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1 Introduction 

Let n ?:: 3. We consider the incompressible Navier-Stokes equations in町：

{二~~△ tu~~ 艮:n十二，二f 

u(・,O) = a in町，

in町 X (0, oo), 

(N-S) 

where u = u(x, t) = (町(x,t),.. ,,un(x,t)) and 7r = 1r(x,t) denote the un-
known velocity and the pressure of the fluid at (x, t) E恥nx (0, oo), respec-

tively, while, f = J(x, t) = (ル(x,t)) 
k,£=1, …,n 

denotes the external forcing 

tensor and a = a(x) = (a1 (x), ... , an (x)) denotes the given initial data. 

After the distinguished work of Leray [8], the time decay problem is one 

of main interests in mathematical fluid mechanics. Masuda [9], Schonbek 

[14], Kajikiya and Miyakawa [6] and Wiegner [16], for instance, gave pio-
neering works on this direction. Nowadays, it is well known that the optimal 

decay rate for a weak solution is described as 

llu(t)ll2 :S C(l + t)―デ， t > 0, (1.1) 

for initial data a E£1 (股門 nL~(囮門 which satisfies JJRれ (1+ lxl)la(x)I dx < 
oo. Then Fujigaki-Miyakawa [4] clarified that the decay rate as in (1.1) 
actually describes decay rate of the nonlinear terms, deriving the asymptotic 
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expansion of the linear part and of the nonlinear part as follows 

n 

凰t½噂(1-¼)I Uj(t) +苔鱈）（・）！即 Ykaj(Y)dy 

n CX) 

+L恥(・,t) J J (u叫）(y,s)dyds =0 
£,k=l 

〇股n q 

for all j = 1, ... , n and for all 1さqさoo,where E心） = (4冠）ーn/2exp(旱）
and Fek,1(x, t) = a心 (x)如＋』00珈砂E8(x)ds. Once the principal terms 

is revealed, Miyakawa and Schonbek [12] revealed the necessary and suffi-

dent condition that the first order principal terms vanish as following: 

J Ykaj(y) dy = 0 for j, k = 1, ... ,n, 
股れ

(1.2) 

and there exists some constant c E股 suchthat 

「J(u叫）(y, s) dyds = c如
0 !Rn 

fork,£= 1, ... ,n. (1.3) 

From the above, the condition (1.3) seems to make difficulty to obtain a 

rapid decay since we need information of the (unknown) flow over whole 

space-time region. Therefore, for this difficulty, some group action on the 

flow plays an important role in verification of (1.3). Indeed, the first author 

introduced so-called cyclic symmetry of the flow, i.e., 

(a) Uj is odd in Xj and even in each other variables, 

(b) u1(x1,---,Xn) =四(xn,X1, ...'Xn-l) = ... =Un(四，．．．，咋，x1)-

With the aid of (a) and (b), the first author [1], Miyakawa [10, 11] derived 

the rapid decay with the rate which corresponds to the second order terms 

or to the third order terms in the asymptotic expansion of the flow. Later, 

the second author and Tsutsui [13] gave a generalization of [2], [10, 11] with 

weighted Hardy spaces. On the other hand, more specific group action was 

discussed by the first author [3]. However, the symmetry, like (a) and (b), 

seems to be somehow artificial. Moreover, it is natural question that any 

non symmetric flow has a chance to evolve the rapid-decay flow, cancelling 

the slow decay factors. 

The aim of this article is to enlarge the possibility of rapid decay without 

any symmetry. As is mentioned above, the essential difficulty is still the 
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verification of (1.3). In stead of the cyclic symmetry, for any initial state we 
try to control the flow by the external force. In other words, for any initial 

data which is small in a suitable sense, we find a associated external force 

and a corresponding solution of the Navier-Stokes equations. This approach 

seems to be natural and reasonable in not only mathematical analysis but 

also physics or engineering, since the flow is forced to be calm down by a 

artificial forcing term if initial state is given. 

Our essential idea is to construct a force▽ ・f so that 

lat v'・e(t-s)△ IPJ(s) ~ ktl Ftk,j(・, t) loo h股n(u叫）(y, s) dyds for large t > 0, 

(1.4) 
for a direct counteraction of the leading terms of nonlinear Duhamel term, 

where IP is so-called the Leray-Hopf, the Weyl-Helmholtz or the和 jita-Kato

projection on to solenoidal vectors. For the realization of (1.4), we introduce 
the following iteration as a computable procedure: 

t 

u(m>(t) = e心+1 ▽ . e(t-s)△ IP'jCm>(s) ds -it▽ ・e(t-s)△ IP'[u(m)⑭ u(m)]ds, 

(1.5) 

m = 1, 2, .... Here, the forcing tensor j(m) = (f炉） is given by j(o) = 0 

and 

心(x,t)~{ 心？―q¢(x,t), kfc£, 
(ckk -c5(m-l))の(x,t), k=£, 

for some function¢E C, 『（町x[0)) 
(m) 

oo where c = J J ( oo (m) (m) 
kl O 即％町）(y, s) dyds 

and c5(m-l) = c仰＋・・・＋塁.We note that since we are able to take ¢ 

compact supported in both space and time, in order to control of the flow, it 

is enough that the force is applied to finite time and bounded space region. 

In our scheme, we have a difficulty that we need to derive a bound C, 
independent of m, such that 

心=1=  1m恥n(uim)叫m))(y,s)dyds(::; fo00 llu(m)(s)ll~ds) < C, (1.6) 

since the size of f(m), i.e., one of c 
(m-1) 

determines the global existence kl 
of u(m) according to Fujita-Kato method. To begin with, we try to use 

time decay like (1.1) which is derived by the Fourier splitting technique. 

However, it is unable to be adopted since the constant as in (1.1) depends 
on the solution u itself. See, for instance, [14, 6, 16]. 
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Due to the above difficulty, we should develop a new approach and we 

should establish the time decay estimate like (1.1) with the constant C 

which depends only on the given data a, ¢and the dimension n. For this 

purpose, the weighted Hardy spaces is effective. Indeed, the second author 

and Tsutsui [13] introduced the weighted Hardy space to derive a higher 

order asymptotic expansion, since the weighted Hardy space enables us to 

deal with higher order weights and to obtain more rapid decay compared 

with the weighted Lebesgue spaces. With the aid of the weighted Hardy 

norm, we make a specific refinement of the Fujita-Kato iteration scheme 

which gives a bound as in (1.6) and yields the convergence our procedure as 

(1.5). 

2 Results 

Before stating results, we introduce the following notations and some func-

tion spaces. Let CfJ°(O) denote the set of all C00-functions (or vectors) 

with compact support in a connected set 0. Let C, 篇（町） denote the set of 

all C00-solenoidal vectors </> with compact support in町， i.e.,div</> = 0 

in町. L;(町） is the closure of C, 篇（町） with respect to the Lr-norm 

II・llr, 1 < r < 00. U(町） and wm,r(町） denote the usual (vector-valued) 

Lr-Lebesgue space and Lr-Sobolev space over恥叫 respectively.Moreover, 

ダ（町） denotes the set of all of the Schwartz functions. ダ＇（町） denotes 

the set of all tempered distributions. When X is a Banach space, II・llx 

denotes the norm on X. Moreover, C(I; X), BC(I; X) and U(I; X) denote 

the X-valued continuous and bounded continuous functions over the interval 

Jc股， andX-valued Lr functions, respectively. 

We introduce the weighted Hardy space H以町） with the homogeneous 

power weight w (x) = Ix I°'for a E罠 andfor O < pさoo.Let <p Eグ（町） with 

I即 <p(x)dx = l. Then the maximal function off is denoted by M』f](x)= 

supl<p入*f(x)Iwhere <p入(x)=入―n<p(x/入） for入>0. Then we define H名（囮~n)
入>0
as 

H~(罠n) := {f Eダ＇（旧 n);IIJIIH~< 00}, 

where 

IIJIIH~= IIMcp[f]IIL~= (/ IMcp[f](x)『lxl°'Pdx)½. 
飛れ

Here we note that L~(罠n) = {J E Lr,。c(囮:n);f Rn lf(x)IPlxl°'Pdxく 改J}and 

note that L~(町） denotes L00(町)• Furthermore, we note that in the case 
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1 < pく ooand -n/p < aく oo,H以町） = L~ 国） if and only if a < 
n(l -1/p). See also [13]. 

Theorem 2.1 (Fujigaki-Miyakawa [4]). Let a EL刊町） nL~ 国） and f E 

C[f(町 x[O,oo)). Supposeu E BC([O,oo); 勾（町）） is a global mild solution 

of (N-S). If J!Ftn lxlla(x)I dxく oo,then it holds that 

1 n n 
lim t2+ 2 
t→00 

- -(1-½) I巧(t)+ L(疇）（・） Yka1(y) dy 
k=l h即

n 00 

ーと Ftk,1(・,t) J Jル(y,s) dyds 
k,R=l 

O 即

n oo 

＋星凡，j,k(・,t) 1 h飛n(u西）(y, s) dyds q = 0 

for 1 :s; qさ00.

Remark 2.1. Though [4] dealt with only the case f = 0, the proof is essen-
tially same. The derivation of the leading order term for the Duhamel term 

off is just analogy of that for the nonlinear term. 

As an immediate consequence from Miyakawa and Schonbek [12], the 

condition associated with (1.3) is modified as follows: 

Corollary 2.2. Suppose a E L訳恨更） with Ji艮n(l+ lxl)la(x)I dxく oo,f E 

C炉（町 x(0, oo)) and u is a global mild solution of (N-S). Then it holds that 

for 1 :S: q :s; oo 

if and only if 

and 

1戸 (1--1 

lim t2 2 qlllu(t)llq = o 
t→OO 

J Yka(y) dy = 0 
飛れ

(2.1) 

「Jル(y,s) dyds -「J伍叫(y,s) dyds = c如 (2.2) 
0 JRn 0 股れ

for some c E股forall k,C = 1, ... ,n. 
Furthermore, if (2.l)and (2.2) does not hold then 

！戸(1--
liminft2 2 !)llu(t)llq > 0 
t→OO 

for 1 :S: q :S: oo. 
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Remark 2.2. we note that if 

100 i艮nf叫，s)dyds #「J紐 (y,s) dyds for some k and£, 
0 即

then the condition (2.2) does not hold, i.e., 

1戸 (1--
liminft2 2 !)llu(t)llq > 0, 
t→OO 

1~q~00. 

Hence, if the tensor F is not symmetry in the above sense, we never expect 
rapid time decay even though no matter fast F decays at spatial infinity and 
time infinity. 

Corollary 2.2 is just an analogy of [12], but enables us to control the flow 
by the external forces. Indeed, for a general initial data, we derive a rapid 

energy decay llu(t)ll2 = o(tデ） as t→ oo by a suitable external force. 

Theorem 2.3. Let 1 <'Y < 2n n+2・Then there exists 8 = 8(n, ,y) > 0 with the 

following property. If a E Hl (町） nL~(町） satisfies Ji股n(l+ lxl)la(x)I dx < 
oo, Ii即叩(x)dx = 0 for all k = 1, ... , n and 

max{ llalln, llall2, llallH'{}ごふ

then there exists f E C0 (即 x[O, oo)) and a solution u of (N-S) such that 

llu(t)ll2 = o(tデ） as t→ 00. 
Remark 2.3. (i) Since f has a compact suppo廿 inthe time interval, after 

the effect of the force vanishes, the flow is governed by 

t 

u(t) = e叫 (to)-j▽ . e(t-s)△ IP'(u⑳ u)(s) ds, t > t。•
to 

So we have two possibilities. 

The first case is that the first order moment of u(t) is preserved, i.e., 

に(1+ lxl)lu(x, t)I dxく oofort~to. In this case, due to the {12}, the 

condition (1.3) implies 

J (u叫）(x, t) dx = 0 fork -/-£, t~to, 
股n

which is discussed in /2] and is realized under the cyclic symmetry, see {11}. 
Another case is that the moment of u(t) is not preserved. In this case, 

the linear part e叫 (to)and the nonlinear part瓜▽e(t-s)△ IP'(uRu) ds make 

a nontrivial interaction and slow decay factors are cancelled. 

(ii) The range of the support off is determined only by 8 and the initial 

data a. 
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Since II・ll2 and II・I H'are not scale invariant norms for (N-S), the scale 
argument implies the following corollary. 

Corollary 2.4. Let 1 <'Y < 2n n+2 and 8 = 8(n, 1) > 0 be the same as in 

Theorem 2.3. If a E H'{ (賊り） nL以股門 satisfiesJJE.n(l + lxl)la(x)I dx < oo, 
JJE.n叫 (x)dx = 0 for all k = l, ... , n and 

llallnく 8,

then the conclusion of Theorem 2. 3 holds. 

3 Preliminaries 

The following is well-known LP-LP estimate, whose constants play an im-

portant role in our approach. 

Proposition 3.1 ([15, Corollary l.1][13, Lemma 3.2]). Let 1 ::; p::; qく 00.

(i) Then th ere exists a constant C qp > 0 such that 

I let△ allq ::; Cqpt―号(½ 一 ½l llallp, t > 0, (3.1) 
1 1 1 

II▽ et△ all < C t —~(---)--q _ qp P q 2 llallp, t > 0. (3.2) 

for a function, velocity vector or tensor a E L疇）．
(ii) For_!! < f3 < 

q 
_ a < oo there exists a constant C切訊>0 such that 

I let△ allHqさca,f3t
_!! .!_.!)一三

f3 
q,p 2 (P q 2 llallH~, t > 0. 

In this article, for 1 < rく oo,the projection lP': Lr (政門→ L~ 国）
satisfies lllP'ullr = Arllullr for all u Eじ（町） with some constant Ar > 0. 

4 Sketch of proof 

Sequentially regenerating forces j(m), m = 1, 2, ... , we construct an associ-
ated solution u(m) of the Navier-Stokes equations: 

t 
u(m) = e叫+la▽ • e(t-s)△ IP'j(m) (s) ds -lat▽ . e(t-s)△ IP'[u(m)Ru(m)](s) ds, 

(N-Sm) 
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form= 1, 2, .... Here, denoting u(o) is a Navier-Stokes flow with f三 0,we 

put form= 1, 2, ... , 

(m-1) 
/m) ck£cp(x, t) 絨 (x,,)~L:;:―1) _ c(m-J)砂(x,t) 

00 

c炉=J J u~m)亭 dyds,
0 配

C(m) = C炉＋・・・+c仰．

So we construct each solution u(m)(t) of (N-Sm) by Fujita-Kato method. 

We put form= 1, 2, ... , 

f
,
f
,
 

＃―― 

k

k

 
k,.£= 1, ... ,n, 

K仰＝。翌~tら―券 Ilet△ allr +。翌00仕―告 l▽. e(t-s)△ lP'jCm)(s) ds 

=I(炉＋。翌~t½噂 j▽ • e(t-s)△ lP'jCml(s) ds . 

゜
Then if K6m) is suitably small, we obtain a solution u(m) of (N-Sm) with 

uniform bounds. 

On the other hand the essential idea is that le 
(0) (0) 
k£I < 1 and lckk―c(o)I < 1 

fork, C = 1 
・ (m-1) (m-1) 

, ... , n. Moreover, assummg lck£I < 1 and lckk ―c(m-1)1 < 
1 for k, C = 1, ... , n, we investigate a suitable smallness for a and¢yields 

le瓢<1 and I心-で(m)I < 1 for k, C = 1, ... , n, inductively for m = 

1, 2, .... 

In order to observe this, we note that 

ft O v'. e(t-s)△ lP'jCm)(s) ds r :::=; CrnAn la (t-s) ― 1+恥—½ds。翌~s½IIJCm)(s)lln

=t―i噂 Crn心B(n 1 ~'砂 sup s½IIJCm)(s)IIか
O<s<oo 

and by the assumption le位―l)I< 1 and le~ 悶―1)ーで(m-l)I< 1 for k,C = 

1, ... , n, we see that 

n 

lllm¥s)llpさLlci7―l)lll</>(s)llp+L lci7J: ―l)_c(m-l)lll</>(s)IIP::; 炉11</>(s)lip, 

k=f-£k=l  

for 1 ::; p < oo. So we obtain that 

Kt) ::; K6o) + n2凸 sup s叶11</>(s)lln-
O<s<oo 
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Hence, if 

Kt) :SJ(炉+n厄 sup s½11</>(s)lln«1, (4.1) 
O<s<oo 

then we obtain a solution u(m) of (N-Sm)-Since f E C0(町 x[O, oo)), with 
the aid of local solvability and uniqueness for (N-Sm), u(m) is actually a 

strong solution of the Navier-Stokes equations for j(m). Moreover, by the 

itertion in BC([O, oo); び（町）） we derive le 
(m) 
kC I < 1 under suitable smallness 

on initial data a. 

Finally, we consider the convergence of u(m) in BC([O, oo); び（町）） as 

m→ oo. We note that 

u(m+ll(t) -u(ml(t) = ft▽ . e(t-s)△ !P'[j(m+l) -j(m)] (s) ds 

+OJ'V. el<-s)△ ll'[(ul=+IJ _ ul=I) 0 ul=+II] (s) ds 

+ ]'▽ • el<-•J • II'[ ulm) 0 (ulm+l) -ul"'I)] (s) ds 

゜＝：エ｛叫t)+苔叫t)+I; 仰(t).

Then we have 

III2(t)ll2さ;C2Kt+l) sup llu(m+l)(s) -uCml(s)ll2, 
O<s<oo 

By the same manner, we have that 

Next, 

IIIt¥t)ll2 <::: C2K6m) sup llu(m+l)(s) -u(m)(s)ll2-

we estimate I 
(m) 
1 

O<s<oo 

as 

IIIim)(t)ll2 :'.SC sup s½ 一告IIJCm+ll(s)-JCm) (s) lip• 
O<s<oo 

Here, we see that 

II lm+l) (S)一lml(s)IIP:SどC3lc炉ーcir;'―l)I 11¢(s)lln 

K紅

n 

+Le叶 (c幻—心）― (c~悶―1)-でi悶―l))l11¢(s)lln
k=l 
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Moreover, we obtain that 

Lie炉ー c~7―l)I :S: C4 sup llu(ml(s) -u(m-l)(s)ll2, 

kf-£ 
O<s<oo 

and that 

n 

図(c幻—心）― (c~';:―1) -で~r;:―l))I :s; C4 sup llu(m)(s) -u(m-l)(s)ll2 
O<s<oo 

k=l 

(m) 1 
Therefore we obtain that II石 (t)ll2::::;2C4 sup s2―品11</>(s)lln sup llu(ml(s)-

〇<s<oo O<s<oo 

u(m-1l(s)ll2-Hence if2C2K6m) < 1/4, 2C2K6m+l) < 1/4 and C4 sup s½ ー森IIの(s)llnく

O<s<oo 

1/4 then 

sup llu(m+ll(t) -u(ml(t)ll2::::; ! sup llu(ml(s) -u(m-l)(s)ll2 
O<t<oo 4 O<s<oo 

Hence we see that 

1 
+ -sup llu 

2 O<s<oo 
(m+l) (s) -u(m) (s) 112-

1 
sup llu(m+ll(t) -u(ml(t)ll2 :S一 sup llu(ml(s) -u(m-l)(s)ll2, 

O<t<oo 2。<s<oo
form= 1, 2, .... This implies u(m) converges to some v in BC([O, oo); び（町））

asm→ oo. By the same manner, we are able to show u(m) converges to v 

in BC([O, oo); じ（町）） asm→ 00. 
As a conclusion, the limit functions are desired the solution and the 

external force. 
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