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1 Introduction 

This paper is concerned with the large time asymptotic behavior of the global solutions 
to the initial value problem for the following system: 

切＋四=0, Vt十囮=f(u) -v, x E IR, t > 0, 

u(x, 0) = u0(x), v(x, 0) = v0(x), x E恥
(1.1) 

where f: 艮→ 艮isa given smooth function. This system is a typical example of hyper-
bolic system of conservation laws with relaxation called Jin-Xin model, which describes 
many physical phenomena such as non-equilibrium gas dynamics, magnetohydrodynam-
ics, viscoelasticity and flood flow with friction (see e.g. [11, 22]). 
If we eliminate v from (1.1), we obtain the following damped wave equation with a 
nonlinear convection term: 

血—駈＋切 +(f(u))x=O, XE恥 t> 0, 

u(x, 0) = u0(x), 附(x,0) =附(x),XE恥
(1.2) 

where the initial data u1(x) = -8xv0(x). In this paper, we consider (1.2) with the flux 
function f(u)三 au十セu2+戸， wherelal < 1, b -=/-0 and c E艮 Inaddition, for the 

2 

initial data, we assume that 

ヨa>l, ヨC> 0 s.t. lua(x)I ::::; C(l + lxlt°', x E恥

ヨ(3> l, ヨC> 0 s.t. lu心）1さC(l+ lxl)-f3, x E図
(1.3) 

The purpose of this study is to obtain an asymptotic profile of the solution u(x, t) and to 
examine the optimality of its asymptotic rate to the asymptotic function. 

First of all, let us recall the known results about the asymptotic behavior of the 
solutions to (1.2). Orive and Zuazua [20] studied the global existence and the asymptotic 
behavior of the solutions to (1.2) with a = 0 when u。EH1(股） nじ（股） and附 E
び（民） nL1(股）. In [21], Ueda and Kawashima generalized the results in [20] to the case 
f(u) satisfies the so called sub-characteristic condition IJ'(O)I = lal < 1. In addition, 

This paper is a summary of the original paper [5] by the author. 
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they constructed the solutions to (1.2), provided the initial data u0 E W1•P(股） nL霞）
and u1 E LP(罠） n L1(IR) for 1 :Sp :S oo. Moreover, they studied the detailed asymptotic 
behavior of the solution for lal < 1. To discuss the asymptotic behavior, we apply the 
Chapman-Enskog expansion (cf. [1, 17]) to (1.1) and derive a viscous conservation law 

叫+(f(w))x = (μ(w)w山 (1.4) 

as the second order approximation of the expansion, whereμ(w) = 1 -(f'(w))2. Here, 
we note that the sub-characteristic condition lf'(w)I < 1 implies the parabolicity of (1.4). 
Therefore, one can expect that the solution to (1.2) is approximated by the solution to 

(1.4) or its simpler version (Burgers equation): 

叫+(aw +~w2) =μw匹 9
X 

(1.5) 

whereμ= l -a叫Actually,under the additional condition u0, u1 E Lt(政）， itwas shown 
in [21] that the solution of (1.2) converges to the nonlinear diffusion wave which is a 
modification of the self-similar solution of the Burgers equation (1.5) and is defined by 

x(x, t)三
1 x -a(l + t) v'f+tX* (v'f+t), X E股， t> 0, (1.6) 

where 

bM 

叫）＝
而 (e加ー l)e叶
― 了 y'ii+(e窮 -1) Jおう四e-Y2dy'M 三J股(uo(x)+妬(x))dx,μ 三 1-a乞(1.7) 

More precisely, if Uo E w1,P(民） nLt(戦），妬 EL嘔） n Lt(股） and lluollw1,P + lluollL'+ 
llu1 IILP + II町 IIぃissufficiently small, then, for any c > 0, we have 

II 的 (u(•,t) -x(・, t))IILP:::; C(l + t) ― 1+心ー ½+e, t?: 0, l = 0, 1. (1.8) 

Here the weighted Lebesgue space Lt (政） is defined by 

虞）三{1EL囀）， IIJIILl三1IJ(x)l(l + lxl)dx < oo} 
Also, by the Hopf-Cole transformation (cf. [2, 8]), we can see that x(x, t) satisfies the 
following Burgers equation and the conservation law: 

Xt + (ax+~x2) x =μx立,1 x(x, t)dx = M (1.9) 

Moreover, the optimality of the asymptotic rate to the nonlinear diffusion wave given in 
(1.8) was obtained by Kato and Ueda [14] by constructing the second邸 ymptoticprofile of 
the solution which is the leading term of'U-X・Indeed, if u0 E ws,p(股）nw2,1(政）nLf(股），
U1 E ws-l,p(戦） n w1,1(股） n Lf(股） for s ?: 2, 1 :::'.: p :::'.: oo, and lluollw紐+lluollw2,1 + 
llu1llws-1,p + llu1llw1,1 is sufficiently small, then we have 

|忙ル (u(•,t) -x(・, t) -V(・, t))IIぃ：：：：： C(l + t) ― 1+ふー½, t ?: 1 (1.10) 
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for 0さlさs-2, where 

V(x, t) 三ー叫v.(x ―~t))(1 +t)―1 log(l + t), (1.11) 

and 

l d 2 X 

V*(x) 三国五仇(x)e士），叫x) 三 exp(~loo 叫）dy), 
d三J仇(y))国 (y))3dy, r;, 三竺＋こ
JR 4μ3!. 
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Furthermore, in view of the second asymptotic profile, from (1.10), the triangle inequality 
and (1.11), one can obtain the following improved optimal decay estimate: 

II功(u(・,t) -x(・, t))IILP = (C + o(l))(l + t)-1十年一½log(l + t), 0 :<:::: lさs-2 (1.14) 

as t→ oo, where C三 l"'dlll8;V.IILP・Therefore,we see that the solution u(x,t) of (1.2) 
tends to the nonlinear diffusion wave x(x, t) at the rate oft 

1+ 1 
―写logtin LP if M -=JO and 

代ヂ 0,i.e. we cannot take c = 0 in the estimate (1.8). The similar results for (1.8) and 
(1.10) were obtained for Burgers type equations such as generalized Burgers equation, 
KdV-Burgers equation and BBM-Burgers equation (cf. [3, 6, 7, 12, 13, 18]). 
The above results [21, 14] are corresponding to the case where the decay rate of the 
initial data u。and附 arerapid because u。墨1E Lt(股） are realized when a, (3 > 2 in (1.3). 
However for (1.2) in the case of 1 < a ::; 2 or 1 < (3 ::; 2 in (1.3), it is not known that the 
optimal asymptotic rate to the nonlinear diffusion wave, up to the author's knowledge. 
On the other hand, it was studied that the asymptotic profile for the solution to the 
damped wave equation with power type nonlinearity for slowly decaying data. Actually, 

Narazaki and Nishihara [19] studied the following initial value problem when the initial 
data are not in L1: 

叫— Uxx +山=lulP-1u, x E JR, t > 0, 

u(x, 0) = u0(x), 叫x,O)=附(x),XE艮
(1.15) 

They assumed that the initial data satisfy the condition (1.3) with a = (3 =: k and 
0 < k < l and showed that if p > l + 2/k (supercritical case) and the initial data 
uo EB囚良）， U1EB゚，k(民） are small, then the asymptotic profile is given by 

叫）三 ckj 1 e—~(1 + IYltkdy, 
R亭

provided that the data satisfy lim国→00(1 + lxl)k(u。+u1)(x) = ck. Here, we set 

Bm,k三 {fE Cm(恨）；(1 + I 叫）り a~fl E£00(民)(0::; l::; m)}. 

More precisely, they proved 

(1 +t)k/2, 0 < k < 1, 
尼叫t)llu(・,t) -'11(・, t)IIL= = 0, ak(t) = {麟， k = 1. 

(1.16) 

(1.17) 
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Moreover in [19], the damped wave equation (1.15) in two and three space dimensional 

cases were also studied. For the related results concerning (1.15), we also refer to [9, 10]. 
However, as we mentioned in the above, the asymptotic profile of the solution to (1.2) 
with slowly decaying data is not well known even if the data are in L1. For this reason, 
we would like to analyze the asymptotic behavior of the solution to (1.2) in the case of 

1 < a ::; 2 or 1 < /3 ::; 2 in (1.3). 

Now, we state our first main result which generalizes the result given in [21]: 

Theorem 1.1. Assume the condition (1.3) holds with 1 < min{ a, /3} :::; 2. Let s be 
a positive integer and 1さp:::; 00. Suppose that Uo E ws,p(良），附 E ws-l,p(賊） and 
lluollws,v + lluollL1 + llu1llws-1,v + llu1IIL1 is sufficiently small. Then (1.2) has a unique 
global solution u(x, t) with 

u E { n~=。び([O,oo); ws-k,P) n C([O, oo); Lり， 1:::;p < oo, 

nいwk,00(0,oo; ws-k,oo) n C([O, oo); じ）， p=oo, 

whereび=rnin{2, s }. Moreover, for any s > 0, the estimate 

_ min{c.,(J} +_!_ 
llu(・, t) _ x(・, t) IILq ::; Cf 1 + t) 2 2q, t~0, 1 < min{ a, (3} < 2, 

(1 + t)―1+命+0, t~0, rnin{a,(3} = 2 

holds for any q with l ::; q ::; oo, and the estimate 

(1.18) 

_ m;n{ a,{3} + _l_ _ k+l 

118況(u(-,t)-x(•,t))ll£P::;cr1+t) 2 2P 2 ，t:::=:o, l<min{a,(3}<2, 
(1 + t) -l+_l_-坦土十e2p 2 t::::: ，゚ mm{a,(3}= 2 

(1.19) 

holds for 0さk::; 2 and l :::=: w゚ith0さ： k + l::; s, where x(x, t) is defined by (1.6). 

Furthermore, we can show that the above asymptotic rate given in (1.18) is optimal 
with respect to the time decaying order in the L00 sense by constructing the second 

asymptotic profile for the solution to (1.2). Indeed, we have the following result: 

Theorem 1.2. Assume the condition (1.3) holds with l < min{ a, (3}さ2.Suppose that 

Uo E H2(IR) n w2,1(IR), U1 E H1(IR) n w1,1(IR) and lluollH2 + lluollw2,1 + llu1 IIH1 + llu1 llw1,1 
is sufficiently small. We set xo(x)三 x(x,0), 1/o(x)三 17(x,0) and 

zo(x)ニTJo(x)-1Jx (uo(Y)十町(y)-xo(Y))dy. 
-oo 

(1.20) 

If there exists limx→士oo(l+ lxl)min{a,/3}-lzo(x)三 c贔 thenthe solution to (1.2) satisfies 

min{a,fJ} 
lim (1 + t) 2 llu(-, t) -x(・, t) -Z(・, t) 11£= = 0, 1 < min{ a, /3} < 2, (1.21) 
t→00 

lim 
(1 + t) 

t→ oo log(l + t) 
llu(•, t) -x(・, t) -Z(・, t) -V(•, t)IIL= = 0, min{a, /3} = 2, (1.22) 
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where x(x, t) and V(x, t) are defined by (1.6) and (1.11), respectively, while Z(x, t) and 

rJ(x, t) are defined by 

Z(x,t) = 1 い(yり汀；〗~二，~~叫x,t)) dy, Ca,(3(Y) = { :l::: ~! ~: (1.23) 

G0(x, t)三
1 b x ＿三 x-a(l + t) 
叫 e 4μt'TJ(X, t)三 'T/*(y'l+t) = expにloox(y, t)dy) 

(1.24) 
with叫x)being defined by (1.12). Moreover, if M =J 0, there exist v。>0 and v1 >〇
independent of x and t such that 

IIZ(-, t)II,.~ { <: Cm={lcふI,1,~ ―, ,l}(1+t)―→凸
~volvol (1 + t) 

_ m;n{o,~} 
2 

holds for sufficiently large t with 1 < min{ a, /3} < 2 and 

(1.25) 

IIZ(・, t) + V(・, t)IIL= {::; C(max{lc!,/3I, le~ □ /31} + lt,,dl IIV.(・) IIL=)(1 + t)-1 log(l + t), 
2叫叫(1+ t)-1 log(l + t) 

holds for sufficiently large t with min{ a, /3} = 2, where 

あ三 y'µ(c!,f3 ― c~,f3)rc-mi;{ a, fJ}) + bx;(り~~:c~,f3)r 2 _ min{a,fJ} , 
, fJ} ( 2)  

乃三
ca,(3 +信，9

00 

2 
-!id, r(s)三Je―”が―1dx, s > 0, 
゜while M, d and Ii are defined by (1.7) and (1.13), respectively. 

(1.26) 

(1.27) 

By virtue of Theorem 1.2, the optimality of the estimate (1.18) can be examined from 
the estimates (1.21), (1.22), (1.25) and (1.26). Now, we denote f(t) ~ g(t) if there exist 
positive constants c。andC,。independentof t such that c0g(t) ::::; f (t) ::::; C,。g(t)holds. 
Then, we have the following optimal estimates of u -x: 

Corollary 1.3. UndeT the same assumptions in TheoTem 1. 2, if 0。-=JO and v1 -=J O, then 
the following estimates 

llu(•, t) -x(・, t)IIL= ~ { (l + t)ー→凸 1< min{a,{3} < 2, 
(1 + t)-1 log(l + t), min{ a, {3} = 2 

hold for sufficiently large t. 

(1.28) 

Remark 1.4. The similar result for Theorem 1.1 is obtained by Kitagawa [16] for the 
generalized Burgers equation. For Theorem 1.2, recently, the author in [4] obtained the 
similar result for the generalized KdV-Burgers equation. 
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2 Basic Estimates and Auxiliary Problem 

In this section, we introduce a couple of lemmas to prove the main theorems. 
First, we shall mention the global existence and the decay estimates for the solutions 
to (1.2). Now, we consider the initial value problem for the following linear damped wave 
equation: 

叩—知＋切 +a出= 0, XE股， t> 0, 

u(x, 0) = u0(x), 叫x,O)=附(x),XE艮

By taking the Fourier transform for (2.1), it follows that 

u(t, t) = G(t, t)位o(t)+妬(t))+ ateぽ，t)uo(t),

where 

(2.1) 

G(t, t)三
1 （ふ(l;)t-凸(l;)t

ふ(t)一ふ(t)
e),  (2.2) 

1 1 
ふ (t) 三一(-1+ ✓1-4炉 +ait)), 入2ば）三一(-1- ✓1 -4(ざ十ait)).
2 2 

Therefore, the solution of (2.1) can be expressed as follows: 

where we set 

u(t) = G(t) * (u0十附）十8ぶ(t)* Uo, 

G(x, t)三r閲(・,t)](x). (2.3) 

For this function G(x, t), we can show the following decay estimates (for the proof, see 
Corollary 3.3 in [21] and Corollary 2.5 in [14]). 

Lemma 2.1. Let 1::::; qさPさoo.Then the fallowingび― U estimates hold: 

IIG(t) *¢11LPさ： C(l + t) ―ら（と一 ½lll¢11Lq, t~0, (2.4) 

Ila; 功G(t)*¢11LPさ： C(l + t) ―ら（か ½l一竺戸 11¢11 ぃ +Ce―cotll</Jllwk+!-1,p, t~0, (2.5) 

for rn + l~1, where G(x, t) and G0(x, t) are defined by (2.3) and (1.24), respectively. 
Moreover, the solution operator G(t)* is approximated by G。(t)*in the following sense: 
ll(G-G。)(t) *¢11LPさ： Ct―½(½-点)(1 + t)甘11¢11£q, t > 0, (2.6) 

lla;a;(G -Ga)(t) *¢11LPさ;Ct―½(½-½)—守 (1 + t)―占11</JIILq+ Ce―cotll</Jllwk+i-1,P, t > 0, 
(2.7) 

fork+ l~1. Here c0 is a positive constant. 

Applying the Duhamel principle to (1.2), we obtain 

u(t) = G(t) * (u0 +附）十 8ぶ(t)* Uo -ft G(t -T) * (g(u)x)(T)dT, (2.8) 

゜where g(u) 三 ~u2 十音研. Therefore, by using Lemma 2.1, we obtain the global existence 
and the decay estimates of the solutions to (1.2) as in the following proposition. The proof 

of this proposition is given by a standard argument which is based on the contraction 
mapping principle (for the proof, see Theorem 2.1 in [21] and Proposition 3.1 in [14]): 
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Proposition 2.2. Lets be a positive integer and 1 ::; p :=; oo●珈卯娼幼は如 EW可虹
Ll(艮）， u1E w•-1(1R) n L1(股） and E6s,p) = lluallws,p + lluallu + llu1llws-1,P + llu1llu is 
sufficiently small. Then (1.2) has a unique global solution u(x, t) with 

nいび([O,oo); ws-k,P) n C([O, oo); Lり，
u E {n~=。 wk,00(0,oo; ws-k,oo) n C([O, oo); Lり，

where a = min { 2, s}. Moreover, the estimate 

llu(・, t) IIぃ:SCEb1'p¥1 + t)吋＋命

holds for any q with l :S q :S oo, and the estimate 

1:::; p < oo, 
p=  oo, 

闘心(・,t)IILP'.S CEbs,p¥l + t)―½+姦ーザ

holds for゚：：：： k :S 2 and l 2'. 0 with゚：：：： k+l :S s. 

(2.9) 

(2.10) 

Next, we treat the nonlinear diffusion wave x(x, t) defined by (1.6), and the heat kernel 
G0(x, t) defined by (1.24). For x(x, t), it is easy to see that 

lx(x, t)IさCIMl(l+ t)―し伽器,xE股， t;::,:0. (2.11) 

Moreover, x(x, t) satisfies the following estimate (for the proof, see Lemma 4.3 in [14]): 

Lemma 2.3. Let k, l and m be non-negative integers. Then, for IMIさ1and p E [1, oo], 
we have 

II洸迅(8t+ ao,』mx(・,t)IILPさ： CIMl(l + t)甘＋赤ーk+li2m, t 2: Q. (2.12) 

On the other hand, we have the following estimates for the heat kernel G0(x, t) (for the 
proof, see Lemma 2.4 in [5]): 

Lemma 2.4. Let k and l be non-negative integers. Then, for p E [1, oo], we have 

118悶Go(・,t)IILv::; Ct―}嗚与， t> 0. (2.13) 

Moreover, if Jill¢(x)dx = 0 and 

ョ'Y> 1, ヨC> 0 s.t. Iの(x)I::;C(l + lxl)-', x E恥 (2.14)

then we have 

閲如(t)*¢11LPさC{t=:::~ ー：：：， t > 0, 1 <'Yく 2' (2.15) 
t 2v 2 log(2 + t), t > 0,'Y = 2. 

In the rest of this section, let us prepare the ingredients to prove Theorem 1.2. First, 
we consider the function TJ(x, t) defined by (1.24). For this function, we can easily obtain 
that 

卑卑

min{l, e加}:::; T/(x, t) :::; max{l, e加｝，

min{l, e―幌}:::; T/(x, t)ー1:::;max{l, e―幌｝．

(2.16) 

(2.17) 

Moreover, by using Lemma 2.3, we have the following LP-decay estimate (for the proof, 
see Corollary 2.3 in [13] or Lemma 5.4 in [14]). 
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Lemma 2.5. Let l be a positive integer and p E [1, oo]. If IMI:::; 1, then we have 

11a~TJ(·, t)ll1、p+ 11a~(TJ(·, t)―l) IILPさ;CIMl(l + t) ―ら (1-~) 一½+½, t ::::: 0. (2.18) 

In the proof of Theorem 1.2, we examine the second asymptotic profile of the solution 
to (1.2). To analyze the second asymptotic profile, we prepare the following auxiliary 
problem: 

均十azx+ (bxz)x -μzxx = 8込(x,t), X E艮， t> o, 
z(x, 0) = z0(x), x E恥

where入(x,t) is a given regular function decaying at spatial infinity. If we set 

y 

U[h](x,t,T)三J股8x(G。(x-Y, t -T)TJ(X, t))(ry(y, T)い([00h(f)df) dy, 
XE賊， Q<::: T < t, 

(2.19) 

(2.20) 

then, applying Lemma 2.6 in [5] or Lemma 5.1 in [14] to (2.19), we have the following 

representation formula: 

Lemma 2.6. Let z0(x) be a sufficiently regular function decaying at spatial infinity. Then 
we can get the smooth solution of (2.19) which satisfies the following formula: 

z(x, t) = U[z0](x, t, 0) + J U[い(T)](x,t, T)dT, x E恥 t> 0. (2.21) 

゜This explicit representation formula (2.21) plays an important role in the proof of Theo-
rem 1.2. Also, by using Young's inequality, Lemma 2.5, (2.16), (2.13) and (2.17), we can 
easily obtain the following estimate: 

Lemma 2.7. Assume that IMI < 1 1 _ 1. Let 1 ::::; p, q :::; oo and -+ -= 1. Then the following 
p q 

estimate 

IIU[い(T)](・,t,T)IIL=::;CL(l+t)甘+~(t-T)―バ＋命ー ~II 入(·,T)IILq (2.22) 
n=O 

holds fort> T. 

3 Asymptotic Behavior 

In order to obtain the upper bound of u -X, we rewrite the differential equations (1.2) 
and (1.9) to the integral equations as follows: 

u(t) = G(t) * (u0 +叫＋叩(t)* u0 -ft G(t -T) * (g(u)ェ）(T)dT, 
゜b t 

x(t) = G。(t)* Xo -21伍(t-T)*((喜）(T)dT, 
）
、
ヽ
ー
＇
／

1

2

 

•• 3

3

 

,1,

＇ー、
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where g(u) = ! 研＋炉研 andxo(x) = x(x, 0). Therefore, if we set 
の(x,t)三 u(x,t) -x(x, t), 

then叫x,t) satisfies the following relation: 

¢(t) = (G -G0)(t) * (u。+u1)+ G。(t)* (uo + u1 -Xo) 

(3.3) 

＋：心(:)'""一瓜lG(l-T)'(国）砂(t,
-21 (G -00) (t -T) * (国）x)(T)dT -21 Go(t -T) * (国—喜）(T)dT. 

(3.4) 

Then, applying the decay estimates stated previous section to (3.4), we can derive the 
following two propositions. These propositions were proved in the original paper [5]. 

Proposition 3.1. Assume the same conditions on u。andu1 in Theorem 1.1 are valid. 
Then, for any s > 0, we have 

min{a,/3} 1 

11¢(・, t) II い ~Cfl +t) 2 国， t~0, 1 < min{a,/3} < 2, 
(1 + t)―1十命+e: (3.5) 

t~0, min{a, /3} = 2 

for any q with 1~q~oo, whereゆ(x,t) is defined by (3.3). 

Proposition 3.2. Assume the same conditions on u。andu1 in Theorem 1.1 are valid. 
Then, for any s > 0, we have 

11a拉(・,t)IILP~C { (l + t)―~+宕—½, t~0, 1 < min{ a, /3} < 2, 
(1 + t)―1+点い

. (3.6) 
t~O, mm{a,/3}=2 

forO~l~s, where¢(x,t) is defined by (3.3). 

Idea of the proof of Theorem 1.1. We shall explain only for the proof of (1.19) with 
k = 1, 2, since we have already mentioned (1.18) and (1.19) with k = 0 (Proposition 3.1 
and Proposition 3.2). First, differentiating (3.1) with respect tot, then we have 

如 (t)=叩(t)*(uo+u1)+冴G(t)* uo -J叩 (t-T)*8ェ(g(u))(T)dT,
゜where g(u) =~ 炉＋如研.Here we have used G(O) * p = 0 for any function p. 

other hand, we have from (3.2) that 

b 
知 (t)=砂(t)* Xo -2 lt叩 o(t-T)*冒） (T)dT —蒻(xり (t),

where xo(x) = x(x, 0). Thus, combining (3.7) and (3.8), it follows that 

姐u(t)-x(t)) = 8t(G -G。)(t)*(uo+u1)+叫 (t)*(uo+ui-xo)

＋災G(t)* u0 -1邸 (t-T) * 8x (g(u) -~X2) (T)dT 

-~ft 8t(G -G0)(t -T) *冒）(T)ふ＋り冒）(t). 。 2

(3.7) 

On the 

(3.8) 

(3.9) 
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By using the decay estimates stated previous section and the above propositions, we can 
evaluate the all terms of the right hand side of (3.9). Therefore, we can obtain (1.19) with 
k = 1 and O ::; l :=; s -1. 
Next, we shall treat (1.19) with k = 2. By using the integration by parts, in the same 
way to get (3. 7)皿 d(3.8), we obtain 

麟）＝郎(t)*(uo+妬）＋虎G(t)* Uo -Jt/2 8訊G(t-T) * g(u)(T)dT 

-1,;, 叩 (t-T) >訊(g(u))(T)ふー。闊Gじ）, (g(u)) (り

and if/x(t)~if/G,(t), Xo -; J,'1'辱 G。(t-T)>(Xり(T)むー砂訊(xり(t)

ー ~1;2aぶo(t-T)*鱈 (x2)(T)dT-~ 鱈 G。じ） * (xり（り
Thus, from (3.10) and (3.11), we have 

冴(u(t)-x(t)) 
＝冴(G-Go)(t) * (uo +叫＋恥o(t)*(uo十附一xo)+ a;G(t) * u。
-lt/2叫 (t-T)* (g(u) -~x2) (T)dT 

(3.10) 

(3.11) 

-:.;,a,cc, -TJ, a心 (g(u)-; ぐ）け）dT 
t/2 b t 

--J 厄 (G-G。)(t-T)*(ぐ）(T)dT -- 8t(G -G0)(t -T) *鱈（ぐ）(T)dT 
2。

+; 訊(x') —麟G じ）, (g(u) -;x') tJ~;a心(G-Go)じ） '(x')じ）
(3.12) 

Therefore, by using the same argument given in the above paragraph, we can prove (1.19) 

with k = 2 and゚：：：：： l :':'. s -2. ロ

In the rest of this section, we introduce the additional decay property for u -x. From 
the original equations (1.2) and (1.9), we see that 

⑰ ＋鴫）(u-x) = (-8; 噂）(u-x) —信(u2-x2) ―嵐亨）ー⑰ —鴫）(at+幽）X・ 
By virtue of this relation, we have the following estimate: 

Corollary 3.3. Assume the same conditions on u。and附 inTheorem 1.1 are valid. 
Then, for any E > 0, the estimate 

闘(8t+ a8x)((u -x)(・，t))11駅：：：：： C { (1 + t)―吟＋翡一½-1, t?:0, l<min{a,/3}<2, 
(1 + t) ―2+斎½+e t?: 0, min{a,/3} = 2 

(3.13) 

holds for゚：：：：： l :':'. s -2. 
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4 Second Asymptotic Profile 

Finally in this section, we would like to prove Theorem 1.2. Especially, we shall prove 

only (1.22), since (1.21) can be shown by the same way. On the other hand, for the lower 
bound (1.25) and (1.26), we can derive these estimates by a direct calculation (for details, 
see the original paper [5]). 
First, let us recall the following fact derived in [13]. We consider 

Vt + avx + (bxv)x―μ呈＝―k叫ぐ）， XE恥 t> 0, 

v(x,0) = 0, x E恥
(4.1) 

where Ii is defined by (1.13). The leading term of the solution v(x, t) to (4.1) is given by 
V(x, t) defined by (1.11). More precisely, the following asymptotic formula can be shown 
(for the proof, see Proposition 4.3 in [13]): 

．． 
Proposition 4.1. Assume that IMIさl.Then the estimate 

llv(•, t) -V(・, t)IIL00さCIMl(l+ t)-1, t~1 (4.2) 

holds. Here v(x, t) is the solution to (4.1) and V(x, t) is defined by (1.11). 

Now, let us prove (1.22). We set 

¢(x, t)三 u(x,t) + Ut(x, t) -x(x, t) -v(x, t), </>0(x)三 ua(x)+ u1(x) -Xo(x). (4.3) 

Then, from (1.2), (1.9) and (4.1), we have the following initial value problem: 

where 

cf>t + a如+(bxcf>)x -μcf>xx = 8以Vo(x)+ 8x凡(u,x), x E股， t> 0, 
cf>(x,0) = c/>o(x) = uo(x) +u1(x)-xo(x), x E恥，

ab2 
N直）= 2aμxxx -2ab立＋一X,2 

4μ 

芯(u,x) =鴫＋鴫）(u-x)-μ 威 (u-x) + b泌 (u-x) 

(4.4) 

b C 3 C — µ8鵡＋幽）x+b這＋鴫）x-ー (u-x)2 --(u -x) -2ux(u -x). 
2 3! (4.5) 

Therefore, from Lemma 2.6, we obtain 

¢(x, t) = U砂o](x,t, 0) + 1t U[い (x)(T)](x,t, T)dT + ft U[8ふ (u,x)(T)] (x, t, T)dT. 
0 (4.6) 

For the first term of the right hand side in the above equation (4.6), we have the following 
asymptotic formula. This formula is a key of the proof of Theorem 1.2. 
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Proposition 4.2. Assume the same conditions on u。andu1 in Theorem 1. 忍arevalid. 
Then we have 

m;n{a,f)} 
hm(l+t) 2 IIU[ゆo](•,t,0)-Z(•,t)IIL= = 0, 1 < min{a,(3} < 2, (4.7) 
t→00 
(1 + t) . 

lim IIU[</>。](•,t,0)- Z(•,t)IIL= = 0, mm{a,(3} = 2, (4.8) 
t→ oo log(l + t) 

where Z(x, t) is defined by (1.23). 

Proof. From the definition of U given by (2.20) and T/o(x) = T/(x, 0), we have 

亭 ](x,t,0)= J仰 o(x-y, t)T/(x, t))T/o(Y)―1(/Y (uo(~)+ 疇）一 xo(~))d~dy~l鱈o(x-y, t)"(x, t))z,(y)dy, - ~)  
(4.9) 

where z0(y) is defined by (1.20). Since JJR(u0(x)+u1(x))dx = JJR xo(x)dx = M, by a direct 
calculation, we have the following estimate: 

lzo(x)I :::'.: C(l + lxl)-(min{a,(3}-1), x E艮 (4.10) 

Moreover, from the assumption on z0(y), for any E > 0 there is a constant R = R(E) > 0 
such that 

lzo(Y) -cふ(1+ IYI)―(min{a,fJ}-1)1 <::'. c(l + IYI)―(min{a,fJ}-1), Y~R, 

lzo(Y) -c; 冨(1+ IYl)-(min{a,fJ}-1)1 <::'. c(l + IYl)-(min{a,fJ}-1), Y <::'. -R. 

Therefore, from (1.23) and (4.9), we have the following estimate 

叫 o](x,t, 0) -Z(x, t)I 

<::'. J立(Go(x-Y, t)77(x, t))llzo(Y) -Ca,fJ(Y)(l + IYI)―(min{a,fJ}-1) ldy 
さ］立(Go(x-Y, t)77(x, t))llzo(Y) -Ca,fJ(Y)(l + IYI)―(min{a,fJ}-1) ldy 
IYl:SR 

+E J此(Go(x-y, t)77(x, t))l(l + IYI)―(min{a,fJ}-l)dy 
IYI咽

<::'. CL  llal-n'T/(・, t)IIL00II的Go(・,t)IIL00 J lzo(Y) -Ca,(3(y)(l + IYl)-(min{a,fJ}-l)ldy 
n=O IYl:SR 

+cC~II• (・, t)IIL001亭 o(x-Y, t)l(l + IYI)―(min{a,fJ}-l)dy. 
(4.11) 
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For the integral in the last term of the right hand side of (4.11), we can estimate it as 

follows 

J閲Go(x-Y, t)l(l + IYI)―(min{ a,fi}-1) dy 
艮

= (/ + J)囮Go(x-Y, t)l(l + IYl)-(min{a,fi}-l)dy 
IYIミ心—1 IYl::'.v'l+t-1 

：：：：： (sup (1 + IYI)―(min{a,fi}-1)) J 亭 o(x-y, t)ldy 
IYl2✓ □ -1 IYl2心 -1

+ (sup 18匹o(x-Y, t)I) J (1 + IYI)―(min{a,fi}-1) dy 
IYI::'. 罰 -1 IYI::'. ⑳ -1 

_min{a,/3}-1 
：：：：： (l+t) 2 I閲Ga(・,t)llu + II的G。(・,t)IIL= J (1 + IYl)-(min{a,fi}-l)dy 

犀年—1

✓I二t-1

：：：：： C(l + t)-三 -1}+Ct号 J(1 +y)―(min{a,f!}-l)dy 
゜ min{a,/3}-1 1 

：：：：： C(l + t) ―~-l}+cパ{(1 + t)― 2 +,, l<min{a,(3}<2, 
log(l + t), min{ a, (3} = 2 

：：：：： C { (1 + t)-~-1}, t~1, 1 < min{a,(3} < 2, 

(1 + t)—宇 log(l + t), tミ1,min{ a, (3} = 2. 
(4.12) 

Here, we have used (2.13). Therefore, by using (4.11), Lemma 2.5, Lemma 2.4 and (4.12), 

we get 

IIU['l/Jo](・, t, 0) -Z(・, t)IIL= 

:S C(l + t)―1 +sc { (1 +t)-~, 
(1 + t)-1 log(l + t), 

Thus, we obtain 

t 2 1, 1 < min{a,/3} < 2, 

t 2 1, min{a,/3} = 2. 

min{a,/J} 
limsup(l + t) 2 IIU[ゆo](・,t, 0) -Z(-, t)II区：：：： sC, 1 < min{ a, /3} < 2, 
t→00 

r (1 + t) 1m sup 
t→ oo log(l + t) 

IIU[ゆo](・,t, 0) -Z(・, t)肛=::::; sC, min{ a, /3} = 2. 

Therefore, we get (4.7) and (4.8), because s > 0 can be chosen arbitrarily small. ロ

End of the Proof of Theorem 1.2. From (4.3) and (4.6), we have 

u(x, t) -x(x, t) -Z(x, t) -V(x, t) 

= U[ゆ0](x,t, 0) -Z(x, t)一切(x,t) + v(x, t) -V(x, t) 
t 

+ 1 U[い (x)(T)](x,t, T)dT + 1t庫ふ(u,x)(T)](x, t, T)dT 
= U[の0](x,t, 0) -Z(x, t)一切(t,t) + v(x, t) -V(x, t) + K1 + K2, 

(4.13) 



79

where Z(x, t) and V(x, t) are defined by (1.23) and (1.11), respectively. To prove (1.22), 
now we only need to evaluate the last two terms in the right hand side of (4.13). First, 
we evaluate K1. To estimate it, we introduce the useful property of N心） • Actually, 
if we set No(x) = 2μxxー全x2,from N1(x) = a(oxNo(x) -」~xNo(x)), we get N1(x) = 2μ 

叫 n―1N0(x)). Therefore, from the definition of K1 and (2.20), and by making the 
integration by parts, we have 

柏 (x,t) = ft J鱈 o(x-Y, t -T)TJ(X, t))的((TJ(Y,T))―1的 (y,T))dydT 
〇恥

=~ 迅―nr1(x,t) (/t/2 +ft) J如 (x-y, t -鳴((TJ(Y,T))―1 N0(y, T))dydT 
0 t/2 JR 

= 2: い (x,t) (/t/2 j 0;+100(エー，リ，t-T)(TJ(Y, T))国 (y,T)dydT
n=O 0 JR 

+ 1;21仰 o(x-y,t-T)叫(TJ(Y,T))-1 No(Y, T))dydT). 

(4.14) 

Also from Lemma 2.3 and Lemma 2.5, for any non-negative integer l and 1 :; q :; oo, it 
is easy to see that 

虞(T/―1的 (x))(-,t)IIい :;CL(l+t)ー½CH)II叩No(·,t)IILq:; C(l + t)―1十い. (4.15) 
j=O 

Hence, from (4.14), Young's inequality, Lemma 2.5, (2.13) and (4.15), we have 

IIK1(・, t)IIに

1 t/2 
：：：：： C~II迅―nTJ(·,t)Iい(1 ll8~+1Go(·, t-T)IIL=ll(TJ―1 Na(x))(・, T) IIぃdT

+ {,11⑰ o(・, l -T) 11,,, 118,(,1―'No(x))(・, T) I三） (4.16) 

t 

：：：：： C~(l+t)甘+~(1t/\t -T)―1責 1十T)―}占+L/t-T戸(1+ T心）
：：：：： C(l + t)―1, t;::: 1. 

Next, we estimate K2. For O <巳＜ふ from(3.13), (1.19), (2.12), (1.18) and (2.9), we 
have the following estimates: 

凶(・,t)llu :S: C(l + t)―!+c, 

凶(・,t)IIL2 :s: C(l + t) —¼+c_ 

(4.17) 

(4.18) 
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Therefore, by using Lemma 2.7, (4.17) and (4.18), we obtain 

IIK此 t)IIL=

n~O (lt/2 ：：：：心(1+ t) ― ½+~(t-T)―;—い IIN叶， T)II叫 T+ l2 (t -T)―¼-叶IN応）ll£2dT) 
t/2 

：：：： C苫(1+ t) —½+~(1 (t-T)― ½-~(l+T)含+edT+ 1;2 (t -T) ― i ―打1 十 T) ― ¼+edT)
：：：： C(l + t)―1, t~1. 

(4.19) 

Thus, from (4.13), (2.10), Gagliardo-Nirenberg inequality, (4.2), (4.16) and (4.19), we 
obtain 

llu(•, t) -x(・, t) -Z(-, t) -V(・, t)IIL= :s; IIU[ゆo](・,t, 0) -Z(・, t)IIL= + C(l + t)―1, t 2'.'. 1. 

Therefore, from (4.8), we finally arrive at 

r (1 + t) 1m sup 
t→ oo log(l + t) 

llu(・, t) -x(・, t) -Z(・, t) -V(・, t)IIL= = O. 

This completes the proof of (1.22). 仁l
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