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Numerical Analysis on the Long-Time 
Behavior of Moving Body in a Rarefied Gas 

Tetsuro Tsu JI* 

Abstract 

We consider the unsteady motion of an infinite plate under an external elastic force 
acting on the plate in its perpendicular direction. The plate is immersed in a rarefied 
gas, and thus the plate motion is coupled with the surrounding gas behavior. We 
perturb the plate from its equilibrium position and release it at an initial time. Sub-
sequently, the plate starts an oscillating motion around the equilibrium position, but 
the displacement from the equilibrium decays as time goes on because of the drag force 
exerted by the surrounding gas. We numerically analyze the long-time behavior of the 
plate using the Bhatnagar-Gross-Krook (BGK) model of the Boltzmann equation as 
the basic equation for the rarefied gas. It is shown that the displacement from the 
equilibrium decays as time goes on with a rate r312, where tis a time variable. 

1 Introduction 

Let us consider the translational rectilinear motion of a moving body along the x1 -axis 

immersed in an infinite expanse of a rarefied gas. The x1 -components of position and velocity 

of the body are denoted by X(t) and V(t), respectively, with a time variable t. The gas 

behavior is described by the molecular velocity distribution function f(x, e, t), where x = 
(x1, X2, X砂isthe Cartesian coordinate system and e = (6, 6, 6) is the molecular velocity. 
The unsteady motion of the body is initiated by the action of an external elastic force 

F = Fe1 二—Ke1X(t) in the x-direction with a positive parameter Kel• The equation of 

motion is then written as 

dX dV 
- = V(t), M-= F-G[f], (X(O) = X。,V(O) = Vo), (1) 
dt dt 

where M is the mass of the body, X。andVo are initial displacement and velocity, respectively, 
and G[f] is the drag force exerted by the surrounding gas; note that G[f] is dependent on 
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the g邸 behavior.The velocity distribution function is determined by a kinetic equation and 

its initial and boundary conditions: 

of of 1 
面+~·面=kQ[f], 

f(x, ~'t) = f,。fort = 0, 

f(x, ~, t) = fw for x E S(X(t)), ~E Z(V(t)). 

(2a) 

(2b) 

(2c) 

In Eq. (2), k is the Knudsen number that indicates the degree of gas rarefaction. Q[f] is the 
collision term between gas molecules, Jo is an initial distribution, and f w is the boundary 
condition; S(X(t)) is the surface of the body and Z(V(t)) is the molecular velocity for reflected 
molecules. This is basically a coupled problem between the moving body (X(t), V(t)) and 

the gas behavior f(x, ~'t), that is, we have to deal with the moving boundary problem 
for a rarefied g邸 [19].The motion decays邸 timegoes on due to the drag force, and we 
investigate the rate of decay for a sufficiently large time. In this paper, we review the results 
of Refs. [19, 20], where the body is an infinite plate on which the external elastic force 
acts in its perpendicular direction; the collision term Q[f] is described by the Bhatnagar-
Gross-Krook (BGK) model of the Boltzmann equation [3, 22]. Before going in detail of the 
analysis, the overview of moving boundary problems for the rarefied gas dynamics is given 
in the introduction as follows. 

First, let us consider the case with a simplified setting. If the drag is modelled邸 G=
a。V(t)with a constant a0(> 0), such as the case of Stokes drag for a steady motion of a 
sphere, the decay rate is exponential with time, that is, IX(t)I~C1 exp(-C2t) holds for 
large t. In the present text, C; (i = 1, 2, • • •) are some positive constants. On the contrary, if 
we include in G the Basset term that accounts for the memory of the motion in the past, the 

decay rate becomes algebraic, that is, IX(t)I~C• for a spherical body in a Stokes fluid [8], 
where 1 = 3/2 for Vo = 0 and 1 = 1/2 for怜ヂ 0.Therefore, the memory effect is necessary 
to obtain a correct time-asymptotic behavior. Now, let us go back to our problem (1) and (2). 
A highly rarefied g邸 characterizedby k→ oo is called a free-molecular gas. The following 
power law decay is obtained for a large time in Refs. [6, 18] if the body is immersed in the 
free-molecular g邸：

IX(t)I~C4Cn, for t≫I, (3) 

where n is an integer. Denoting d = 1, 2, and 3 by the spatial dimension of the problem, it 
was mathematically proven in Ref. [6] that n = 2 + d for the specular reflection boundary 
condition under some smallness assumption on X。andV0. On the contrary, it was numerically 

demonstrated that n = 1 + d for the diffuse reflection boundary condition [17, 18]. The decay 
rate in the case of the free-molecular gas depends on the boundary condition and the spatial 

dimension, and is different from the case of Stokes fluids [8]. This is attributed to the memory 
effect particular to the free-molecular gas: recollisions [5]. Let us focus on a gas molecule 
that hits the moving body at time t = t1. The molecule is re且cctedby the body and travels 
in the gas domain for t > t1 with a constant velocity, which is determined by a boundary 
condition that depends on the velocity of the body V(t1). However, the velocity of the body 
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at subsequent times, V(t), is time-dependent, and thus the body may catch up the reflected 

molecule at a later time t = t2(> t1). Such a molecule makes recollision and exerts the 

memory effect, since it transfers the information in the past time t1 to the future time t2 via 

the collision. 

The power law decay (3) is caused by recollision, thereby the manner of decay is expected 
to change when the effect ofrecollision is eliminated by inter-molecular collisions, i.e., k < oo. 
The case of k = 0(1) is numerically investigated in Ref. [20] based on the BGK model of the 

Boltzmann equation. Due to the computational difficulty, the problem was restricted to the 

case of d = l, i.e., the body is an infinitely wide plate perpendicular to the xi-direction. The 
decay rate for a large time in this case is 

IX(t)I,:::: CsC312, for t≫1, (4) 

which is qualitatively same as the case of Stokes恥 id[8]. The mathematical proof for Eq. (4) 
has not been obtained yet. Both the mathematical and numerical results are absent for the 

case of the full Boltzmann equation. 

Finally, we close this section by introducing some related researches. For more detail, 

readers are referred to a text book [4]. The case of a constant external force, i.e., F = const. 
was first studied in Ref. [5] using the specular reflection boundary condition. The geometry 
of the body was a d-dimensional disk perpendicular to the external force. In this case, the 

velocity V(t) approaches a terminal velocity Voo with a rate IV(t) -Vool~c6rm, with 
m = 2 + d. The result was later improved to a general convex body in Ref. [7] and was 

extended to the case of diffuse reflection boundary condition in Ref. [1], where the power 

was m = 1 + d. The numerical study [2] complemented Ref. [1] by eliminating a smallness 

assumption on IV 00 -V01-More recently, the case with a more generalized boundary condition 

is investigated in Ref. [10] that obtained m = p + 3 with p E (0, 2] for d = 3. The case of a 

specific class of concave body was investigated mathematically and numerically in Refs. [16] 

and [21], respectively: the former used the specular reflection boundary condition and the 

latter the diffuse reflection boundary condition. The rate was independent from d and m = 3 

[16] and m = 2 [21] for the concave body; the slower rate was attributed to the increase 

of recolliding molecules trapped at the concave part. Note that the case of an elastic body 

was also treated in Ref. [9] for F = 0. It was shown in Ref. [14] that the presence of a 

static infinite wall placed behind the moving body changed the rate to m = d -1 (d~2). 
When the terminal velocity satisfies 0さV00< V0, the sign of V(t) -V00 changes during the 

time development [6]. The condition for this velocity reversal to happen was investigated 

in Ref. [12]. Above references stated in this paragraph treat the free-molecular gas, where 

the molecular path is a straight line. The effect of the loss of the memory on the long-

time behavior was included by introducing background obstacles that interact with the gas 

molecules [18, 15]. This was the first step to understand the role of inter-molecular collision 
in the memory effect. The case where the gas molecules are subject to an external force is 

investigated in Ref. [11]. 



59

2 Formulation 

We formulate the problem using non-dimensional variables. For more detailed description, 
the readers are referred to Ref. [20]. 

Let us consider an infinite plate, whose position and velocity are denoted as x1 = xw(t) E 

賊 and四 (t)E 沢， respectively,where t ?: 0 is a time variable. The plate is immersed 
in an infinite expanse of a rarefied gas. An external force -xw(t) acts on the plate in its 
perpendicular direction, which we denote by x1 E JR. The equation of motion of the plate is 
thus written as 

dxw dvw G 

dt 
=V切 9

dt 
= -Xw —— (xw(O) =誓，加(0)= Vwo), (5) 

M' 

where G is the drag force exerted by the surrounding gas, M the non-dimensional mass of 
the plate, and Xwo and Vwo are the initial position and velocity, respectively. The drag force 
G acting on the plate is given as 

G=G□ c_, 伍＝士j[く1-如 (t)]汀(xw(t)士0,(, t)d(, (6) 
JR3 

where the velocity distribution function of gas molecules is denoted by J(xいく，t)ミ0with 
(E配 themolecular velocity. Note that (1 is the velocity component in the x1 direction. 

The basic equation for the rarefied gas is the BGK equation. For the present spatially 
one-dimensional setting, we can eliminate the velocity component (2 and (3 from the BGK 
equation by taking the marginal of f [13]: 

g(x1, (1, t) = 1即 J(x1,(,t)心d(3, h(x1, (1, t) = jは+(i)J(x1, (, t)d(心 (7)
JR2 

Then, the BGK equation is written as 

a9 a9 1 ah ah 1 
戸 1ax1 = Kp(M -g), 玩パ1ax1= Kp(TM -g), 

M=  げ）1/2 
p exp (— ((1 -u1)2 

p~I. gd(,, pu, ~!. (:d(/>pT~I.恥—疇g+ h]d(,, 

(8a) 

(8b) 

(8c) 

where M is the local Maxwellian distribution, p the density, 附 theflow velocity in the x1 
direction, T the temperature, and K = (喜/2)Knthe parameter of the order of Knudsen 
number Kn. Kn is the degree of gas rarefaction, i.e., the gas is rarefied when Kn is large. To 
be more precise, the intermolecular collision may be negligible for large Kn. In this paper, 

we are concerned with the case of K~1, and the readers are referred to Refs. [17, 18] for 
the case of K→ 00. 

An initial condition to the system (8) is the global Maxwellian: 

g(x1, (1, 0) = h(x1, (1, 0) = E((1), (E((1) = 1r―1/2 exp(-(i)). (9) 
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The boundary conditions on the plate are the diffuse reflection boundary condition. Since 
the plate motion is determined by Eq. (5), the boundary condition depends on xw(t) and 

□ t): 
g(x1, (1, 0) =びw土E((1-Vw(t)), for (1 -Vw(t)~0, X1 = Xw(t)士0, (10a) 

h(x1,(1,0) =芦E((1一四(t)), for (1 -Vw(t)~0, X1 =知(t)士0, (10b) 

叫＝干2✓-irJ [(1一如(t)]g(xw(t)士0ふ，t)d(1. (10c) 
炉 Vw(t)'§:Q

Diffuse reflection (10) indicates that the gas molecules impinging on the plate is reflected 
according to the M邸 welliandistribution with the velocity vw(t) and the temperature unity. 
Note that the temperature is normalized by the temperature of the boundary. The density of 

this M邸 wellian,i.e., CJw士， isdetermined in such a way that there is no net mass flux across 
the plate. 

In this paper, we will present the numerical results for the coupled system (5)-(10). The 

detail of the numerical scheme is omitted here, and the readers are referred to Refs. [19, 20]. 
We note that the moving boundary problems in rarefied gas dynamics have an inherent 
difficulty: the propagation of discontinuity in the velocity distribution function. To resolve 
this problem, we developed the scheme based on the method of characteristics in Ref. [19] 

that captured accurately the essential features of the velocity distribution function. This 
method is called full Lagrangian scheme in this paper. The full Lagrangian scheme was more 
accurate than the other scheme such as a finite-difference scheme, but was computationally 
expensive. Therefore, we used the finite-difference scheme for the long-time computation up 
to t = 104 in Ref. [20]. It should be noted that the full Lagrangian scheme has validated the 
results of finite-difference scheme up to t = 0(10り， wherethe discontinuities were confirmed 
to be small enough. 

3 Results and discussion 

3.1 Velocity distribution function 

Before showing the result of decay rate, an important feature of the moving boundary problem 
is introduced. In this section, we present the result for the case with M → oo, that is, the 
mass of the plate is so large that the oscillation never decays. In other words, the plate is 

forced to oscillate with the amplitude Xwo, where Vwo = 0 throughout the paper. 
The velocity distribution function g is shown in Fig. 1 at x1 = xw(t) + 0.2243 (close to 

the plate) and at x1 = 22.3111 (far from the plate), and at t = l67r [19]. The parameters are 
set to (a) K = oo, (b) K = 10, and (c) K = 1. The solid curves and symbols are the results 
obtained by the full Lagrangian method and the finite-difference method, respectively. 

For the results obtained by the full Lagrangian scheme, some discontinuities are observed 
in Fig. 1, e.g., at (1~0.65 in the upper figures. The origin of the discontinuity comes from 
the diffuse reflection boundary condition (10). Let us focus on the positive side x1 = xw(t)+O. 
The value of velocity distribution function g (or h) at (1 = vw(t) + 0 is determined by the 
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Maxwellian whereas that at (1 =加(t)-0 is computed from the BGK equation; these values 
are not same in general and the discontinuity is produced. Since the boundary is moving in 
time-dependent manner, the created discontinuity may be left in the gas domain. Moreover, 
there is a localized structure near (1~0 in the upper figures of panels (a) and (b). These 
are the multiple discontinuities created in the past times that are left near the boundary. 
Formation of discontinuities and localization are inherent in the moving boundary problem 
of a rarefied gas, as closely discussed in Ref. [19], especially when K is not small. It is clear 
from the figure that the finite-difference scheme fails to capture the correct shape of the 
velocity distribution function near the discontinuities. 

It is seen that the magnitude of the discontinuities, gd, decreases as K decreases. In 
Ref. [19], it is shown formally for the BGK equation that gd decreases as 

釦 =A。exp(ーふk―1(t-s)), (11) 

where A。isthe value of 9d at the birth time s(< t) of the discontinuity and A1 > 0 is a 
variable related with the density of gas. In the present setting, we can assume that A1 = 0(1). 
Therefore, 9ct decays exponentially as time goes on for finite K. Since the displacement xw(t) 
shrinks for large t in the case of finite M, which we treat in Sec. 3.2, the value of A。is
expected to decrease as t increases. This fact together with the exponential decay of 9ct 
suggests that the finite-difference scheme may work well with the case of finite M for large 
t, where the magnitude of discontinuities are expected to be small. With this consideration 
in mind, the decay of the plate motion will be discussed in the next section. 

3.2 Decay of the oscillating plate 

Figure 2 shows the displacement lxw(t)I versus time tin the double logarithmic scale for K = 1 

and M = 2; (a) Xwo = 1, (b) Xwo = 0.1, and (c) Xwo = 0.01 [19]. The results obtained by 
both full Lagrangian and finite-difference schemes are plotted in the figure. For all cases, the 
displacement lxw(t)I decreases as time goes on, undergoing a couple of oscillations around the 
equilibrium position. Remarkably, the behavior of the displacement lxw(t)I agrees very well 
between both full Lagrangian and finite-difference schemes. Although the finite-difference 
scheme fails to capture the correct shape of velocity distribution function as discussed in 
Fig. 1, the error on the drag force G seems to be negligible for the present parameter set. 
It should be noted that for the case of K→ oo, the finite-difference scheme resulted in the 
wrong decay rate, as demonstrated in Ref. [19], due to the presence of discontinuity, which 
never be dampened. 

The computation is carried out up tot = tmax = 200 in Fig. 2. The limitation of tmax = 200 
was due to the expensive computational cost of the full Lagrangian scheme. Nonetheless, it 
is seen from Figs. 2(b) and (c) that the rate of decay is proportional to C3l2. To obtain more 

convincing evidence for the decay rate, the computation with much longer time is necessary. 
Figure 3 shows the results of longer time computation up to t = tm竺 =104 obtained 

by the finite-difference method [20], which is computationally less expensive compared with 
the full Lagrangian scheme. The parameters are set to Xwo = 0.1 and K = 0.4, 1, 2, 5; (a) 
M = 2, (b) M = 1, and (c) M = 0.5. Panels (a)-(c) show the displacement lxw(t)I and 
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X)~ や (1)+0.2243 X[~Xw(t) + 0.2243 x, ~ 和 (t)+ 0.2243 

0゚.5 

゜
0゚.5 

-1 0 

ふ

(a) K = oo 

X[ = Xw(t) + 22.3111 

2 -2 -1 0 

ふ

(b) K = 10 

Xt = Xw(t) + 22.311 J 

2 -2 -1 0 1 

ふ

(c) K = 1 

2
 

Figure 1: The velocity distribution function g at t = l61r for Xwo = 1 and M = oo. (a) 
K = oo, (b) K = 10, and (c) K = 1. The upper figures show the results at the position 
x1 = xw(t) + 0.2243, while the lower figures those at x1 = xw(t) + 22.3111. The results 
obtained by the finite-difference (circle) are shown together with those by the full Lagrangian 
method (solid line). This figure is reprented from Ref. [19] under the permission of Elsevier. 

(d)―(f) the corresponding slopes a(xw)三 dlog10xw(t)/dlog10 t, namely, a=  -n if the rate 
is described as xw(t)~Gen. The long-time computation indicates that the rate of decay is 
described by Eq. (4), i.e., 

lxw(t)I~C5t—3/2 for t≫1. (12) 

4 Conclusion 

In this paper, we reviewed the numerical analysis on the long-time behavior of a moving plate 
in a rarefied gas under the action of an external elastic force [19, 20]. The Knudsen number 
was set to the order unity, that is, the collisional gas was considered. Note that the earlier 
works were mainly concerned with the case of collisionless gas characterized by an infinite 
Knudsen number. The decay rate of the motion of the plate due to the drag force was shown 
to be proportional to r312 at large time t = 104. Using two types of numerical methods, i.e., 

the full Lagrangian method and the finite-difference method, the special care was taken to 
discuss thc cffcct of discontinuitics in thc velocity distribution function, which arc inhcrcnt 
in the moving boundary problems in rarefied gas dynamics. 
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100 
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(a) Xwo = l 

100 

lxw(t)I 

Full Lagrangian 
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(b) Xw0 = 0.1 
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lxw(t)I 

Full Lagrangian 

-----Finite-difference 

t 

(c) Xwo = 0.01 

Figure 2: The displacement lxw(t) I versus tin double logarithmic scale for K = 1. (a) Xwo = l, 
(b) Xwo = 0.1, and (c) Xwo = 0.01. The solid line indicates the results obtained by the full 
Lagrangian scheme and the bold dashed line indicates those by the finite-difference scheme. 
This figure is reprent from Ref. [19] under the permission of Elsevier, where a modification 
is made for the consistent notation. 
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