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Abstract 

The aim of this paper is to study a one dimensional model system of equations for ionized 
gas dynamics at high temperature where the gas is a mixture of two kinds of monatomic 
gas. In addition to the mass density, pressure, temperature and particle velocity, degrees of 
ionization of both gases are also involved. By assuming that the local thermal equilibrium 
is attained, Saha's ionization equations are added. Thus the equations are supplemented by 
the first and second law of thermodynamics, a single equation of state and, in addition, a 
set of thermodynamic equations. 

The equations constitute a strictly hyperbolic system, which guarantees that the initial 
value problem is well-posed locally in time for sufficiently smooth initial data. The geometric 
properties of the system are rather complicated: in particular, we prove the existence of a 
region where convexity (genuine nonlinearity) fails for forward and backward characteristic 
fields. Also we study thermodynamic properties of shock waves by a detailed analysis of 
Hugoniot loci, which is employed for the study of existence and uniqueness of solutions to 
the Riemann Problem. We prove that the Griineisen coefficient is positive and the Liu-Smith 
strong condition is satisfied, which shows that the Riemann problem is well-posed. 

加 10Mathematics Subject Classification: 35L65, 35L67, 76N15 
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1 Introduction 

A shock wave is a propagating discontinuity of density, pressure, temperature and etc., which 

is supersonic with respect to the gaseous medium ahead of it and subsonic with respect to that 

behind it. Behind a shock wave, not only pressure but also temperature increases abruptly 

and the gas is heated to high temperatures. In the gas behind the shock front, almost all 

molecules become dissociated and finally some of the atoms become ionized: X ご x++e―・ 

Numerous spectroscopic measurements of atomic parameters and thermodynamic equilibrium 

of plasma thus generated have been done, for example, in various Helium-Hydrogen mixtures 

(Fukuda-Sugiyama [10], Fukuda-Sugiyama-Okasaka [11]). 

The model system of mixed ionized gas dynamics that we discuss in this paper is proposed 

by Fukuda-Okasaka-Fujimoto [9]1 for the purpose of providing a theoretical basis for their ob-

servations. The system consists of equations of macroscopic motion for 1-d mixed gas dynamics. 

Its particular nature is: degree of ionization of each gas is considered to be a thermodynamic 

*Professor Emeritus, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, Osaka, Japan, e-
mail: asakuracosakac. ac. jp 

1 An English translation of [9] is available upon request to F. Asakura. 
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variable. The aim of this paper is to exhibit principal results obtained in Asakura [1] and to dis-

cuss the existence and uniqueness of solutions to the Riemann problem. For a single monatomic 

ionized gas, studies have been done in Asakura-Corli [2, 3, 4]. This model system is similar to 

the ideal dissociating diatomic gas model studied by Lighthill [13]. 

Basic thermodynamic variables are denoted in this paper by T : temperature, p : pressure, 

p : mass density, v = 1/ p : specific volume, e : specific internal energy and s : specific entropy. 

The flow velocity is denoted by u and the specific total energy by e =が砧+e. The system of 

equations of one-dimensional motion for gas dynamics consists of the following three conservation 

laws: conservation of mass, momentum and energy 

{~~i:"三三:)~~·〇，

which are supplemented by the first and second law of thermodynamics 

(1.1) 

de= TdS -pdv, (1.2) 

a single equation of state and a set of thermodynamic equations. For brevity we will call s, e 

and c, the entropy, internal and total energy, respectively. 

Let us consider one mole mixture of monatomic gases A and B whose ionization reactions 

are A+= A+ +e-, B +=炉+e-. We denote the number of atoms and ions for each gas by 

Nf, N!3 and NiA, NiB, respectively. The number of electrons are denoted by Ne. Note that 

Nf+沢 +N!3+沖=No : Avogadro Number, Ne= NiA + Nr  

A 吟 B N8 
f The concentrat10n o atoms, 10ns and electrons are defined by四＝ - n = _._ nA = 

N.A N.B 1 
V'a  V' 

寸研＝寸心＝や， respectively.
By denoting Gt, G~: the partition functions of the neutral state, Gf, er : same for the 

1-ionized state, and x八茫： first ionization potentials, the coupled Saha's laws for mixed 

monatomic gas are presented as the following. 

言＝言 (21r:;kT)~e心， n!;e =~ 二（勺；kT)~ 心 (1.3)

For A: hydrogen atom, we have xA = 13.59844 eV and for B: helium atom, xB = 24.58741 eV. 

First ionization temperatures are 

A 
X X 

B 

TA = - = 1.5780 X 10尺TB= - = 2.8532 X 10互
k k 

2 G f'2Gf  
Note that TAく咋く 2TA.We have also百f= 1, 08 = 4. We will assume that a local 

thermodynamic equilibrium is everywhere attained: that is, the coupled Saha's laws (1.3) hold 

everywhere even in presence of shock waves. 

The degree of ionization and fraction for each gas are defined by°'A = ___.!!iいB= nB 
吟+n;

1 B 
ni3+n;' 

and /3 =吟+N;A 立~1 /3 呼＋炉 n炉nB
No no'No  

= - ='=  _____J_, respectively. The density and molar mass 
no 

of each gas are denoted by PA, PB and MA, MB, respectively. The pressure is a sum of partial 

pressures with respect to atoms, ions and electrons: 

P =Pa+ Pi+ Pe= Pa+ 2pi, Pi= kniT (j = a, i, e). 
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Then by setting a =加A+(1 -/J)aB 

P = Pt + 2pf + P~+ 2pr = k (叶 +2叶＋碍+2nn T 

= k [ (吟+nn(1砂 A)+(碍+nn(1 +⑮） ] T = kno (1 + a) T. 

A 
By noticing 1 + !!,;_ = _l_ 1十丑 1 

砂 aA'nB aB' 
= Saha's laws have the forms 

' '  

叩`=(ClcA) (叶＋店）＝叫Aa 2G;'2加ekT~e亨，
na 1 -ClcA 1 1 -ClcA = Gf (h2)  

n!;e = C 一二） (nt + nr ) = ;。二＝ 悶(21r:;kT ) ~ e― 紐

Thus we conclude that thermodynamic state equation has the form 

(1 -aA)(l + a) 2G;'(21rn叫 (kT)〗＿弘
p= 

aAa Gf h3 
e T 

3 5 
(1-叫 (1+ a) 2G戸(21r叫）事(kT)う _'.1:B.

= e T• 
咋 a G~h3 

Also we have a compatibility condition 

2G↑ 1-aA _弘 2Gr1-aB五
e T = 

Gf aA QB 
e T .  

a ClcB 

We assume TAく TB:::; 2TA and moreover 

• Gases are well mixed so that: p = f3PA + (1 -f3)PB 

• Pressure of each gas has the form 

釦A
PA= T(l + aA), PB = 

RpB 
T(l十叩）

MA 叫

• Specific enthalpies are defined by 

5R RTA 5R RTB 
似＝—-T(l + aA) + -aA, hB = -T(l +咋）＋ー一咋

2MA 島 2MB 叫

• Local thermodynamic equilibrium is everywhere attained 

• Macroscopic motion of the gas flow is one-dimensional. 

We deduce from the above assumptions that the total pressure is 

珈 A
(3) 

RpB 
p = f3PA + (1 -f3)PB = (3-T(l + ctA) + (1 - -T(l +咋）．

MA MB 

Thus 

r_ = (3~T(l +叫+(1一 /3)暫(1+咋） RT[l+/3位+(1ー (3)叫
＝ 

p (3M.a.+ (1ー (3)岨
V V 

(3島+(1一 (3)MB

(1.4) 

(1.5) 
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Denoting a = f3aA + (1 -(3)叩 andM = f3MA + (I -(3)MB, we obtain 

R 
p = MpT(l +a) 

which is the equation of state. The total specific enthalpy is 

(1.6) 

h= 
(3Mふ+(1一 (3)MBhB 5RT R 

~・- ,_ ~"- = 2M 
(1 + a)十訂 [f3TA知+(1ー (3)Tj四 B] (1.7) 

After showing some basic calculus lemmas, we construct physical entropy functions in Section 

2. The system (1.1) is shown to be strictly hyperbolic and characteristic fields are computed in 

Section 3. However, unlike the ideal polytropic case, the forward and backward characteristic 

fields of the system are not genuinely nonlinear and we study the set where this happens in 

Section 4. We refer to [7], [18] for more information on systems of conservation laws. We study 

in Section 5 the relation between°'A and°'B・A detailed study of Hugoniot loci of the system 

is carried out in Section 6. Though Hugoniot loci are monotone in (T, a)-plane in a single 

monatomic case, they are not always monotone in the present mixed monatomic case: If (3 is 

sufficiently small, then they lose monotonicity at some base state. Thus the degree of ionization 

does not always increase across the shock front, even if the temperature increases. However 

we prove that the pressure actually increases as the temperature increases. In section 7, we 

study the existence and uniqueness of solutions to the Riemann Problem and prove that the 

Griineisen coefficient is positive and the Liu-Smith strong condition is satisfied, which shows 

that the Riemann problem is well-posed. 

2 Construction of Entropy Function 

Introducing the specific enthalpy h = e + pv, we have 

Proposition 2.1 (M邸 well'srelations). 

（嘉）T=-(嘉）/ (嘉）p =~(靡）p
As us叫， thesubscript T or p above means that the derivative is computed by holding the 

RT subscripted variable fixed. The specific volume v is expressed by (1.6) as v =叩(1+ a) and 

the enthalpy is (1. 7). The dimensionless entropy 7) is defined by 7) =賛S.Consequently we have 

by Proposition 2.1 

Lemma 2.1. 

信）T=一； [1+a+r(靡）J 
（靡）p=五(1+a)+ f3 G +摩）（な；）p + (1 -(3) ば＋辛）（な~t

、

ー

、

、

1
,

1

2

 

．

．

 

2

2

 

ノ

Saha Equations: Setting 

X 
A 

X 
B 

TA=- TB=-
k'k'  

we have from (1.4) and (1.5) 

3 5 

_1 2G↑ (2可 e)ぅkぅ

似=Gf ぃ μ尉＝
2cr (2加e)~砂
G閉 h3
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Lemma 2.2. Saha's equations have the forms 

(~ — 1) (上ー1)= 

弘り

a 似］〗 T'(-I; — 1) (+ -1) =μB;; T (2.3) 

and the compatibility condition 

員— 1)e:: = (~ ―1) e―:: (2.4) 

Computation of (詈），（笠）/ (詈）T,(号）P : For the sake of brevity, we set 
T 

知=aA(l一知），仰＝⑮(1-叩）， q= f3qA + (1 -(3)qB・

Differentiating Saha's equations, we have two Pfaff equations 

a(l+a)+知 (1-aA)(l -(3) 
五

亨伍+ a詞伍＝一似;;T [;  — G+T;) 亨], (2.5) 
(1 -叩）0

daA + 
a(l +a)+ (1 -f3)qB 

竺

aBa2 a詞 如＝一四；； T [亨—汀＋塁）亨] (2.6) 

which constitute a system of linear equation of daA and daB. By the inverse function theorem, 
we obtain 

Lemma 2.3. 

(8aA) = _ a(l + a)qA (8aB) = _ a(l + a)qB 
8p T p[a(l+a)+q]'8p T p[a(l+a)+q] 

(8aA) = a(l + a)qA 『+~) + (1 -(3)qA卯 (TA-TB) 
BT T[a(l+a)+q] 2 T T2[a(l+a)+q] p 

(8aB) = a(l十a)qB (~+住) + f3qAqB(TB -TA) 
BT p T [a(l +a)+ q] 2 T T2 [a(l +a)+ q] 

We deduce from this lemma 

（伍）＝ーど（い五） (~) + (1 -fJ)qA卯 (TA-TB) 
{)T 

p T 2 T {)p T T2 [a(l +a)+ q] 

(8aB) = _ !!_ (~+~) (8aB) + /Jq砂 B(TB-TA) 
{)TP T2  T {)pT 匹 [a(l+a)+ q]' 

Thus we obtain useful lemmas: 

Lemma 2.4. 

-~(靡）p=~(塁）T + /3? (な；）T + (I -:)TB (な:t
Lemma 2.5. 

信）T=一号+fJげ＋摯）（詈）T + (l -fJ) G +阜）（誓）T

、1
,

、

ー

、

、
1
,

7

8

9

 

．

．

．

 

2

2

2

 

,
1
、

,

(2.10) 
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We will construct the physical entropy function for the present model system. Integrating 

(2.10) with respect top, we have 

Lemma 2.6. The dimensionless entropy T/ =賛shas the form 

T/(P, T) = log a+ /3 log aA + (1 -/3) log aB -2/3 log(l -aA) -2(1 -/3) log(l -aB) 

+/3 G+摩） O'.A + (1 -/3)げ＋亨）叩＋沢(T). (2.11) 

where'.]-{ is an arbitrary function of T. 

By differentiating the above expression and employing (2.1) and (2.2), the form of沢(T)is 
determined up to constant. 

Theorem 2.1 ([1]). The dimensionless entropy function has the form 

T/ = log [/3aA + (1 -/3)叫

+ /3 [1ogaA -2log(l —知）＋祭] + (1―/3) [log aB -2 log(l -a叫＋犀］

+/3 G 十り） aA + (1 -/3)げ＋摩）叩+const 

3 Equations of Ionized Gas Dynamics 

For studying thermodynamic properties of the system (1.1), the Lagrangian equations [18] are 

convenient 

゜
＝
 

€ 、‘,'’u
 

ゅ

9
,
+
 

O

O

t

 

ヽ
ー
）

2
 u

 

＝
＝
 

役

灰

1
-
2

＿
＋
＋
 

V
t
u
t

し

,

v

、

(3.1) 

where p : pressure, v : specific volume, e : specific internal energy and u : flow velocity. For C1 

solutions, equation (3.lh can be written as 2況 =0.

Characteristic speeds and vector fields: The associated quasi-linear equations are 

Ux 
Pt -- = 0, 附+Px = 0, St= 0 

Vp 

in the (p, u, s) state space and we find by direct computation that the characteristic speeds and 
the corresponding vector fields are 

心(U)~±~, 入。 (U)~o, 亡(U)~[凸l, r,(U)~[~l 
We note that characteristic speeds and characteristic vectors are all thermodynamic quantities. 

2The equation s, = 0 is transformed to (pS), + (puSlx = 0 in Eulerian coordinates. 
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For further computation, we adopt (p, u, T) as a set of state variables. Since Vt -Ut = 

VpPt + vrTt -uE = 0 and T/t =閣pPt+ r]rTt = 0, we can write system (3.1) in the form 

｛□喜i (3.2) 

Characteristic speeds and vector fields are computed as the following. 

Lemma 3.1. The characteristic speeds and the corresponding characteristic vector fields of the 

system (3.2) are 

入土＝土［こ二， 入。 ~o, 八 ~r* 1, TFrn 
The 0-characteristic field is linearly degenerate; a pair of Riemann invariants for入。 is{u,p}. A 

Riemann invariant for both心 isrJ. The characteristic speeds of system (1.1) are then u + .! 心
andu. 

Computation of心： Fore the sake of b revity, let us mtroduce the quantities: 

q=知+(1 -f3)qB, 

~= a(l +a)+知+(1 -/3)如=a(l +a)+ q 

<I>= f3qA G +阜）2 + (1 -f3)qBげ＋年）2' 

W=f3qA (誓＋予＋訃） + (1 -f3)qB (¥+予＋乳），
rl= 

/3(1 -f3)q隅 B(TA -TB)2 
r2 

Substituting (2.7), (2.8), (2.9) into (2.2) and (2.10), we obtain 

（竺）＝ーl+a-<>(l+<>) [叫＋伶）似+(1-#) (l +伊）吋
op T 

信）,~ か□砂）+ a(l+,".;;• 十n_ pE 

Since v =印T(l+a)(砂=~), we have by applying Lemma 2.3 

a-2 (嘉）T = _ T(lpta) _ Ta~ し；a)q, a-2 (嘉）p=-(皇）T

Theorem 3.1 ([1]). The characteristic speeds入士 havethe forms入士＝士入 where

、1
,

、1
,

3

4

 

•• 3

3

 

，
ー
、
、

入 = p Y~(l+a)I;+a(l+噸 +n
a汀 (1+ a) 詐＋直+!1

(3.5) 
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Remark 3.1 (Isentropes). In the (p, u, T) state space, an integral curve of a characteristic 

v~toc field r i, a solution ta the ,y,tcm af CTpwtian, 羞[: ~r where r ,tand, foe圧 ac

T l 
ro. We have 

d17 817 dp 珈 dT (817 817 17P) 
石＝而石十百万＝士玩―可后： =0 

for圧， andp = const., u = const. for ro, Thus the thermodynamic part of an integral curve is 

77 = const. for 1, 2-chamcteristic directions and p = const. for 0-chamcteristic field. A curve 

77 = const. is called an isentrope. Since (皿)> 0 (see the proof of Lemma 7.3), an isentrnpe 
8aA T 

is represented by the graph of a differentiable function位=aA(T) defined on TE (0, oo). 

4 Genuine Nonlinearity (convexity) and Inflection Loci 

Now, we study the convexity of the forward and backward fields; each characteristic direction 

having the eigenvalue心 iscalled genuinely nonlinear if r土▽入土-/0. We have chosen charac-

teristic vectors r士 sothat 

r土▽入土＝
Vpp 8入 'f/pa入

＝一3 
2(-vp)ぅ 8p'f/T8T" 

(4.1) 

Hence, genuine nonlinearity implies strict convexity (or concavity) of v as a function of p for 

fixed s. We refer to [15] for more insight about the failure of this condition and we will see in 

Theorem 6.5 that the entropy increases across the shock front if r土▽心>0. 

It is convenient to consider a differential operator 

央 =~[T/r(嘉）T -T/p (羞）J 
which is proportional tor±V. Computation of央入 issimple but tedious. Outline of computation 

is shown in [1] and the expression obtained is very heavy. 

The inflection locus is defined to be the point set 

:J = {(T,a心；八▽心=0, T > 0, 0 <伍く 1}.

Since r+▽入+= r_▽入-,both cases lead to the same result. Since r士▽心>0 for sufficiently 

large T, we observe that :J is located in a finite region. However it is difficult to get a sketch of 

:J by purely mathematical reasoning and Fig. 1 shows results of numerical computations. 

On the other hand, it is possible to extract from the heavy expressions asymptotics of the 

inflection locus for T→ 0. Since叩 isnegligible compared with aA, we observe that there 

are two branches such that衿→ 0 or衿→ oo. Following theorem is a generalization of [2] 

Proposition 4.2. 

Theorem 4.1 ([1]). For T→ 0, the inflection locus has two branches 

(1) は～臀信）＼ ⑬ ~雷（孔）3e―円

(2) ClcA ~¼(丑）2' 咋～鯰 (f)~e-辛
and we conclude that the characteristic directions of心 arenot genuinely nonlinear in a neigh-

bourhood of (T, aA) = (0, 0). 
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.<。.oo, .. 

Figure 1: TA= 1576.0, TB = 2853.2 left: f3 = l(monatomic), right: /3 = 0.05. 

5 Compatibility Condition 

The compatibility condition (2.4) constitutes a thermodynamic state space. 

Lemma 5.1. The compatibility condition has the form、

一年—TA
μAaAe T 

aB = ＿咋—TA
叫 Ae T +μ 叫1-aA). 

If aA→ 0, then叩→ 0 and we have 

色 —五ユ入
叩= aAe r [1 + O(l)a刈・

μB 

Figure 2: State space TA = 15, TB = 28, left: 0 < aAく 1,0< T < 12, right: 0 < aAく

0.5,0 < T < 12 

For A: hydrogen atom and B: helium atom 幽 =4.
畑

Incidentally, we find 

＿咋—TA

叩 (1-叩）＝
叫 B位 (1-知）e T 

［厨AE―円込玉(1-a心］^

(5.1) 

(5.2) 
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and we have derivatives of咋 inthe forms 

(~) = (TB -TA)⑮ (1 -CTB) 
BT T2 

'-"A 

（三）＝叩(1-0:B) 
如 A T 位 (1-知）

showing that (i'/) , (紐） > 0. By setting for brevity q =知+(1 -{3)qB, QBA = 
°'A T 

(l-f3)(TB-TA)qB・ 
T derivatives of a take the forms 

Lemma 5.2. 

信）°'A=~ド（こ）T=嘉 (5.3) 

In the following sections, we shall adopt T and°'A as a set of independent thermodynamic 

state variables. 

6 Thermodynamic Hugoniot Loci 

In the one-dimensional gas dynamics, two constant states separated by a shock front x = r:,t 

constitute a weak solution, if and only if the Rankine-Hugoniot conditions 

｛：旦古pし'+p],
rJ[pE] = [puE + pu]. 

(6.1) 

are satisfied. Here we denote [p] = P+-P-, where p土 denotethe right and left limits, respectively, 

of p with respect to x at x = rYt; the same notation is used for the other variables. 

If [p] = 0 then [u] = 0 by (6.l)i and [p] = 0 by (6.lh; in this case, rY = u士： the speed 

is equal to the flow velocity and the discontinuity is called a contact discontinuity. From now 

on we discuss the discontinuity corresponding to the forward and backward characteristic fields 

having charcteristic speeds心 andassume [p] -/ 0. In this caseび iseliminated from the first 

equation and by substituting it into the other two equations, the conditions (6.1) are reduced to 

｛正— u_戸+ (P+ -P-)(v+ー v_) = 0 : kinetic condition, 
. (6.2) 

e+ -e_十ぅ(P++ P-)(v+ー v_) = 0 : thermodynamic condition. 

In the following, we consider a single forward shock front; we fix a constant state (P+墨 +,1こ）
and consider (p, u, T) = (p—墨—,T_) as a set of state variables. Under this notation, (6.2) is a 

set of equations for Hugoniot locus of (P+, u+, T+)-For brevity, we call solutions to (6.2)i and 

(6.2h, respectively, the kinetic and thermodynamic Hugoniot loci. 

In this section we will give a precise description of thermodynamic Hugoniot loci for the 

present model system and evaluate, in particular, change of the thermodynamic variables along 

them; this analysis is fundamental for the study of shock waves (see [3]). 
The right thermodynamic state is denoted by伽，T+)and the left state (p, T). The ther-

modyn皿 icRankine-Hugoniot condition is written as3 

T(l+a)(4十り） +2 [叫A+(1 -/3)7]印 B]

=T+(l+a+)(4十五） + 2 [/3~ パ+(1―/3)71三］
3For the sake of convenience, we adopt the notation a文insteadof°'A土・
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By (1.4) th e pressure 1s expressed as 

(1 -知）(1 + a) 旦 _'!A_ (1 -咋）(1 + a) 旦＿血
p = T2e r = T2e r. 

μAlXAlX μ B叩 a
(6.3) 

and thus 

P- (1-a入）(1 + a-)a討 T_ 2 喜 +!"A v_ P+T-(1十釘）
云=(1-a!)(l+a+)aAa―い） e T_ T+, こ=P-江(1+a+)・(5.4) 

Consequently by setting T = T _, a = a詞 A=aA and叩=a13, and defining 

H(T心A)~T(l+a++ ;: ニ〗二ご（信）しだ＋弘l
+2 [加ATA+ (1 -f3)aB叫

-T+(i+a+) [4+ ;: ロ悶闊二ご(f)l,—恥＋分］
-2 [叫TA+(1 -f3)a~TB] , (6.5) 

the thermodynamic Rankine-Hugoniot condition is represented by H(T心A)=0. 

Asymptotics: We have the following邸 ymptoticformulas. 

Theorem 6.1 ([1]). On the thermodynamic Hugoniot locus (6.5), if T→ 0, then aA心B→O 

and by setting 

we have 

A=  

~ 吠a+{4(1+a+)+2[(3唸 +(1ー (3)atだl}e+ 

~+玲 (1-(3)] (1-a!)(i+a+) 

°'A~ A に） ¾e衿， ⑮ ~ AµA に） ¾e―判戸
T+μB  T+ ・

On the other hand, if T→ oo, then aふ咋→ 1 and 

1-ll'.A ~ 4(:1~ 心 (f)―Je仝， 1 —⑮ ~ 4µ:~:!a:!) (f)―Je―分

(6.6) 

(6.7) 

Loss of Monotonicity: For a single monatomic gas, Hugoniot loci are graphs of strictly 

increasing functions in (T, a) plane ([2], [3]). We will show in this subsection that it is not 

always the case for mixed monatomic gases. 

By direct computation, we have 

虞）T = T(~:a) [1 + a(し］号+T+ (lq: 釘） [1 + a(し］ミ
＋竺 (4+ E±) + _3_ [f3qふ+(1 -(3)q両］，

qA p 知
(6.8) 

showing that (紐）T > 0. We have 
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Theorem 6.2 ([1]). For eve内 T> 0, there is a unique O < O:Aく 1such that H(T心A)=0 

and the function aA = aA(T) is differentiable. 

In the same way 

信）<>A =4(1+a) [1+~ 竺(1+靡）］
ー (1+a) G +奈― Q~A) り- (1 +釘）号［；＋奈― a(~:\)] え (6.9) 

Theorem 6.3 ([1]). If (3 is sufficiently close to 0, then 

daA (勝）T (T+, at) 

dT(T+)=-(紐）<>A (T三）＜〇，

showing that aA is a decreasing function of T in a neighbourhood of T = Tが

Outline of Proof: Let us study the sign of (絣） at (T+, at). We find by th e above express10n 
<>A 

that (俯） > 0 if and only if 
<>A 

F(T叫 =iG+ 厚― Q~A) り
+T+(l+釘）［？＋互_QBA ] .!!_ _ [ l + QBA (1十丑

4T(l + a) 2 T a(l + a) P+ 1 + a 2T)] 

is negative. If (3 = 0, then 

F(T十 9吋）＝信 [1-~ 二(2+25aB + Tデ） TB~TA] 

Obviously for any aB > 0, there is some T > 0 so that the above expression is negative. 

Pressure Change: Let us study the behaviour of the pressure. By direct computation, we 

have 

I dp [i + a(l~a)] (鳳＋摯[~+伶― a二］（紐）T
- = 
pdT qA (巌）T

Substituting (6.8) and (6.9) into the above expression, we obtain 

Theorem 6.4 ([I]). The pressure p strictly increases along the Hugoniot locus as the temperature 

T increases. 

It is well known that (Bethe [5], [12, §86]): if (Po,uo,so) and (p1,u1,s1) are connected by 
a shock front, then 

s1 -so= 12~。信）s (P1 -Po)3 + O(l)(P1 -Po)4. (6.10) 

By virtue of this theorem, the physical entropy inceases as the temperature increases on condition 

that Vppl > 0. For discontinuities with arbitrary皿 plitude,the following theorem is known. 
p=po 
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囀：.'-' 
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Figure 3: TA = 1576.0, TB = 2853.2, T = 800, a文=0.3 left: /3 = l(single monatomic), right: 
/3 = 0.05 

Theorem 6.5 (Bethe-Wey!). The thermodynamic Hugoniot locus of the state (vo,so) intersects 

each isentrope at least once. Moreover, if Pvv > 0 (equivalently Vpp > 0) along an isentrope, then 

lu -<YI < c, if釘<vo, while the opposite inequalities hold if v1 > vo, 

The kinetic condition (6.2) shows that v1く voif and only if Pl > PO・Hence the Lax condition 

(see [7], [18]) is satisfied even for large IP1 -Pol as long as Pl > PO・Proof is found in [5], [15, 

(3.44)] and Weyl [20]. We may also call this "shock wave", however the physical entropy does 

not necessarily increase. 

Next theorem in [5] guarantees increase of the physical entropy. Let r denote the G面neisen

coeficient r whose definition is found and r > 0 is shown in the next section 

Theorem 6.6 (Bethe). Suppose that Pvv > 0 (equivalently Vpp > 0) and r~-2. Then the 
thermodynamic Hugoniot locus of the state (vo, so) intersects each isentrope exactly once and 

S1 > So if V1く vo,while s1 < so if v1 > vo. 

7 Riemann Problem 

In this section we consider the Lagrangian system of the ionized gas dynamics mainly in the 

(p, u, s) state space. For the sake of brevity, we denote U = T(p, u, s). The Riemann problem is 
the initial value problem with special initial data 

U(~, 0) = {い for~< 0, 
仰 for~> 0. 

where UL = T(PL,UL,sL), 倅=T(PR墨 R,BR) are constant states. We will construct a self-

similar (weak) solution to the initial value problem. 

Rarefact10n Curves The integral curves of乃(U)(j = 0, 1, 2) are represented by 

知U): u + Fv; dp = const, s = const, ~J 
叫(U):

函(U): u-!~ ゚;;t:C: 二，~on:~const
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As we have mentioned in Remark 3.1, rarefaction curves are isentropes in the thermodynamic 

state space. For the Riemann data UL, UR, we define the forward 1-rarefaction curve面(UL)

and the backward 2-raref action curve油（阪） as the following. 

固(UL):
U-UL ー「PLご dp, P ::;pL, 
S -S£ 

゜弱(U叫：
U-UR 「”ご dp,

(7.1) 

PR p:::::;pR・
S-SR 

゜If U E対(UL),the state UL is connected to U from left to right by a 1-centred rarefaction wave 

U=  U(『）； if U E酵(U砂 Uis connected to UR from left to right by a 2-centred rarefaction 

wave (see Dafermos [7], Smoller [18]). 

Hugoniot Loci Two states separated by a shock front~= I:t constitute a Lagrangian weak 

solution if and only if the kinetic and thermodynamic conditions (6.2) are satisfied. The La— 

grangian shock speed 4 satisfies炉=_P+一P-. In section 6 we have proved that the thermody-
叫—V-

namic Hugoniot loci is represented by a smooth curve in the (T心 A)plane. In order to study the 

Riemann problem we have to consider them in the (p, s) plane, and somtimes (v, s) and (p, v) 

planes. Following argument and notations are due to Menikoff-Plohr [15]. 

From now on, we denote by I:, in particular, the positive Lagrangian shock speed Ff:+_三．
We have two branches of Hugoniot loci such that 

p-Po du 士l
u-uo =土 for p 2 Po and - = 

I: 
＝土

dp p=po I: lp=po 占・
We will show these two branches are strictly increasing and decreaing ones for all p 2 p0. 

The adiabatic邸 ponentI and G叫neisencoeficient are defined respectively by 

,= -~(塁）s, r = -f。。こ =f(塁）v=v(塁）V

Obviouly we have 
1 

dp = -(TI'ds -P,dv) . 
V 

(7.2) 

Denoting H = e -ea十杓(p+ Po)(v -vo), we have b y the thermodynamic Hugoniot cond1t1on 

together with the first and second law of thermodynamics 

1 1 
Tds = dH --(v -va)dp + -(p -Po)dv. 

2 2 
(7.3) 

Lemma 7.1. If 21 2: r, then the theromodynamic Hugoniot locus is represented by the gmph of 

a smooth function v = v(p) for p 2: Po in the (p, v) plane and the specific entropy s is a smooth 

function of p defined for p 2: Po• Derivatives have the forms 

pdv I+ 
r(v-vo) 

＝ 2v 

v dp "(_ r(p-po)' 
2p 

(v-vo)'Y+ 
v(p-po) 

竺＝ー[ p(v-vo)] 

dp 2T ['Yー I'(p2;Po)] . 
(7.4) 

4 The Eulerian shock speed is O" = u士十-.
E 

P士
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Proof. For the Hugoniot locus, we have by (7.2) and (7.3) 

r 
dp = - [dH + (p-Po)dv -(v -vo)dp] --

P'Y 
2v v dv 

r 
= dH 

r(v -vo) p r(p-Po) 
五― 2v dp -; ['Y - 2p ] 

which gives 

fdH= [1 十「(\~v0)] dp +; [, -r(p2; Po)] dv 

Suppose that, 2½r. Then for p 2 Po 

r(p-Po) I rp。rpo
, - = 1 --r + - > - > 0. 

2p 2 2p - 2p 

Thus we find that there is a smooth function v = v (p) defined for p 2 po such that H (p, v (p)) = 0 

and hence the first claim follows. 

We considers as a function of (p, v), and then a function of p by substituting v = v(p). Since 

Tds = -~[(v -vo) -(p-Po)二]dp 

Substituting the first expression (7.4) into the above expression, we obtain the second. ロ

Let us next consider the (full) Hugoniot locus and, in particular, its projection onto the (p, u) 
plane. By the above lemma, we may suppose that v is a smooth function of p. Hence by the 

kinetic Hugoniot condition, u is a smooth function of p, which is the projection onto the (p, u) 

plane. Notice that v < vo if p > Po-The following theorem is due to Liu [14] and Smith [17], 

and formulation and proof are to [15]. 

Theorem 7.1 (Liu-Smith). Suppose that 1 2 r. Then the projection onto the (p, u) plane of 
each Hugoniot locus of Ui。is冗 presentedby the graph of a smooth function u = u(p) for p 2 Po 

in the (p, u) plane and 

竺＝一(v-vo) [, -I'(p;po) +手］
dp 2(u -uo) [, —古］

=/= 0 for p > Po-

Proof. By (7.4) and the kinetic Hugoniot condition, we find that 

2(u -uo)du = -(p-Po)dv -(v -vo)dp 

= _ (v -vo) [, -I'(p;po)―悶訓
dp. 

' 
-I'(p-po) 

2p 

Proof of Lemma 7.1 shows that 1-
I'(p-po) 

2p > 0 for p 2 PO・We have 

r(p -Po) v(p -Po) rpo v炉
=,-r+-+ >,-r>o 

p p(v -vo) p p 

for p > Po which shows that幽=/=0 for p > Po, Also we have observed that, in a neighbourhood 
dp 

of (Po, uo), there are two branches of solutions each of which is represented by a smooth function 

u(p) and靡=/=0. Thus we obtain the theorem. ロ
p=po 
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Let us consider the positive Lagrangian shock speed as a function of U and Uo denoted by 

刃(U,Ui。). For the Riemann data UL, UR, we define the forward 1-shock curve謎(UL)and the 

backward 2-shock curve酵(UR)as the following. 

p-pL 
U-UL 

rPE, (U可h,U,-,l、[玉,—否手汀l dp 
P~PL, 訂(UL):

(7.5) 

S -8£ 

PR-P 
U-UR 

:E(UR,U) [-r v~2] P 2: PR・ 祠(UR):
JPP R (v-vo) - P dp S-SR 
叫1—巧三

Since we have proved in Theorem 6.4 that the pressure p is an increasing function of the tern-

perature T, we may consider the above curves are admissible branches. If a states is located on 
~F~B 
ふ(UL)or S2 (UR), the jump discontinuity connecting U and UL or UR, respectively, is simply 
called a shock wave. The line of discontinuity~=~t is actually a shock front. Note that the 

above branches complement the rarefaction curves (7.1). 

If U E祠(UL),the state UL is connected to U from left to right by a I-shock wave; if 

UE認(UR),U is connected to阪 fromleft to right by a 2-shock wave (see [7], [18]). 

Ifp+ = P-, we have a d1scontmuity 

叫=u_, P+ = P-, s+ -/cs_, E = 0 (7.6) 

which coincides with the integral curve Ro(U-). This type of discontinuity is called a contact 

discontinuity. 

Solution to the Riemann Problem Suppose that "Y 2: 「:the Liu-Smith strong condition is 

satisfied. In order to solve the Riemann problem, we define the forward 1-wave curve Wf(UL) 

and the backward 2-wave curve Wり（阪） to be 

飼 (UL)={対(UL) (p:::; 四），飼(U幻＝弱（贔） (p:::; PR) 
祠(UL) (p > PL) {酵(U幻 (p> PR) . (7.7) 

Each wave curve is a C2-curve with Lipschitz continuous second derivative and represents 

all realisable rarefaction waves and shock waves. If (p, u, s) E W『(UL),then there is a 1-

rarefaction wave or shock wave connecting (PL, UL, SL) and (p, u, s). If, on the other hand, 

(p, u, s) E碍 (UR),then there is a 2-rarefaction waves or shock wave connecting (p,u,s) and 

(PR墨 R紐）．
Let W『(UL)and W界（阪） be the projection of研(UL)and洞(U砂 respectively,onto the 

(p, u)-plane. We find by Theorem 7.1 

Lemma 7.2. If 1 2'. r, Wf(UL) and Wf (UR), respectively, are represented by the graphs of 

strictly decreasing and increasing, respectively, functions of p defined for O < p < oo. 

Let UL= T(PL墨 L,sL) and UR= T(PR墨 R紐） be given Riemann data. The Riemann prob-
lem is solved in the following way: If two curves Wf(UL) and W塁(UR),have an intersection 
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point (Pm墨m),then the state (Pm墨m,S品） E研(UL)and (pm, Um, s嘉） E況(UL)are con-

nected by a contact discontinuity (see Smoller [18] Chap.18 for the details). In most cases (for 

example: except for the isothermal gas , = 1), we may assume 

!PO r-v; dp < 00 

゜
for any Po> 0. 

If this is the case, both Wf (UL) and Wf (U叫 havelimit points at p = 0, namely 

碕＝肛+!PL v=v; dp, 
゜

B 
PR 

u。=UR-J ,Fv;dp. 
゜Since Wf (UL) and齊（阪）， respectively,are represented by the graphs of strictly decreasing 

and increasing, respectively, functions of p, there is a unique intersection point if and only if 

u~< u{';. Thus we obtain 

Theorem 7.2. Suppose that 1 2 r. If 

匝—四<!PRご戸p+!PLご dp
0 0 

then there is a unique solution to the Riemann problem. 

Computation of Dimensionless Quantities Finally we will verify the Liu-Smith strong 

condition for our model system. We have adopt O:A, T as state variables so that 

p = p(aA, T), v = v(aA, T), 
R 

s = s(aA, T) = -rJ(aA, T). 
M 

Let us first represent I and r in terms of derivatives with respect to aA and T. 

Lemma 7.3. 
ap
一肛
av
一
四
晋
av-aT

T
-
f
-
V
T
T
 lao 

怠＿
aaA

珈＿置

qA-pqA一
V
q
A
血
＞

、1
,a
 

＋
 

ー，ー、＝
 

r
 

ap＿
誓
汀
珈
＿
紅

av-aT

T
-
P
T
T
T
-
V
 

悲
紐
息
aV-aaA

q
A
-
p
q
A
q
A
紐

V

＝
 ~＇ 

Proof. We have 

as as 
ds = daA + -dT, 

aaA aT 

OV OV 
dv = daA + -dT, 

00:A 8T 

8p 
dp = daA + 

8p 
-dT. 

aaA aT 

Solving the first two equations for daA and dT and substituting them into the third, we obtain 

expressions of (盟）s and (盟）v in terms of derivatives with respect to Cl!A and T. We note 

that, by arranging quantities,'Y and r are represented in terms of dimensionless quantities as 
above. ロ

The form of'f/ is shown in Theorem 2.1 and we have by (6.3) 

1 RμAaAa _!! 五 Rμ研 B°'_;! 五
v=-= T 2eT = T 2eT 

p M(l這 A) M(l —咋）
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We have by direct computations 

qAa~: = 1 +a十f3仕＋；＋祭） qA + (1 -/J)且＋；＋摩）叩，
枷 (1-/J)(TB -TA)qB 1 5 TB TA(l + a) 

信= T (;; 万＋□-T , 

qA 8v 
- =1+ 

知+(1―/J)qB T枷 (1-/J)(TB -~ 贔 3 TA 
v如 A a ' 戸IT= aT ―(2了），
qA 8p /JqA + (1 -/J)qB T 8p (1 -/J)(TB -TA)qB 5 TA 
戸 tA= -l― a(l+a)' 言'=- a(l + a)T + (ぅ +r)・

We first compute r : For the sake of brevity, we set q = f3qA + (1 -f3)qB and QBA = 
(l-(3)(TB-TA)qB . The denominator is computed as T 

qA枷
8aA 

qA 8v 

V 8aA 

T 
枷
8T 3 咋 3

T av = -QBA (ぅ+T) —う (1 + a) -

v 8T 

fJQBA(TB -TA)qA 

aT 

-[/3予+(1 -/3)予］（□）-[喜(1+ふ＋い］くo,

and the numerator is 

qA op Top 

~~ 甜喜＝―（い色）ーq[い叶G+阜）］く0

v oaA v 8T 

Consequently, we conclude that r > 0. 

Next we compute'Y : Note that'Y has the same denominator as r. By denoting I: = a(l + 
a) +q, Qr= f3qぷ +(l-f3)q虹13 th 

r , e numerator 1s computed as 

qA op r op 
p oaA p oT = 51: 5 5 TA 5 TB fJqA(TB -TA) 
枷枷

--- -q+Qr -+- -QBA -+—+ <0. 
T- 2。し）(2 T) [ (2 T) a(l + a)T ] 

qA 
枷 A oT 

Finally we verify the Liu-Smith strong condition. 

Theorem 7 .3. 

'Y>I'>O 

Proof. Since the denominator is negative, we compute 

qA op r op qA op Top 

―, p枷 A p8T 
両両

+ (l + a:) p 80:A 8T 

T 
qA 8v lfav 

qA- - ----
如 A ar v aa:A v ar. 

＝芸＋（ふ+Qr)G 十り） +QBA [ G+り） + /3:(『::)~い］＞〇
Thus the theorem follows. 口
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8 Conclusions and Discussions 

In this paper, we have studied a model system for macroscopic motion of an ionized gas which 

is a mixture of two monatomic gas A and B; the mixture ratio is (3: 1 -(3. This model system 

is proposed by [9] and consists of three conservation laws in one space dimension together with 

the first and second law of thermodynamics which are supplemented by an equation of state and 

two more thermodynamic equations called Saha's laws. We have assumed that TB : the first 

ionization temperature of the gas B is higher than TA : that of the gas A and 2TA~TB. Note 
that A: hydrogen and B: helium satisfy these assumptions. 

The physical entropy functions are constructed and it is remarkable that they are expressed 

in terms of elementary functions. Saha's two equations bring about a compatibility condition 

involving aA, aB and T. It is shown that aB is a differentiable function of aA and T whose 

graph constitutes the thermodynamic state space. We propose that (T心A)is a suitable pair of 

independent thermodynamic state variables. 

The system of conservation laws is shown to constitute a strictly hyperbolic system, which 

implies that the initial-value problem is well-posed locally in time for sufficiently smooth ini-

tial data. Characteristic fields are computed and geometric properties are studied: unlike the 

polytropic (non-ionized) case, the convexity (genuine nonlinearity) of the forward and backward 

characteristic fields of the system is lost and the set where this happens is determined in a 

neighbourhood of T = aA = 0. Whole set is located in a finite region in (T, aA) plane but it 

is difficult to get its full picture by purely mathematical reasoning; only pictures by numerical 

computation are presented. 

A detailed study of the thermodynamic Hugoniot locus is performed. The Hugoniot locus 

represented by a smooth graph in the (T心 A)plane. While the thermodynamic Hugoniot locus 

is monotone in (T, a) plane in a single monatomic case, for the mixed monatomic case it is shown 

that: if (3 is sufficiently small, thcn it loscs monotonicity at some basc statc. Thus thc dcgrcc 

of ionization does not always increase across the shock front, even if the temperature increases. 

However the pressure is actually proved to increase as the temperature increases which ensures 

that T >広 isthe admissible branch. 

By adopting the branch of increasing temperature (hence increasing pressure) of the Hugoniot 

locus as a shock curve, the existence and uniqueness of solutions to the Riemann Problem is 

studied. It is shown that the Griineisen coefficient is positive and the Liu-Smith strong condition 

is satisfied, which shows that: (1) the physical entropy increases across the shock wave in the 

genuinely nonlinear region, (2) the Riemann problem has a unique solution as long as the vacuum 

state is not involved. 
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