modeling, dynamic network, exploratory data analysis

1 INTRODUCTION

• Hiroaki Natsukawa and Koji Koyamada are with Kyoto University. E-mail:
{natsukawa.hiroaki.3u, koyamada.koji.3w}@kyoto-u.ac.jp.

• Ethan R. Deyle is with Boston University. E-mail: edeyle@bu.edu. This
work was started when he was with Scripps Institution of Oceanography,
University of California, San Diego.

• Gerald M. Pao is with Salk Institution for Biological Sciences. E-mail:
pao@salk.edu.

• George Sugihara is with Scripps Institution of Oceanography, University
of California, San Diego. E-mail: gsugihara@ucsd.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Natural systems are often complex and dynamic; therefore, relation-
ships between measured time series variables are generally not static;
instead, these relations dynamically change in either a nonlinear or
state-dependent manner. For example, in ecology, competition be-
tween small desert mammals changes with the amount of rainfall
[25,26]; or predation on insect herbivores varies with vegetation struc-
ture [19]. To achieve sustainable use of marine resources and conser-
vation of ecosystems, such as those listed in the sustainable develop-
ment goals (SDGs) [48], it is necessary to monitor the abundance of
species included in the ecosystem and understand the interspecies rela-
tionship, which changes depending on the state of the system. More-
over, we must understand what type of state the ecosystem has and
how this state changes over time.

Because it is difficult to accurately quantify these time-varying in-
terspecies relationships using a conventional linear approach, Deyle et
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al. proposed a state-of-the-art method that specifically measures rela-
tionships changing in a state dependent manner between time series
variables; this method is one element of empirical dynamic modeling
(EDM) [15]. EDM is a collection of methods to study systems using
attractors reconstructed from time series data based on nonlinear state
space reconstruction. Specifically, this is an equation-free approach
with minimal assumptions for inductive data-science explorations of
natural complex systems. In the function of EDM, time-varying in-
teractions can be calculated using the measured time series data, with
this information defining a dynamic network. Therefore, assuming
that the measured time series data constitute a node, and each relation-
ship of the nodes constitutes an edge, we can construct a time-varying
graph in which the nodes and edges change over time. A time-varying
graph representing an ecosystem can provide us with a deeper under-
standing of the ecosystem; EDM has been used in recent ecological
research [15, 49–51].

A core strength of data-driven nonlinear analysis, such as EDM,
is that system dynamics are not prescribed a priori, but inferred from
empirical evidence. A fundamental weakness can be the overwhelm-
ing task of interpreting results and identifying intersystem drivers.
This involves examining not only the individual relationships between
species but also the environmental factors under which relationships
are observed. It can also involve interpreting the system state that en-
compasses the interspecies relationships and examining its shifts such
as a regime shift that is large, persistent changes in the structure in
ecology. Furthermore, because the relationships between the factors
analyzed often occur in four or more dimensions, it is impossible for
most people to intuitively understand the results. For these reasons,
visualization tools are essential for domain scientists to understand the
complex state-dependent relationships between variables, i.e., time-
varying graphs. Therefore, in order to overcome the weaknesses of
EDM that may require these tasks and to better understand dynamic
systems, we investigate integrating methods that appropriately charac-
terize these dynamics (i.e., EDM) with visualization techniques that
can help analyze the behavior of the system.

Thus, as illustrated in Figure 1, we developed a visual analytics
system that links the construction of dynamic networks, state identi-
fication, annotation, and the construction of a state transition graph
(STG) by summarizing 2D trajectories. The proposed system supports
the identification and interpretation of the system state using EDM-
constructed dynamic graphs. In closer collaboration with researchers
in the ecology domain, analysis tasks have been summarized and listed
for the system design. To demonstrate the usefulness of our proposed
system, we applied our proposed system to ecological simulation data
and real marine mesocosm data as two distinct use cases, and discov-
ered both confirmatory and new findings in ecosystem dynamics.

Overall, the primary contributions of our study are as follows:

• Defining analysis tasks for a visual analysis system to understand
ecosystem dynamics.

• Developing a visualization system that integrates EDM with a
visual analytics approach.

• Demonstrating the usefulness of our approach using ecological
real-world and synthetic datasets with case studies.

2 RELATED WORK

Dynamic Graph Visualization: With the increased availability of
time series data, dynamic graph visualization has been adapted for in
several application areas. Two well-known conventional methods for
visualizing static graphs are node-link diagrams and adjacency matri-
ces; there are several methods for handling this time dimension be-
cause dynamic networks depict a dimension of time, as discussed pre-
viously [6,9,47]. Animation and small-multiple methods are examples
of time-to-time and time-to-point approaches, respectively. The use of
animation to capture network changes can prove to be difficult because
of a high cognitive load [5], while the use of small-multiples is asso-
ciated with the problem of maintaining a suitable level of information

due to space limitations. Therefore, to investigate the global features
of a given graph structure and the properties of its edges and nodes
in detail, it is important to combine these approaches and/or adopt
additional techniques such as linked views and incorporating user in-
teractions. In [6], Beck et al. provided a detailed survey of dynamic
graph visualization.
Visual Analytics for Dynamic Graphs: Interactive and linked views
not only enable users to filter the dynamic network in various manners
but also enable users to reduce the data to a manageable size. Nu-
merous visual analytics systems for exploring dynamic networks have
been proposed. For example, Von Landesberger et al. proposed a vi-
sual analytics tool to analyze and compare contagion networks using
a dimension reduction method [56]. Further, to analyze temporal pat-
terns in dynamic graphs, Burch et al. proposed a matrix-based visual-
ization [12], whereas Hadlak et al. proposed a brush-link visualization
with node-link diagrams and time series plots [20].

Steiger et al. proposed analytics that evaluate similarities between
time series data obtained from sensor networks using the dimension
reduction method [39]. In addition, there are other visual analytics
methods for dynamic networks that approach such networks from the
viewpoint of degrees of interest [1] and community detection [17].
Although these methods are effective in their respective contexts, it
is difficult to specify the state of the given system (e.g., identifying
stable, recurring, and outlier states).

Van den Elzen et al. proposed a visual analytics system for dy-
namic networks using a snapshot-to-point approach [52]. This method
represents information on the edges of a dynamic network as a high-
dimensional point, and maps these points into two dimensions using
a dimension reduction method; note that this method further identi-
fies the system state using a two-dimensional scatterplot. Using this
method also enables us to identify stable, recurring, outlier, and transi-
tion states; therefore, this method is useful in understanding the struc-
tural features of a dynamic network. As reported in the survey pa-
per [11, 31], the main tasks related to visualizing dimensionality re-
duction results include identifying the clusters in the dimensionality
reduction results and understanding the characteristics of the clusters.
Furthermore, since the snapshot-to-point method traces the trajectory,
another task is to examine the transitions between the identified clus-
ters.
State-Transition Graphs: Visual analytics approaches for meta-
networks (i.e., state-transition graphs) of specified system states ex-
ist [4, 35, 55]. Adrienko et al. proposed a semantic analysis method
of movement behaviors using a state-transition graph that supports
comparison between data subsets [4]. In a part of our interpretation
process, similar to Adrienko’s proposal, an STG is constructed as a
meta-network to promote semantic analysis of ecosystem dynamics.

As shown in this brief review, there are various visualization and in-
teraction techniques to support the phenomenological analysis of dy-
namic graphs. Here, we do not aim to propose another technique.
What distinguishes it from the other methods for analyzing dynamic
graphs is the explicit reference to an underlying attractor, and in par-
ticular the requirement that the multivariate subspace representation is
valid, i.e., that the embedding has valid coordinates (we use forecast-
ing to validate). Our goal is to propose a visual analytics workflow by
combining EDM with visual analytics approaches including snapshot-
to-point and visual summarization using STG to gain new insights into
real-world systems.
EDM Resources: Finally, the method to track relative changes be-
tween time series variables (one element of EDM) was developed
by Deyle et al. [15], and the corresponding code implemented in the
R package (rEDM) [44] and python library (pyEDM) [45] are pro-
vided. Convergent cross mapping (CCM) [42,58] is a causal inference
method using state space reconstruction, which is another element of
EDM. The original library of CCM is provided as part of the R pack-
age [42]. In addition, studies have proposed other tools in other lan-
guages that extend the application of CCM [28]. Furthermore, in [30],
we reported our visual analytics approach for supporting the CCM
analysis process; however, there is no visual analytics tool available to
support the identification and interpretation of the system state based
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Fig. 2. Workflow of our visual analytics approach. Visual analytics applied to changing interactions with EDM consists of the following steps: (a)
preparation of the time series data; (b) empirical dynamic modeling; (c) construction of the dynamic network; (d) vectorization; (e) two-dimensional
mapping; (f) brush-link visualization; and (g) annotation and construction of a state transition graph.

on EDM. Therefore, integrating the appropriate visualization technol-
ogy with EDM can contribute to the analysis in not only ecology but
also various other fields.

3 EMPIRICAL DYNAMIC MODELING (EDM)
In this section, we briefly describe the principles and theoretical back-
ground of EDM. EDM is an equation-free mechanistic modeling ap-
proach based on the principle of reconstructing the underlying dy-
namic system from an observed time series [14, 16, 40–43]. EDM
enables several applications, including being able to determine the
complexity of a system, determine the causal variables, and track the
strength and sign of each interaction [13]. In this study, we use EDM
to track time-varying interactions. As described in the short one-
minute video animation (https://youtu.be/fevurdpiRYg), the state of
a dynamic system represents a specific location in a multivariate state
space whose coordinate axes are causally coupled variables such as
fish abundance, salinity, temperature, or resources in ecology. Here,
the system state varies in time according to equations that describe
system dynamics, tracing out a trajectory. The collection of these
trajectories configurates a geometric object referred to as an attractor
manifold, which empirically describes how variables are related to one
another in time. Thus, the attractor is reconstructed from time series
data using a multivariate embedding.

The fundamental capability of EDM is the ability to recalculate a
partial derivative at each successive state along the attractor [43]. This
hitherto unrealized ability allows tracking states on an attractor in or-
der to study how variables in nature interact and change with respect
to each other. These partial derivatives are calculated by the multivari-
ate S-map, which is a locally weighted multivariate linear regression
method [15, 43] that approximates the best local linear model by pro-
viding greater weight to neighborhood points on the attractor that are
near the current system state (see Supplementary material for details).
S-map iterates this computation at each point of the multivariate at-
tractor and calculates a local linear model C at each time point on the
attractor. The coefficients of the local linear model C represent the
interaction strength between variables. Here, “interaction strength” is
defined as a partial derivative in a multivariate state space, quantifying
the interactions between two variables.

In Figure 2(a), we present a schematic of a hypothetical system con-
sisting of three variables in a food web model [21, 34]. The empirical

attractor manifold for this system is constructed using the given time
series, as illustrated in Figure 2(b), by taking the three time-series vari-
ables as Cartesian coordinates, s(t) = {X(t),Y (t),Z(t)} and plotting
the system trajectory.

Here, we can observe that the two points on the hypothetical at-
tractor, i.e., points p and q, represent specific states, as illustrated in
Figure 2(b). Zooming in on the small neighborhoods of these two
points shows that the interactions between X and the other variables
are almost linear. The surface at p has a steep positive slope in the Z
direction, indicating a positive dependence on Z. Conversely, the sur-
face at q has a flat slope in the Z direction, indicating X is not sensitive
to changes in Z at point q. Therefore, the partial derivatives ∂X/∂Z
corresponding to these slopes define the interaction strengths for the
system states at points p and q and show the state dependency. These
interaction strengths are quantified along its attractor by the multivari-
ate S-map.

Essentially, EDM is an approach that encompasses the various ele-
ments mentioned above; however, we use the term EDM as a specific
application for calculating time-varying interactions hereafter.

4 VISUAL ANALYTICS APPROACH

In this section, we describe our visual analytics approach. First, we
list the analysis tasks for system design. Next, after detailing the ap-
plication of EDM and listing the necessary data inputs, we describe
the dynamic network defined using the results of EDM. Finally, we
explain some specific steps behind this approach, i.e., network model-
ing and vectorization (Section 4.3), dimension reduction (Section 4.4),
and visualization and user interaction (Section 4.5).

4.1 Analysis Tasks
Our first goal is to list the analysis tasks for achieving the goals of iden-
tifying and interpreting the ecosystem dynamics from EDM results.
To this end, we discussed with three co-authors (SC1, SC2, SC3) and
three scientific collaborators (SC4, SC5, SC6), all of whom were fa-
miliar with EDM, nonlinear dynamics and oceanography. SC1-4 were
domain scientists, and SC5-6 were graduate students in oceanography.
To date, the core results published utilizing EDM have generally re-
sults describing what kind of interaction between species and under
what conditions through basic visualizations such as scatterplots. This
is a very sound approach for doing environmental data science, but
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Fig. 3. Graphical user interface (GUI) screenshots of our proposed visual analytics system. GUI of our prototype consists of four tabs of views:
(a) EDM view enabling confirmation of the input and output of EDM; (b) detail view with multiple scatterplots enabling exploration of the relation-
ships between the variables; (c) setting view supporting the determination of the value of θ ; and (d) dynamic network view with dynamic graph,
two-dimensional mapping, and state transition graph for identification and interpretation of the system state.

also does not address the potential for visual analytics to also be hy-
potheses generating. The tasks for understanding the global and local
features of the results also were not organized, and no graphical user
interface (GUI) or visual analytics approach to support EDM analy-
sis has been available to date. To address these issues, we proposed a
visual analytics system combining EDM and visualization techniques
to tackle these challenges. After multiple rounds of discussion, we
derived the following four analysis tasks (AT) that our system should
provide.

AT1 : Confirming EDM results including the relationship between the
variables and sign of the interaction.

AT2 : Identifying states from EDM-constructed dynamic graph.

AT3 : Understanding and annotating identified states.

AT4 : Visualizing and understanding of transition relationships be-
tween states.

We designed the visual analytics system based on these require-
ments. A workflow of our system is shown in Figure 2. In the next
subsections, we explain the workflow in detail.

4.2 Empirical Dynamic Modeling (EDM)
In general, EDM consists of several steps.

First, we calculate a dynamic network using EDM, as illustrated
in Figure 2(a) and 2(b). In this step, the interactions between time
series data are quantified via EDM, thereby enabling the construction
of a dynamic network. As noted above, we assign the measured time
series data to nodes of the network and interactions between the time
series data to edges of the network, as illustrated in Figure 2(c).

As an example, we used the time series data from the five species
food web model with two consumers (X , Y ), their predators (U , W ),
and a single resource (Z), as shown in Figure 2(a) to calculate the in-
teraction strengths among variables based on the ecological relation-
ship. First, the state space is reconstructed using each variable. Let us

suppose we use variables X , Y , and Z for the reconstruction, as illus-
trated in Figure 2(b). Note that EDM results are sensitive to the choice
of variables to be embedded; therefore, in real systems, it is impor-
tant to causally choose coupled variables to be embedded in advance
(see Supplementary material in detail). Normally, variables are cho-
sen using the causal inference method such as CCM [42] as in the case
described in a previous study [15] and a recent paper [50]. The vari-
able selection method (i.e., CCM calculation) is not included in the
process of our proposed tool; however, our proposed tool calculates
EDM using a chosen set of variables by inputting adjacency matrices
that define causally coupled relationships.

Second, we determine the optimal weighting parameter θ used in
the S-map. θ is a nonlinear parameter that controls how strongly the
points near the target in a multidimensional state space are weighted
in the regression (see Supplementary material for details). θ must be
determined in advance, and a general way to choose an appropriate θ
is to examine the prediction error as a function of θ . In our proposed
system, the optimal parameter, θ , can be determined by the univari-
ate’s S-map [43] calculated in the Setting view in Figure 3(c). If user
push the S-map button, the univariate’s S-map is automatically calcu-
lated; user can confirm the prediction error as a function of θ . We
determine θ value that shows the minimum prediction error as an op-
timal parameter to control local linearity, which can then be used in
the corresponding EDM calculations (see Supplementary material for
discussion of θ parameter).

Third, partial derivatives ∂X/∂Z, and ∂X/∂Y etc. are calculated
at each point using the multivariate S-map method. The results indi-
cate that the interaction strengths fluctuate in the attractor, as shown in
Figure 2(b).

4.3 Dynamic Network Model and its Vectorization
In a previous subsection, ∂X/∂Z and ∂X/∂Y were calculated from
the time series data of X , Y , and Z via EDM. Assuming the re-
lationships, [∂X/∂Z,∂Y/∂Z,∂X/∂U ,∂Y/∂W ,∂X/∂Y ,and∂Y/∂X ],
are calculated in the same manner as shown in Figure 2(c), a dynamic
network Γ can be modeled as a sequence of N snapshots, i.e.,
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Γ = (G1,G2, · · · ,GN) , (1)

where snapshot Gi is the directed graph Gi = (Vi,Ei, ti) with node (ver-
tex) set Vi, edge (link) set Ei, and ti denoting the i-th time step. Let the
weights of the edge and node be vi and ei, respectively. Subsequently,
vi and ei can be defined as vi = [U(ti),W (ti),X(ti),Y (ti),Z(ti)] and
ei = [∂X(ti +1)/∂Z(ti),∂Y (ti +1)/∂Z(ti), · · · ,∂Y (ti +1)/∂X(ti)]. In
the dynamic network graph, ∂X/∂Y is represented as the directed edge
from X to Y . Conversely, ∂Y/∂X (i.e., the influence of X on Y ) is rep-
resented as the directed edge from Y to X .

In the next step, snapshots of the constructed dynamic network are
vectorized as shown in Figure 2(d). Because each snapshot contains
information regarding edges and nodes at a particular time point, Gi
can be represented as matrix Mi of size 1× (|V |+ |E|), where |V | and
|E| denote the number of nodes and edges, respectively. We therefore
obtain a series of N matrices with snapshots that can be used together
to define the dynamic network. These snapshots are then interpreted as
a point in a high-dimensional space. To analyze the dynamic network,
we used the snapshot-to-point approach. Here, all N network snap-
shots represent an N × (|V |+ |E|) matrix, as depicted in Figure 2(d).
Specifically, columns of this matrix represent the nodes and edges of
the network, and rows represent different snapshots.

4.4 Dimension Reduction Process
Because multiple dimensions are difficult to grasp and visualize, our
next step is to reduce and project high-dimensional points onto the
more manageable two dimensions using dimension reduction algo-
rithms [54], as illustrated in Figure 2(e). Numerous linear and non-
linear dimension reduction algorithms are available, including prin-
cipal component analysis (PCA) [22, 32], muti-dimensional scaling
(MDS) [24], Isomap [46], locally linear embedding (LLE) [37], and
t-distributed stochastic neighbor embedding (t-SNE) [27]. As imple-
mentation of t-SNE, we decided to use the Barnes-Hut-SNE tech-
nique [53] to reduce the computation times of the t-SNE approach.
A comparative survey of dimension reduction algorithms helped us
conclude that nonlinear algorithms perform well on selected artificial
tasks [54]; however, PCA is still used on many real-world datasets and
easy to interpret. Therefore, we adopted the above five algorithms to
encourage users to select an algorithm that is best-suited to their spe-
cific study, as illustrated in Figure 5.

Finally, as shown in Figure 2(e), high-dimensional information re-
garding a dynamic network is visualized in a two-dimensional space.
In two-dimensional mapping, a node represents a snapshot at a cer-
tain time point in the dynamic graph, and nodes at adjacent time
points are connected by links. The position of the resulting two-
dimensional mapping provides insight into the evolution of the net-
work. We can evaluate the similarity between snapshots of a dynamic
network, thereby identifying and characterizing various states of the
network. The goal to use a dimension reduction plot is the identifica-
tion of system states that is represented by a cluster of similar network
“snapshots”.

4.5 Visualization and Interaction
For the final step, we introduce a visual analysis system that includes
brush-link visualizations [23], annotation of identified states, and vi-
sual summarization of state transition information as an STG.

To explore a dynamic network based on EDM, we developed a GUI
with multiple views as a prototype of the application. Our system
is implemented in MATLAB, which is a programming environment
for numerical and technical applications. We used MATLAB GUIDE
(GUI development environment) to create all UIs. EDM, dimension
reduction calculation, plots, user interactions, and animations were
implemented using the built-in functions and toolboxes of MATLAB.
Figure 3 shows screenshots of our developed GUI, which contains four
tabs: EDM view, detail view, setting view, and dynamic network view.
In general, standard interactions such as zooming, rotation, and data
cursor, are available in all views. The plots shown in each view are
created by loading data from the upper load button.

Fig. 4. Selection of the dataset. Users can specify the dataset used to
generate the two-dimensional mapping plot. The pop-up menu enables
users to select datasets with (a) all edges, (b) all nodes, or (c) all edges
and nodes. The selected dataset is vectorized and used for two-di-
mensional mapping. Two-dimensional maps applied to the five-species
food web dataset with the above data selections are plotted here. The
point group selected by user interaction are highlighted. The color of
the points represents the time point using the multihued sequential col-
ormap.

EDM View For the EDM view (i.e., Figure 3(a)), users can con-
firm the input time series, calculated interaction strength, the attrac-
tor, and a snapshot of the dynamic network (i.e., node-link diagram),
supporting AT1. The upper left plot in Figure 3(a) shows the input
time series data; the plot on the upper right is the attractor plot with a
multivariate embedding, which can be used to understand the relation-
ship between the variables. The color of the attractor plot represents
the sampling time point using the sequential color encoding with the
multihued scheme, including Blue-to-Green-to-Yellow as shown in the
rightmost color bar in Figure 3(d). Blue and yellow color in this col-
ormap indicate the first and the last time point, respectively. Further,
the attractor plot is drawn in three dimensions; the attractor is dis-
played using three user-selected variables. Note that even if the input
data have more than four dimensions, they will be displayed with only
the three selected variables.

The lower left plots show the time series of the calculated inter-
action strength. The time series of the interaction strength to be dis-
played can be changed using the update button shown in the inset in
the upper right portion of the plot. The node-link diagram at the lower
right is a snapshot of the dynamic network at a specific time, with the
color of the nodes and links representing the sign of the time series
data, i.e., red corresponds to positive, whereas blue represents nega-
tive, supporting AT1. Further, the width of the link and the size of the
node represent the interaction strength and the amplitudes of the time
series data, respectively. When the “Run” button located next to the
plot is pushed, the animation is displayed, with the slider available to
update the snapshot at any arbitrary time. Note that we adopted an-
imation to show the snapshot considering the space efficiency of the
GUI. The time of the snapshot is represented with a red vertical line
in other time series plots, and the state of the corresponding time is
highlighted in red in the attractor plot (Supplementary Figure SF1). In
the animated display, the corresponding time is incremented automat-
ically.

Detail View In the detail view (i.e., Figure 3(b)), in addition to the
interaction strength and snapshot of the dynamic network displayed in
the EDM view, a scatter diagram depicting the relationship between
the user selected nodes and links is visualized. This view enables users
to explore the relationships between nodes and links in which the user
is interested, supporting AT1-3. The three bottom figures of Figure
3(b) are scatterplots showing the relationship between the nodes and
links. Once the user designates the node number or link number (e.g.,
a user can specify the link from node 3 to node 1 by typing “[3, 1]” in
the editor), the scatter diagram between the specified nodes and edges
can be plotted. The color of the scatterplot represents the time point
with the same color encoding as that in the attractor plot.

Setting View In the setting view (i.e., Figure 3(c)), the prediction
error as a function of θ for the univariate embedding of selected vari-
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Fig. 5. Linear and non-linear dimension reduction methods. Dimension
reduction methods (a) t-SNE, (b) PCA, (c) time vs. first principal com-
ponent, (d) MDS, (e) Isomap, and (f) LLE applied to the five-species
food web dataset in our first use case study are illustrated. Note that
t-SNE separated the states, whereas the other methods except for (c)
summarize the features of the dynamical network in a similar way.

ables is plotted. From this result, users can specify a θ value to use
for EDM. In this view, users can confirm the prediction performance
with respect to θ and can determine θ with the best prediction in the
S-map. In the setting view, the user can also specify parameters to
use for two-dimensional mapping (e.g., perplexity in t-SNE, number
of nearest neighbors in LLE and Isomap).

Dynamic Network View In the dynamic network view (i.e., Fig-
ure 3(d)), users can observe and interact with the two-dimensional
mapped scatterplot of the dynamic network, a snapshot of this net-
work, and a state transition graph constructed by identifying the states.
Specifically, this view enables users to explore and identify the system
state using two-dimensional projection mapping, supporting AT2-4.
In the 2D mapping scatterplot, the color of the plot represents the time
point with the same color encoding as that in the attractor plot. Be-
cause the nearby points in time on the scatterplot are connected by
edges, it is possible for users to grasp the dynamics of changing sys-
tem states.

The users can also select a specific dimension reduction algorithm,
introduced in Section 4.4, using the pop-up menu beneath the plot.
When points are repositioned because of switching between different
projections, the user’s mental map is preserved through animation. In
addition to selecting a dimension reduction algorithm, users can also
specify the dataset used to generate the two-dimensional mapping plot,
as shown in Figure 4. In Section 4.3, we noted that all nodes and edges
combine to form a point in a high-dimensional space; however, when
the users are only interested in nodes or edges, the rightmost pop-up
menu enables them to select the dataset they intend to use (i.e., dataset
with nodes, edges, or both).

Next, we describe brush-link visualization, annotation of the iden-
tified states, and visual summarization of STGs. The brush-link visu-
alization uses two-dimensional projections, scatterplots among vari-
ables, time series plot, and node-link diagrams, as depicted in Figure
2(f).

First, users can select point groups on either the scatter diagram of
the detail view or the two-dimensional map of the dynamic network
view using the lasso selection. The selected point group is then high-
lighted, and the corresponding data points are highlighted in the other
scatterplots. As to time series plot, the time information of the se-
lected point group is linked by highlighting the background area of the
corresponding time in the same color. Note that the highlighted color
of the selected point group is randomly determined. Further, any of
these selections can be deselected using the cancel button beneath the

scatter diagram. By implementing this form of interaction, the users
can select the state of the system and visually examine the features of
the selected point from the linked plots, supporting AT2, 3. If there
is a specific feature in the value of nodes or edges in dynamic graphs,
it is expected to be visually detected as a separable state on a two-
dimensional mapping plot.

Next, as shown in Figure 2(g), we carry out the annotation and sum-
marization steps using the results of brushing and linking. Once a
point group is selected by the lasso selection, the node in the STG that
aggregates the selected point group is represented as shown in the up-
per left diagram of Figure 3(d). The STG node is placed at the centroid
of the selected point group. Then, the transition between the states in
the time window T = [t0, tlast ] is acquired as a time-referenced state
sequence. Here, t0 and tlast are the earliest and latest time points in
the dataset. It is possible to construct an STG not from the entire se-
quences but from the user-selected time interval [t1, t2], t1 ≥ t0 and
t2 ≤ tlast . A directed edge is given between STG nodes based on the
calculated number of transitions. The size of the node and the width
of the link on STGs represent the number of selected points and transi-
tions between states, respectively. These representations of the STGs
support AT4. Furthermore, if users want to examine the changes in
STGs, a STG is constructed for each interval by a sliding-window,
resulting in time-varying STGs (i.e., dynamic STGs). To view the dy-
namic STGs, users can use the time slider that is used for updating the
snapshot of a dynamic graph, supporting AT4. Moreover, after analy-
sis of identified states, users can annotate those states semantically, as
shown in Figure 1(d), supporting AT3. The annotation of the states is
represented as a label of the node in STGs.

This tool allows users to move back and forth between these views
and visually analyze the dynamic graphs constructed by EDM.

5 USE CASE

To demonstrate the performance of our system, we applied our ap-
proach to both artificial and real-world datasets with SC1 and SC2. In
the first use case, we describe how EDM functions, and how to use
our system to support the interpretation of ecosystem dynamics using
an artificial dataset. Then, we presented the results and discussed the
choices for settings. Finally, we conducted second case studies with
marine mesocosm data and showed how to reach the mechanistic in-
terpretation of ecosystem dynamics by identification, annotation, and
visual summarization. Because these datasets have already been ana-
lyzed in a previous study [15] without the use of visual analytics tools,
we could compare results with previous knowledge in the subsections
below.

5.1 Ecological Simulation Dataset
We started our comparison using artificial ecological datasets to test
and evaluate our visual analytics approach. The model shown in Fig-
ure 6(a) is based on a classic food web topology [21, 34] with two
consumers (C1, C2), their predators (P1, P2), and a single resource
(R). In this particular model, saturating Holling Type II feeding re-
sponses, which assume that the consumer is limited by its capacity to
process food, govern the species interactions in a food web [15], which
gives rise to state-dependent competition [2, 3]. This model simulates
the time series data of species abundance. For this demonstration, we
focus on measuring the varying effects of ecosystem components on
the two consumers (C1 and C2). The dynamic network of the model
shown in Figure 6(a) was analyzed using our tool. The number of
variables and calculated interaction strengths are five and six (note the
distinction between ∂C1/∂C2 and ∂C2/∂C1), respectively, resulting
in that total dimension of a snapshot is eleven.

The results are consistent with those reported by Deyle et al. [15].
Although the strengths vary, there is generally a negative interaction
between C1 and C2 (Figure 6(b)) and a positive effect of R on C1
(Figure 6(c)). The scatterplot in Figure 6(e) shows that negative inter-
actions ∂C1/∂C2 (i.e., competition) only occur at low- to moderate-
food levels, whereas competition tends to be zero at high food concen-
trations. Note that the small absolute value of ∂C1/∂C2 means less
competition. For interactions ∂C2/∂C1, a similar trend is confirmed.

. 
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Fig. 6. Results of our ecological simulation use case study. An artificial dataset is simulated as (a) the five-species food web model with interactions
between time series data calculated using EDM. (b) The time series plots of calculated interactions (∂C1/∂R, ∂C1/∂C2) are shown. Here, (c) the
resulting dynamical networks are mapped to (d) a two-dimensional space using a dimension reduction method (i.e., t-SNE is used with all edges
as the dataset). Next, we show the dependence of the competition on (e) food abundance and (f) food limitation. In (g), three point groups are
classified by user interaction. The constructed state transition graph is shown in (h). In (i), the dynamics of STG are shown using a time slider.
From the dynamics, we can confirm a typical ecological patterns exhibited by r-strategists (C1) and K-strategists (C2).

Moreover, ∂C1/∂R (i.e., a direct measure of food limitations) defines
a maximum of the strength of competition (Figure 6(f)).

Next, a 2D mapping view is displayed to identify what type of state
is there in the dynamic graph. As shown in Figure 6 (d), separable
states were observed using t-SNE algorithms. Figure 6(d) shows those
states brushed by user interactions, whereas Figure 6(e) and 6(f) show
the placement of selected points in the scatterplots. From these results,
one selected point group (highlighted in red) represents states in which
R is large and the interspecies competition is small, whereas another
selection group (highlighted in orange) characterizes states in which R
is small and interspecies competition is large. Consequently, our pro-
posed tool characterizes the features of the system state that matches
particular interaction patterns (consistent with results described in the
previous work [15]).

Note that even if there is no prior knowledge of ecology, these
prominent features can be identified using a dimension reduction map-
ping using our tool. Figure 5 shows 2D mapping results obtained using
various dimensional reduction methods. In this simulation data, t-SNE
successfully separates and characterizes the states of the system as de-
scribed above, whereas the other methods fail to successfully extract
these features. Because 2D reduction methods may vary in their ef-
fectiveness for different datasets, we cannot draw general conclusions
that the t-SNE is superior to the others from these results, but we can
conclude that t-SNE fits this type of data. In the next subsection, the
results of t-SNE are shown for a use case with real-world data.

Taking a closer look at the 2D mapping view in Figure 6(d), we
found a new feature of state (highlighted in purple Figure 6(d)), in
which R is small with less competition ∂C1/∂C2, which was not found
in the previous research. Other linked scatterplots showed that this
state is characterized by large ∂C2/∂C1 (i.e., the effect of C2). To de-
velop the state transition graph, we classified the 2D mapping points
into three groups including the identified point groups highlighted in

red, purple, and orange, as depicted in Figure 6(g). The constructed
state transition graph is shown in Figure 6(h). From the linked scat-
terplots of the detailed view, as described in the previous subsection,
the leftmost group represents the state in which R is large and the in-
terspecies competition is small. Therefore, this group is annotated as
“R high Comp low”. In contrast, the middle group characterizes the
state with larger competition ∂C1/∂C2 (annotated as C1 dominant),
whereas the rightmost group represents the state with larger competi-
tion ∂C2/∂C1 (annotated as C2 dominant).

The state transition graph shows that the dominant feature of state
transition is the state group change between C1 dominance and C2
dominance. Interestingly, the C1 dominant state is the only state from
which we can go to the leftmost states showing abundant R. Once
we reach the leftmost state, state transition mainly occurs from the
C1 dominant state to the C2 dominant state. The structure of this
5-species food chain model is identical to that of the equation be-
tween two chains; however, different coefficients are set to prevent
synchronization between C1 and C2. The parameters effectively make
C1 a more r-selected species that can produce many offspring, each
of which has a relatively low probability of surviving to adulthood.
In contrast, C2 becomes a more K-selected species that have longer
life expectancies, produce relatively fewer offspring. Because of their
higher reproductive rates, primary colonizers are typically r-strategists
(C1). Eventually, a new equilibrium that may be the leftmost state in
the state transition graph is approached, with r-strategists (C1) gradu-
ally being replaced with K-strategists (C2) that are more competitive
and better adapted to the environmental characteristics [33]. As shown
in Figure 6(i), we can confirm those patterns by a user interaction into
the time-varying state transition graph. This use case revealed that the
visual analytics approach lead to the characterization of system states
and understanding of ecosystem dynamics.
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Fig. 7. Results of the use case study for Baltic Sea mesocosm dataset. (a) The focal interspecies food web model in the mesocosm dataset. (b)
Four types of system states (S1-S4) are identified by two-dimensional mapping. (c) Dynamic networks with nodes and edges are then mapped
to a two-dimensional space using t-SNE. The dependence of competition on (d) food abundance Nano and (e) food limitation ∂Cal/∂Nano. (f) 2D
mapping points into four groups by user selection and the state transition graph are constructed. Their nodes are annotated as illustrated on the
node label. (g) Snapshots of the time-varying state transition graph.

5.2 Mesocosm Experiment Dataset

As the second use case, we applied our proposed method to the ma-
rine mesocosm dataset including calanoid copepods and rotifers that
are isolated from the Baltic Sea [7,8]. Mesocosm means experimental
system that examines the natural environment under controlled con-
ditions. The marine mesocosm data were obtained from the supple-
mental materials of Beninca et al. [7, 8]. Because the sampling in-
terval was not regular, we have interpolated them using spline inter-
polation to regularize the sampling interval. Similar to our previous
study [15], we also focus on calanoids, rotifers, and their two main
prey, i.e., nanoflagellates and picocyanobacteria, as modeled in Figure
7(a). Then, we quantified the varying interaction strength to differen-
ciate between the two consumers (calanoids and rotifers) and the other
ecosystem components. The number of variables and calculated in-
teraction strengths are four and six, respectively, resulting in that total
dimension of a snapshot is ten.

Moreover, the EDM results match those reported by Deyle et al.
[15]. Interactions with the chief prey (i.e., nanoflagellates) are always
positive, whereas interactions with the other grazer (i.e., rotifers) are
always negative. Competition ∂Cal/∂Rot is strong only when the con-
centration of nanoflagellates is near zero, as indicated in Figure 7(d).

Further, the user interaction with 2D mapping shown in Figure 7(c)
showed several point groups. Figure 7(d) and 7(e) show the place-
ment of the selected points on scatterplots. Figure 7(b) shows how
each of these four groupings can be characterized from the scatter di-
agram, as follows: (S1) states where prey is small and competition
∂Cal/∂Rot is large; (S2) states where Nano is abundant and interspe-
cific competition is small; (S3) states where prey is small with large
interspecies competition ∂Rot/∂Cal; and (S4) states where Pico is
abundant and interspecific competition ∂Cal/∂Rot is large. Group-
ings (S3) and (S4) were newly found using our tools. Similar to the

case study for the simulation dataset, the proposed tool enabled us to
reconfirm and discover these states efficiently, as well as visually iden-
tified these states by 2D mapping without knowledge of the domain.

Because real-world ecosystems are more complicated than the sim-
ulation, the possibility that more characteristic states of the system
exist than those found in the simulation. In addition, similar to the
simulation considerations, we classified the 2D mapping points into
four groups including the identified point groups to construct the state
transition graph, as shown in Figure 7(f). From the linked scatterplots
of the detail view, four groups S1, S2, S3, and S4 are annotated as
“Cal dominant”, “Nano high Comp low”, “Rot dominant”, and “Pico
high Cal dominant”, respectively, as depicted in Figure 7(f). We can
see that the dominant features of the state transition between Cal and
Rot. In contrast to the ecological simulation, both Cal dominant state
and Rot dominant state can transition into the leftmost state showing
abundant Nano. In addition, competition between Nano and Pico is
observed, in Figure 7(f), because they compete for the same resources.
Interestingly, the transition from “Rot dominant” to “Pico high Cal
dominant” does not exist in the graph. This is because Pico (small
phytoplankton) are mainly eaten by Rot (small zooplankton), whereas
Nano (larger phytoplankton) are eaten by Cal (larger zooplankton).
These size differences can cause an asymmetric transition in terms of
Pico.

Figure 7(g) visually explains why the system alternates between
the two predator-prey cycles. As depicted in the leftmost graph in Fig-
ure 7(g), if Pico are abundant, the Rot population will increase and
suppress Pico. Therefore, Nano can gain a competitive advantage in-
stead of Pico, as shown in the second graph. This will benefit Cal,
which rises in abundance, and subsequently, suppresses Nano. This
gives new opportunities for Pico to seize the available resources, as
shown in the third graph. Although this mechanistic explanation was
described qualitatively in the discussion section of ref [8], our pro-
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posed tool makes it visible through the detection, annotation, and vi-
sual summarization of the ecosystem dynamics. Thus, we can reach
a mechanistic understanding of the ecosystem dynamics in the marine
mesocosm by combining the latest analytics and visual analytics ap-
proaches.

6 DOMAIN EXPERT FEEDBACK

We collected feedback from our three experts (SC1, SC2, and SC4) in
the fields of oceanography, nonlinear dynamics, and quantitative biol-
ogy, who are familiar with EDM analysis. They feel that the proposed
visual analysis system is a useful tool to interpret ecosystem dynam-
ics based on EDM. SC4 commented, “The GUI is well-designed and
intuitive for the researcher familiar with EDM, state space analysis,
and nonlinear dynamical systems. The identified workflow is sensi-
ble, guiding the user through a multistage analysis regime.” SC4 con-
tinued, “This work, as detailed in four ATs and demonstrated with
a GUI, provides a novel synthesis of tools and methods to disentan-
gle seemingly insurmountable state space representations. It thereby
constitutes an advancement in the application of nonlinear dynamical
analysis.” SC2 mentioned that “Since a priori one cannot possibly
know what the structure of the data is, the proposed system offers
a good selection of dimensionality reduction projections that span a
good variety emphasizing both global and local features to allow for
data exploration without having to a priori know what the underlying
structure is.” The experts plan to utilize this tool for neuroscience, not
only to know under which circumstances relationships between neu-
rons are positive or negative or don’t change but also to develop an
intuition for the more global picture among the interacting variables.
Overall, the experts are satisfied with our visual analysis system and
feel that it meets all of their expected requirements.

7 DISCUSSION

Use cases and domain expert feedback demonstrate the effectiveness
of the proposed visual analytics system. This section examines the
new insights found in the use cases and discusses how the visual or
interaction design of the system made these discoveries possible.

In two use cases, the tool revealed new ecosystem state features
(a group with lower R and large ∂C2/∂C1 competition in the first
use case and a group with (S3), (S4) in the second use case) and new
asymmetric transitions between the identified groups. As seen in re-
lated works using EDM [15,49–51], scatter plots and time series plots
are often used to interpret the results of EDM, and AT1-3 are viable in
principle by examining the relationships between individual variables
and interactions in detail. However, there is a limit to the number of
distinctive groups that can be found in the scatterplot alone. In this
study, integrating the snapshot-to-points approach with the EDM re-
sults allowed us to recognize more global features of dynamic graphs
and to identify a greater variety of states (satisfying AT2). In addition,
the features of a specific group can be analyzed and annotated in detail
through linked visualization of each plot with each view in our system,
guiding the user through a multistage analysis regime represented as
“ overview first, detail on demand”[38].

As for the transitions between groups, the more time series points,
the more snapshots are generated, and it is difficult to understand the
direction and amount of transitions only by looking at the trajectory
in 2D mapping. Therefore, in this study, we calculated the charac-
teristics of transitions between specific groups and presented them as
node-linked directed graphs that are easy to comprehend intuitively,
enabling understanding of the asymmetry of the prey-predation struc-
ture in the seemingly symmetric food web model. Although our tool
supports only fundamental functions for STGs, visual representation
of STGs, as proposed in [10, 36], could be improved to make the state
sequence more understandable. In order to analyze the global char-
acteristics of these dynamic STGs, snapshot-to-point [52] and other
methods to efficiently show the changes in the dynamic graphs [29]
may also be useful.

Although there are several possible candidates for the choice of the
plot used in each view, such as histograms of variables and color maps,
we have tried to use representations that have been used by experts in

the past, with a preference for clearer representations. There may be
visual representations and interaction designs that would make this AT
more efficient, such as advanced plots or direct encoding of features
related to a particular group. EDM is important on its own as a method
to quantify time-varying nonlinear interactions; however, its possibil-
ities can be dramatically extended by being associated with a well-
designed visual analytic approach. Conversely, although this research
does not offer sophisticated progress for the visualization technique it-
self, basic visual analysis such as brush-link and user interactions can
fulfill its potential when combined with state-of-the-art technologies
of the given domain.

We implemented five algorithms for dimension reduction. Of these
five algorithms, t-SNE successfully separated the states, as we showed
in Figure 5, but other algorithms may be effective depending on the
given data, as shown in the analysis of a high school communication
dataset in a related study [52]. As part of our future work, we plan to
identify the most appropriate dimension reduction method and the best
distance measure. In our use cases, the numbers of nodes and edges
of the dynamic network were not large. From the viewpoint of scala-
bility, we should certainly be able to handle larger networks; however,
for EDM calculations, we need to determine the variables to be used
for multivariate embedding based on the results of causal inference
methods such as CCM. Therefore, we assume that EDM is applied to
small- or medium-sized networks whose causal relationship is already
expected. In this study, the number of dimensions of the snapshot was
set to 10 for the first use case and 11 for the second use case. Although
our prototype had a limited number of scatter plots, time series plots,
and dimensions (i.e., 3) of the attractor plot, this could be dealt with
by switching the variables we wanted to visualize. However, when
dealing with large graphs, we will need some computational ideas for
efficiently drawing large-scale graphs.

Finally, our current system is a prototype, and there are several di-
rections for future work. Techniques supporting a series of analysis
and exploration can be improved by incorporating automatic clustering
algorithms into a current workflow, as discussed in ref [57], and an ad-
ditional supporting analysis to understand the cluster’s characteristics,
as proposed in ref [18]. Furthermore, comparing data under multiple
conditions might also be beneficial. This paper has focused on natural
systems, ecosystems, etc.; however, nonlinear dynamical systems are
ubiquitous. Applications in geophysics, neuroscience, and synthesis
with machine learning, and as subsystem networks or controllers for
heterogeneous information processing systems, will also benefit.

8 CONCLUSION

In this study, we proposed a visual analytics system that integrated
EDM calculations with interactive visual analytics including brush-
link visualization and visual summarization not only to construct dy-
namic graphs but also to support the identification and interpretation
of ecosystem dynamics. To demonstrate our proposed system, we ap-
plied our approach to both artificial and real-world datasets. Our use
case studies showed how visual analytics tools could be used to iden-
tify and interpret system states and deepen our knowledge regarding
the underlying rules governing such systems. Our visualization study
tool facilitates detailed understanding of how ecosystems work that
goes beyond a general analysis of high-dimensional information based
on domain knowledge. We expect our proposed method will be useful
not only in the field of ecology, but also in many other diverse fields.
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