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Stability and instability of traveling wave solutions 

to scalar balance laws 
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1 Presentation of the results 

In the present contribution we discuss the dynamic stability of traveling wave solutions -including constant 

equilibria-to first order scalar hyperbolic balance laws 

如 +ax(f(u))=g(u), u: 応 x股→日 (1.1) 

where f and g are regular real functions, accounting respectively for advection and reaction processes. Our 
discussion is based on the recent works of the author and L.M. Rodrigues, [3,4].1 Our aim here is to provide 
an overview of the results therein in a homogenized framework as well as key ingredients of the proofs, while 
the reader is referred to the original works for comprehensive results and detailed proofs. 

We will prove the large-time asymptotic orbital stability under regular perturbations of piecewise regular 

entropic traveling wave solutions under non-degeneracy hypotheses and sign criteria at key locations of the 
wave, namely infinities, discontinuities and characteristic points. We also show the spectral and nonlinear 
instability of bounded piecewise regular traveling waves satisfying the reverse sign criteria. 

An important feature of our results is that we measure stability in strong topologies,2 obstructing in 

particular the emergence of additional discontinuities from piecewise regular initial data. That this is con-
ceivable is of course due to the presence of the source term, g, since it is well-known that the solution to 
scalar conservative laws that is setting g = 0 in (1.1)-emerging from any smooth and decaying at infinity 
perturbation of a constant state will inevitably lead to the occurrence of a gradient catastrophe in finite time. 
This is to be compared with the following example: 

如 +ax(曇）＝ー(3u
with a E艮， (3> 0. Using the method of characteristics, one easily obtain the global-in-time existence 
of a classical solution as well as exponential decay for any C1(股） initial data satisfying a 8ぉ(u(O,・)) 2'. -(3. 
Hence asymptotic large-time stability of the trivial equilibrium for initial perturbations with s1rlficiently small 

derivative holds when (3 > 0, while instability is easily seen to hold as in the purely reactive case, a = 0 
when (3 < 0. We aim at providing a comprehensive theory encompassing general advection and reaction 
terms as well as general traveling wave solutions. 

*Univ Hennes, CNRS, IRMAR-UMR 6625, F-35000 Rennes, France (vincent.duchenecuniv-rennes1.fr) 
1 It goes without saying that the author of these lines is sole responsible for any flaw in the present document 
2This is in fact the key distinction with earlier works on the subject [5, 7-11, 13-16], which describe large-time dynamics 
in£= (JR) topology. Our proofs are also radically different: while the previous references rely on generalized characteristics of 
Dafermos [2], we employ tools of spectral analysis which are less devoted to the specific case of scalar hyperbolic balance laws 
We let the reader refer to [3] for a more detailed discussion 
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The outline of the present document is as follows. In Section 1.1, we classify, under non-degeneracy 
assumptions of the functions f 8Jld g, the (strictly) entropic piecewise regular traveling wave solutions to (1. 1). 
We then describe precisely the notions of stability and instability which are used in our results, in Section 1.2. 
In Section 2 we present three mechanisms of instability, which allow to narrow down the possibly stable 
waves to a handful of candidates, classified in constants, fronts, shocks and composite waves. In Section 3, 
we establish the stability of these caJ1didates. Section 4 contains a conclusion and additional comments. 
Let us introduce a few notations. For n E N*, 0 C 即， and1 <:'. p <:'. oo, L叩） is the usual Lebesgue 
set of p-integrable (or essentially bounded if p = oo) real functions on 0, andび (0)is the set of locally loc 

p-integrable (or locally essentially bounded if p = oo) real functions on 0. If O C町 isconnected and k EN, 
wk,P(O) (resp. C叩）， resp.BUCk(O)) is the set of functions such that derivatives up to the order k belong 
toび (0)(resp. are continuous, resp. are bounded and uniformly continuous). If O c町 isthe disjoint union 
of connected sets, then wk,P(O) (resp. Ck(O), resp. BUCk(O)) denotes the set of functions such that the 
restriction to each connected component, 0, belongs to wk,P(O) (resp. C叩）， resp.BUG叩）） • For D c JR 
a closed discrete set, だ (D)is the set of bounded real functions on D. We denote 

ck+(罠） = {f EC嘔）： r>-+ max い (x)-gCkl(y)IEL品（股）｝．
lx-yl'.':r 

These spaces are endowed with natural norms =d topological structure associated with their definition. 

1.1 Classification of traveling waves 

In this section we classify bounded piecewise regular traveling wave solutions to (1.1), under non-degeneracy 
assumptions on the real functions f E C暉） and g EC順）， andentropy conditions introduced thereafter. 

Definition 1.1. A piecewise regular traveling wave solution to (1.1) is a weak solution in the form 

u: (t,x)→じ(x-at) 

with (じ，a)EC只恥¥D)x股 whereD is a {possibly empty) closed disc冗teset. 

For (じ，a,D) defining a piecewise regular traveling wave, 股¥D is a union of disjoint open intervals, and 

Vx E艮¥D, (f'(If_(x)) -u)If_'(x) = g(If_(x)). (1.2) 

Solving this scalar differential equation motivates the following non-degeneracy assumptions. 

Definition 1.2. We say that f E C嘔） and g EC囀） are non-degenerate if zeroes of g are isolated, and 

i. for any u* such that g(u*) = 0, one has g'(u』ヂ 0and f"(u』#O; 

ii. for any u*ヂutsuch that g(四） = g(ut) = 0, one has f'(u』-I.f'(ut)-

Proposition 1.3. Let f E C憚）， gEC嘔） be non-degenerate and (If_, er, D) define a piecewise regular 
traveling wave solution to (1.1). Then 

is a c aracteristic value that is • If u* E If_(股¥D). h f (い=er, then g(叫） = O; 

• If_ is either constant or strictly monotonic on connected components o繹 ¥D;

• For any d E D, If_ possesses left and right limits, If_(d_) E塁 {-oo,+oo}andil(d+) E股U{-oo,+oo};

• if a connected component is not lower (resp. upper) bounded then If_ has a limit u_00 E JR U {-oo, +oo} 
at -oo (resp. u+00 E賊U{ -oo, +oo} at +oo }. If u_00 E賊 (resp.u+00 E賊）， theng(u_00) = 0, (resp. 
g(u+00) = OJ and either If_ is constant on the component, or f'(u_00)ヂer(resp. f'(u+oo)ヂer).
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Proof. The first item is a consequence of (1.2), and one has f"(出） cJ O and g'(叫）ヂ 0by Definition 1.2. 
Hence 

¥:/x E股¥D, じ'(x)=O or じ'(x)= F(じ(x))

where for any J connected component of股¥D,F:じ(J)→艮isthe map defined by 

Vu Eじ(J), F(u) = {戸 if f'(u)一五 0,
f"(u) 

otherwise. 

The remaining items follow from monotonicity and properties of solutions to scalar differential equations. ロ

A bounded piecewise regular traveling wave defined by (旦,O", D) possesses left and right limits at any 
discontinuous point d ED, and hence should satisfy the Rankine-Hugoniot condition, that is 

a[切d= [f(じ）]d. 

Above, and thereafter, we denote for h E C1 (V ¥ { x}) where V is a neighborhood of x: 

h(x土） = limh(x土,5) and [h]x = h(x+) -h(x_). 
0',,0 

We will assume henceforth that the solution is entropic through (strict) Oleinik's conditions. 

(1.3) 

Definition 1.4. We say that a bounded piecewise regular traveling wave solution to (1.1) defined by (じ，び，D)
is entropic if for any d ED, 

J'(じ(d-))>び>J'(じ(d+))

and for any v strictly betweenじ(d+)andじ(d-),

J(v)-J(じ(d_))> J(v) -f(じ(d+))
v―且(d_) v-If_(d』・

(1.4) 

(1.5) 

Remark 1.5. Let us recall that by the theo可 dueto Kruzkov /6}, the詑 existsa unique bounded local-in-
time entropy-admissible weak solution to (l.l) emerging from any bounded initial data. Oleinik's conditions 
ensure that the piecewise regular tmveling wave solution is indeed entropy-admissible, but are also essential 

to its stability. Indeed, a spectml analysis of the opemtor£, defined below reveals the role of Lax's entropy 
condition (1.4) to the spectml stability of a discontinuous tmveling wave, and to the well-posedness of the 
corresponding linearized dynamics. Condition (1.5) would also be crucial to the stability prope廿iesof discon-
tinuous tmveling waves if one allowed which is not the case in this work perturbations breaking the large 
shock into a "sum" of smaller subshocks; see /1, Remark 4. 7} for a more detailed discussion. 

The strict entropy conditions provides useful information on admissible piecewise regular traveling waves. 

Proposition 1.6. Let f E C刊股）， gEC⑰)be non-degenemte and (If.., (J, D) define a bounded, piecewise 
regular entropic tmveling wave solution to (1. 1). Then the following holds. 

• On any bounded connected component o鐸¥D, If_ is strictly monotonic, passes through a chamcteristic 
value u* and g'(叫） > 0. 

• On a connected component of尺¥D bounded from above but not from below, 
either If_ is constant with value旦＝叫oo,and f'(u-oo) -(J > O; 

or If_ is strictly monotonic, possesses a limit u_00 E股 at-oo with g(u_00) = 0, passes through a 

chamcteristic value if and only if g'(u_00) < 0, and sgn(f'(u)) -oo― (J = sgn(g (u_00)). 
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• On a connected component of沢¥D bounded from below but not from above, 
either 1j_ is constant with value旦=u+00, and J'(u十oo)一びく O;

or 1j_ is strictly monotonic, possesses a limit u+00 E JR. at十oowithg(u十00)= 0, passes through a 
characteristic value if and only if g'(u+00)く 0,and sgn(J'(u+oo)ー a)=ー sgn(g'(u+oo)).

• If D = 0 and 1j_ is not constant, then 1j_ is strictly monotonic, possesses limits u士ooE股 at士oo
satisfying g(u±00) = 0, passes through a characteristic value if and only if g'(u_00)g'(u+00) > 0 and 
f'(じ）一ahas the sign of干g'(u土00)near士00.

Proof. Since we know the sign of f'(lj_)―び neardiscontinuities of且:by (1.4), we only need to connect its 
sign to the sign of g'(じ） near土ooor near a characteristic point, that 1s x* E股¥D such that J'(じ（叫）） =a. 
At a characteristic point x*, we have f"(じ（む））じ＇（む） =g'(じ（む）） thus 

f'(lj_(x)) -a "'之'f*g'(じ（む）） (x -x*). 

Near土oo,ifじisdefined but not constant, the existence of finite limits stems from monotonicity and 
boundedness, じ'doesnot vanish near土ooand 

g(旦(x))X→土00/旦(x)-u士00J'(じ(x))-(]'= ~ g (u土oo)
旦'(x) じ'(x) . 

The claim easily follows. 口

Using Proposition 1.6, we may classify bounded piecewise regular entropic traveling wave solution to (1.1). 

Corollary 1. 7. Let f E C囁）， gEC囁） be non-degenerate and (じ，a,D)define u: (t,x)→ じ(x-at) a 
bounded, piecewise regular entropic traveling wave solution to (1.1). Then either 

1. D = 0 andじ三 11,E艮 withg位） = 0. The value of a E賊 isirrelevant. We say that u is a constant 
equilibrium. 

2. D = 0 andじisstrictly monotonic, with finite limits u±00 at土oo.One has g(u_00) = g(u+00) = 0. 
We say that u is a front. 

3. D = {d} andじisconstant on (-oo, d) and on (d, +oo), and takes two different values 11,_ f旦+・One
has g(11,_) = g(11,+) = 0 and a=厄）ー!(Ye_). We say that u is a shock. 

Ye+―J!c_ 

4. In any other case, D f 0 andじisstrictly monotonic on at least one connected components of艮¥D,
and is constant on at most two (unbounded) connected component of股¥D. We say that u is a 
composite traveling wave. This contains in particular periodic traveling waves. 

We may now describe our results. Of course, notions of stability and instability are detailed in precise 
statements thereafter; they are introduced and discussed in the following section. 

Theorem (rough statement). Let f and g be sufficiently regular and non-degenerate, and (じ，び，D)define a 
bounded piecewise regular entropic traveling wave solution to (1.1). Then u: (t,x)→ じ(x-at) is stable if 
and only if 

• じhasfinite limits u±00 at士ooand g1(u_00) < 0, g1(u+00)く O;

• on connected components such thatじisstrictly monotonous, じpassesthrough a characteristic value 
叫 EJR, and g'(四）＞〇；

• for any d ED, 詈~<::'. 〇．
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In other words, and following the terminology of Corollary 1. 7, stable piecewise regular entropic traveling 
wave solutions to (1. 1) consist in 

1. constant equilibria -y, E JR such that g(-y,) = 0 and g'(-y,) < 0 (we say the equilibria are dissipative); 

2. fronts taking a characteristic value u* E恥， andsuch that g'(u』>0;

3. {strictly} entropic shocks between two dissipative equilibria; 

4. composite waves satisfying 1. {resp. 2.} on connected components where旦isconstant (resp. strictly 
monotonous), and詈<0 and (1.4)-(1.5) at any discontinuity, d. じisconstant on one or two 
{necessarily unbounded} connected components and strictly monotonous on exactly one component. 

Remark 1.8. That the two assertions of the Theorem are equivalent is a direct consequence of Proposi-
tion 1. 6. The only non-trivial task consists in ruling out the possibility of旦beingstrictly monotonous on two 
consecutive connected components and defining a stable piecewise regular entropic traveling wave solutions. 
This stems from the fact that ifじisstrictly monotonic on two consecutive connected components separated 
by d0 E D, then it passes through a single characteristic point u* in both components, by Proposition 1. 6 

[g(!l.)]d 
and the non-degeneracy condition. We can then check that the inequalities g'(u*) > 0 and丁r<; 0 are 

旦 do
incompatible. 

1.2 Notions of stability 

Let us now clarify what is meant by "stability" in this work. As aforementioned, closedness will be described 
with topologies controlling piecewise smoothness. Moreover, while the stability results will encode control 
on deformations of shape, some re-synchronization of positions is allowed. This is essential in the presence 
of discontinuities, but will turn out to be useful as well in the presence of characteristic points. We will 
also distinguish between the spectral stability described through the spectrum of linearized problems, and 

dynamic nonlinear stability describing the large-time behavior of solutions to (1.1) with close initial data. 
The main lesson of this work is that, in our framework, the two notions coincide and that the nonlinear 
stability under regular perturbations may be decided from a handful of sign conditions encoding spectral 
stability. While such a statement is familiar in the study of dynamic stability, one should mention that this 
result is far from obvious for convection/reaction equations, due to the fact that the operators at stake do 
not offer any regularization effects. As a consequence, it is not sufficient to consider the linearized dynamics 
about the traveling wave, and our proofs rely instead on decay estimates for all nearby linear dynamics. 
With the above discussion in mind, for (じ，a,D) defining a bounded piecewise regular traveling wave 
solution to (1.1), we look for entropic solutions u to (1.1) in the form 

u(t,x+at十心(t,x))=If_(x)+孤t,x) (1.6) 

with (u, 心） small provided they are sufficiently small initially. We always assume that心(t,・) is admissible, 
that is x E政り X十心(t ) . . , x 1s mcreasmg and bijective. 

Definition 1.9 (Nonlinear stability). Given functional spaces X, Y of locally integrable real functions, a 
bounded piecewise regular tmveling wave solution to (1.1) defined by (If_, O", d) is nonlinearly stable in X x Y 
if for any U x V neighborhood of If_ x {O} for the Xx Y topology, there四 stsU。xVo another neighborhood of 
旦x{O} for the XxY topology such that for any (u0, 心o)EU。xVo such that心0is admissible, the unique global-
in-time entropy solution emerging from the initial data defined by u(O, x十ゆo(x))= uo(x) satisfies that for any 
t E酎， thereexistsゆ(t,•)EV admissible such that u(t, •+O"t+'!j;(t, •))EU. The traveling wave is nonlinearly 
unstable in X x Y otherwise. A traveling wave nonlinearly stable in X x Y is orbitally stable with邸 ymptotic

ph邸 eif, additionally, there exists鯰 EY admissible such that (u(t, ・ 十吋＋心(t,・）），心(t,・））→ (Il.., 訟） in 
XxYast→ oo. 
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Note that we aim at a space shiftゆ(t,•) regular on JR. and a shape deformation u(t, •) regular on股¥D
with limits from both sides at each d ED. This leads us to the following restriction on entropy solutions. 

Definition 1.10. We say that u E Lf0c(I X艮） is a piecewise regular entropy solution to (1.1) on the time 
interval IC股 ifthere exist a closed discrete set D and心EC刊Ix股） admissible for any t E J such that 
(t, x)→ u(t,x + ut十心(t,x))EC刊IX(戦¥D)), and u satisfies (1.1) in its虎gulardomain, as well as the 
Rankine-Hugoniot condition 

（切(t,d)-1柘.(t,d)) (u + 8t心(t,d))= f(uz(t,d))-f(ur(t,d)) 

and the strict Oleinik entropy conditions 

u+知 (t,d)> f'(叫 (t,d)),

{~ 三攣>~攣
J'(u1(t,d)) > u+知 (t,d). 

for any TE (0, 1), (1.7) 

where切(t,d) = limo",,O u(t, d十吋＋ゆ(t,d) -6) and附 (t)= limo",,O u(t, d十吋＋心(t,d)+ b). 

Notice that we assume in Definition 1.10 that discontinuities do not vanish or emerge, and discontinuity 
paths do not touch on the time interval I. Using identity (1.6) and chain rules, one can check that u being 
a piecewise regular entropy solution reduces to interior equations 

8t伍ーゆじ')+ ax(U'(旦）一cr)(u-心ビ））一g'(じ）(u-ゆビ）

= -oxU(じ+u)-f(じ)-f'(じ）匂+g(じ＋切一g(じ)-g'(じ）a

+a匹 (g(じ+u)-g(じ））ー8t(8凶 u)+8x(8心u)

on飛¥D, and at any d ED  the Rankine-Hugoniot condition 

8心［且]d-[(J'(旦）ーび）u]d = [f(旦＋句— J(旦）— J'(旦）切 ]d -0心国]d

and the Oleinik entropy conditions which we omit to write down. Indeed, since we only consider waves 
satisfying strict entropy condition, they do not show up at the linearized level. The above suggests to 
consider the spectral problem associated with the linearized equations, that is 

入(u-炒If_')+む（（『（じ）一(J)(u-炒If_'))-g'(じ）(u-砂If_')=A十佑(B)

入心［じ]dー［（『（じ）一(J)(u-炒旦')]dー炒［（『（じ）一(J)じ']d= -B 

on股¥D,

at any d ED, 

with (炒，u)playing the role of the value at入ofthe Laplace transform in time of (ゆ，匂
For the sake of tractability we relax the foregoing problem into the problem of the determination of the 
spectrum of a given operator. To do so we chooseお afunctional space of locally integrable functions on 

罠¥D and y a space of functions on D. We assume that any w E X such that Bx ((『(Il..)-a)w)-g'(Il..)wEX  
possesses limits from the left and from the right at any point d E D. Then one may define on X x y, the 
operator with maximal domain 

[(f'(Il..) -u)じI]d [ (f'(じ）一u)w]d
.C(w, (yd)dED) := (—叫(J'(Il..) -u)w) + g'(Il..)w, (即＋

［じ]d [じ]d)dEJ. 

Definition 1.11 (Spectral stability). We call Xx  y-spectrurn of the linearization about a piecewise regular 
traveling wave defined by (じ，び，D)the spectrum of .C. We say that the wave defined by (じ，u,D) is spectrally 
stable in X x y if the X x y-spectrum is contained in the set of complex values with negative real parts, 
and {O戸 Wesay that the wave defined by (旦，u,D) is spectrally unstable if there exists an element of the 
X x y-spectrum with positive real part. 

3Unless旦isconstant and D = 0, (じ',(l)dED) EX x y is an eigenfunction associated with eigenvalue 0, pertaining to the 
translation invariance of the problem. 
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2 Instability results 

In this section, we exhibit instability mechanisms for piecewise regular traveling wave solutions to (1.1), both 
at the spectral and nonlinear level. 

2.1 Instabilities at infinity 

Proposition 2.1. Let k E N, f E Ck+2(股）， gEC嘔） nc炉 1(民） be non-degenemte and (じ，u,D) define 
a piecewise regular traveling wave solution to (1.1), u. If D is unbounded from above (resp. from below) 
and旦admitsa limit u+00 E政 at+oo (resp. u_00 E恥 at-oo), then g'(u+00) + i(J'(u+00) -u)股 (resp.
g'(u-00)+i(『(u-00)-u)罠） is included in the X x y-spectrum of the linearization about u if for some I c IR 
neighborhood of +oo (resp. -oo) the norm of X restricted to smooth functions compactly suppo廿edin I is 
controlled by the wk,P(J)-norm and controls the Lq(I)-norm, for some l :Sp, q :S oo such that (p, q) -I (1, oo). 
In pa廿icular,if g'(u+00) > 0 (resp. g'(u_00) > O} then u is spectrally unstable in BUG囁 ¥D)x£00(D).

Proof. Since the difference is purely notational we only treat the case where the limit is at +oo. We pick 
x: 恥→ 恥 nonzero, smooth and compactly supported. For~E 恥 and c > 0, we let 

1 
w(s) : 股¥D→C, X→ e―iバ (Ex-;)・

For c sufficiently small, w<s) is supported in I and 

I (g'(u+oo) + i(J'(u十oo) ー u)~)w(e) + 8x((J'(じ）―u)w(s))-g'(じ）w(s) I w•,P(I) ;S cl-/; 

llw(s)IIL叩）え e―¼,

where we used thatじーu+00and derivatives up to the order k + 2 converge exponentially fast to zero at 
infinity. Hence (w(sn), (O)dED)nEN with (cn)nEN positive and converging to zero defines a Weyl sequence, and 
the proof is complete. ロ

Proposition 2.2. Let f Eび（政）， gEC直） be non-degenerate and (I!.., u, D) define a bounded piecewise 
regular entropy-admissible traveling wave solution to (1.1), u. If D is unbounded from above (resp. 加m
below) andじadmitsa limit U+oo at +oo (resp. u_00 at -oo) and g'(u+00) > 0 (resp. g'(u_00) > 0), then 
the following holds. There exists 8 > 0, and a sequence (un)nEN of piecewise regular weak solutions to (1.1) 
defined fort E [O, Tn] such that for any I C IR neighborhood of +oo (resp. -oo), one has for n sufficiently 
large 

i. un(O, ・) -If_ is smooth and compactly supported in I, and for any k EN and l :Sq :S oo, 

llun(O,・)-じIWk,q(I)→ 0 as n→ oo, 

ii. (t, x)→ un(t,・+ut)-If_(t,・) EC刊[O,T:』遺）， hascompact suppo仕 in[O, Tn] x I, and for any admissible 
ゆEc0(IR) and any l :Sp :S oo, 

lun(Tn, ・ 十心(,))-じIL咽） 2ふ

In pa廿icular,u is nonlinearly unstable in BUG囁 ¥D)x BUG噂） for any (k, k') E N2. 

Proof. Since the difference is purely notational we only treat the case where the limit is at +oo. We set 
叫 0,・) = Il. + Wen where We = c2X(cx -¼) with X : 艮→ 賊 nonzero, smooth and compactly supported, 
and (cn)nEN is positive and converging to zero. We may construct locally in time the solution Un via 
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characteristics. For c > 0 and x E (x0,+oo) where x0 := inf(supp(w0)), we define v0(・,x) and X0(・,x) by the 
initial data v0(0,x) = (じ＋叫）(x) andふ(0,x) = x, and the differential equations 

Dt硲(t,x)= g(v0(t,x)) and DtX0(t,x) = J'(v0(t,x)). 

For any a > 0, there exist 8。>0 and co > 0 such that for any c E (0, co] and for any t > 0 such that 
r(t) =sup({lv0(s,x)-u+00I : s E [O,t],x E (x0,+oo)}) :S 8。,one has 

V0-u+00l(t,x);:, 叫O,x)-U+oole(g'(u+=l-a)t and Dx匹(t,x) :S ID叫 O,x)le(g'(叫 =)+a)t_

Choosing a sufficiently small and lowering co further if necessary, we deduce that there exists T0 E (0, +oo) 
such that r(T,』=8。,and如』 :S1 and 8ふ;:>1/2 on [O, T,」x(x0,+oo). We then uniquely define 
u0 through the relation u0(t, X0(t, x)) =硲(t,x) on {(s, y), 0 :S s :S T0, X0(t, 叩） < y < oo}, and set 
叫t,x)= If..(x -at) for x E股＼（ふ(t,叩），十oo). We easily verify that (u0JnEN, for (cn)nEN positive, 
sufficiently small and converging towards zero satisfies the desired properties. ロ

2.2 Instabilities at characteristic points 

Proposition 2.3. Let k E N* and f E Ck+2償），gE Ck+1(飛） and (じ，u,D) define a piecewise regular 
traveling wave solution to (1.1), u. IfらE民¥D is a characteristic point, that isじ（む）＝四 withf'(叫）＝び
andビ（叫） -/ 0, then for anyj E {1, ... ,k}, -g'(叫）j belongs to the X x y-spectrum of the linearization 

about u provided that髯・・・，紐 actcontinuously onぶ
In particular, if g'(叫） < 0, then u is spectrally unstable in BUG順 ¥D)x£00(D). 

Proof. It is sufficient to prove that there exists w a non trivial combination of 8叫, •.. 
() ，砧 suchthat 

-g'(叫）J茄ー (f'(じ）ー u)8x面— g'(じ）面= 0. 

This follows from the fact that f'(じ(x))―び=(x-む）g'(u』+o(x -x*)(x→ ら） and hence for any j E N* 

-(!'(じ）一 u)8ふ~+1l _g'(Jl)8i:l E jg'(u*)8i:l + span({8x., ... ,8~-1l}). 

ロ

Propos1t10n 2.4. Let f E C憚）， gE C嘔） and (じ，び，D)define a bounded piecewise regular entropy-
admissible traveling wave solution to (1.1), u. If叫EIR.¥ D is a characteristic point, that is If_(ら）＝叫 with
J'(広） = r:, andビ(x*)=/ 0, and if g'(u*) < 0, then the following holds. There exists a sequence (un)nEN of 
piecewise regular solutions to (1.1) defined fort E [O, Tn) such that for any I C瞑 neighborhoodof叫， one
has for n sufficiently large 

Z. Un(O, ・）一じ issmooth and compactly supported in I, and for any k EN and 1 <::'. q <::'. oo, 

lun(O, ・) -且IWk,q(I)→ 0 as n→ oo, 

zi. (t, x)→ Un(t, ・ 十吋）一じ(t,・)EC1([0,Tn) x艮）n L00 ([0, Tn) x股）， hassupport in [O, ~ 叫xI, and 

llun(t, ・+ r:,t) lw1,=(J)→ oo as t→ Tn. 

In particular, u is nonlinearly unstable in BUG順 ¥D)X Buck'(飛） for any (k, k') E (N*)乞
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Proof. We pick x : JR→ 股areal smooth compactly supported function such that x(む） = 0 and x'(叫） > 0. 
For E: E (0, 1), we denoteふ：＝出，ふ：= x(叫＋二五）， x-;:= inf(supp(x0)), xt := sup(supp(x0)), and 

ふ

for any x E (x-;, xt) we define v0(・, x) andふ(・,x)by the initial data v0(0,x) =じ(x)+心（叫）知(x)and 
ふ(0,x) = x, and the differential equations 

at匹(t,x)= g(v0(t,x)), むX0(t,x)= J'(v0(t,x)). 

There exists so> Osuch that for anyO < E: < E:o and anyx E (x-;,xt), sgn(g(v0(0,x))) = -sgn(v0(0,x)-u』,
and hence v0(・,x),X0(・,x) E C2(賊打 andsup({lva(t,x) -u』 : t 2'. O}) = lva(O,x) -u*I• Moreover, 
叫t,叫）＝じ（叫）＝叫 andX0(tぶ） =X*―びt,and hence the identities Bx匹(t,叫）＝如a(O,叫）eg'(叫）t and 

8ぷ (t,x*)=l+伍囲厄(0,叫）（砂（四）t -1) hold for any t 2'. 0. Since 8xv0(0, 叫）＝じ＇（叫） (1+い（叫）），
U'(叫＝臼笞 andx'(叫）f"叫

>Oandg(四） < 0, we mfer that 

T0 := sup ({ t > 0 : inf (8ふ (s,x))> o}) < oo. 
sE[O,t],xE(x; ,xt) 

We then uniquely define u0 by u0(t,X0(t,x)) = v0(t,x) on {(s,y),O::; s < T0,X0(t, 立） ::; Y ::; Xa(t, xt)}, 
and set u0(t,x) =じ(x-吋） for X← 股＼（ふ(t,x-;), X0(t, xt)). We easily verify that (uan)nEN, for (sn)nEN 
positive, sufficiently small and converging tow江 dszero satisfies the desired properties. ロ

2.3 Instabilities of shock positions 

Proposition 2.5. Let f E C憚）， gEC直） and (じ，a,D) define a bounded piecewiseだgulartraveling wave 
[g(旦）]d 

solution to (1.1), u. For any d0 ED, TT°'belongs to the Xx  y-spectrum of the linearization about u. In 
じ d。

particular, if 
[g(II_)]d 
~> 0 for some do ED, u is spectrally unstable in BUG嘔 ¥D)x£00(D) for any k EN. 

Proof. One readily checks that (w, (yd)dED) = (0 (8))・  
[g(旦）]d 

, d,do dED provides an eigenvector for丁町言も 口

Proposition 2.6. Let k E N, f E ck+i (艮）nc2(賊）， gE Ck(艮）nc尺賊） and(じ，a,D) define a bounded piecewise 
[g(じ）]d 

regular entropy-admissible traveling wave solution to (1.1), u, such that for some do ED, 1寸---"-> 0. Then 
旦do

the following holds. For any I c Ill neighborhood of d。,there exists 8 > 0, a sequence (un)nEN of piecewise 
regular solutions to (1.1) defined for t E [O,'I', 叫 anda sequence (叫）nEN of smooth admissible functions 
compactly supported on [O, Tn] x I such that (t, x)→ un(t, x + at十叫(t,x))一旦(x)E C1([0, Tn] x (股¥D))
has support in [O,'I',』x(I¥ {do}) and 

i. for any 1~q~oo 

I叫(O,・) lwk,,(I)→ 0 and lun(O, ・＋叫(O,・))-じIWk,q(I¥{do})→ 0 as n→ oo, 

ii. for any admissibleゆEC0(Ill) and any l~p~oo, 

lun(Tn, ・ 十心(・))-じI£P(J!.)2ふ

Moreover, if the strict entropy conditions holds at d E do, then it continues to hold at the shock position x (t) 
such that x(t) +at+'l/Jn(t, x(t)) = d。.In particular, u is nonlinearly unstable in BUCk(恥¥D)x BUび（政）．
Proof. There exists 1J > 0 andじ_,{仁 EC1([d。-1), do+ 11]) such that for any x E [do -1J, do), じ_(x)=じ(x),
for any x E (do, do+ ril, じ十(x)=じ(x),and (f'(じ士)-a)L互=g(じ土） on [do -1), do+ ri]. We notice that 

(1(~ ヽ：誓-l)'(do)=聾圧 Bycontinuity, lowering 1J > 0 if necessary, we may ensure that 
a:= inf (f(仏）— f(仏）＇xE(do-1),do+'l) 仏—じ_) (x) > 0, 
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and, if (1.4) and (1.5) hold at d = do, for any x E [do -7J, do + 1J] and v strictly betweenじ (x)andに(x),

J'(じ (x))> u > J'(仏 (x)) and > 
f(v) -J(If.._(x)) f(v) -f(仏 (x))
v-If.._(x) v —仏(x) . 

For any c E (-1), 7J), we define ue(t, ・) fort E [O, Tし]as 

叫t,x)~{~:i:□ 悶：: : -:: : i'. ぶ+~-~こ汀：
じ(x-吋） if X -ぴtE股¥(DU(do -1), do+ 1J)), 

where叫 EC2([0, T,』)is the solution with initial dataれ(0)= c to the Rankine-Hugoniot condition 

f(仏）一f(仏）
び＋叫t)=( )(do十如(t))

仏—旦

and Te = sup({t 2'. 0 : supsE[O,t]叫(s)I< 1J}) > 0. From the脚 nkine-Hugoniotcondition we infer 
|心el(t)2'. le e"t. Hence (ueJnEN for (cn)nEN nonzero, sufficiently small and converging towards zero satisfies 
the desired properties. ロ

3 Stability results 

We now turn to the stability of constants, fronts, shocks and composite waves, under the spectral assumptions 
stated in the Theorem. 

3.1 Stable equilibria 

In this section, we discuss the spectral and asymptotic stability of constant states 旦€ 艮 withrespect to 
regular perturbations under the condition 

g(11c) = 0 and g'(11c) < 0. (3.1) 

Lemma 3.1 below shows in particular the spectral stability in BUC1(飛） of constant states satisfying (3.1). 
Besides, it provides exponential decay estimates of regular solutions to 

如+a8xv -bv = r 

for any functions a close to f'(旦)-a and b close tog'(叫ina suitable sense. 

Lemma 3.1. Assume a, b E BUC0(賊） with a bounded away from zero. Then the following holds. 

• La,b :=—鴫+b is a closed, densely-defined opemtor on BUG噂） with domain BUG暉）．

• For any入E(C such that 
況（入） > supb(・), 
IR 

for any i'E BUC0(股）， thereexists a unique v(・；入） E BUC1(IR) such that 

（入— La,b)v(・; 入） = i' 

and moreover 

Iv(.. 入)I < 1 lrll ' L=(IR) 一羽入— supIRb(・) 応 (IR)・

Moreover if入EJR, 入E(sup砂(・),oo)and r~O, then v( ・；入） ~o.

(3.2) 
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• Assume moreover that a E BUG尺戦）， bis constant, 

況（入） > b-info'(・), 
IR 

and i'E W1•=(股）. Then 

118のも(.;入)II < 
1 

応(IR) ー羽入— b+ inf,, a,'(.) IBxrl L=(IR). 

Proof. Without loss of generality, we assume that a is positive. Let f E BUG順）. It is easy to check that 
when~(入） > sup砂(・),v(.; 入） EBUC順） is uniquely defined by 

叩；入）：＝「占声 dzf(y)dy. 
-oo a(y) 

The second item is immediately deduced, in particular thanks to the chain inequalities 

lv(x; 入)1 < lrllL噸） 「 ぷ~dz況入— b(y) dy = llr IL=(IRJ 
一況入ーsup砂(-) -oo a(y) 況入— sup砂(·)

The third item is obtained in the same way after differentiation and integration by parts: 

叩 (x;入） = f(x) + ix b一心に詞 dzf(y)dy = ixぷ詞 dz叩 (y)
a(x) _00  a(x) a(y) _00  a(x) 

dy 

= ix ef;~dz叩(y) dy. 
-oo a(y) 

This concludes the proof. 

We now turn to nonlinear stability results. 

Proposition 3.2. Let f Eび（政）， gE Cl+(艮） and~E 賊 satisfying (3.1). Then for any C'.。>1, there exists 
s > 0 such that for any v0 E BUG刊沢） satisfying 

口

I vo lw,,=(ll!.) <::'. E:, 

the initial data u(O, ・) = y_十v0genemtes a global unique classical solution to (1.1), u E BUC1(町 x股）， and
it satisfies for any t 2'. 0 

llu(t, ・）ー叫か(ll!.)<:: I vallL=(lll.)C。eg'(:!!.)t,
118辺 (t,・)I L=(ll!.) <::'. I 8xvollL=(政）C。砂（旦）t_ 

Using an additional concavity/ convexity assumption, we may refine the above result by assuming only 
邸 ymmetricinitial smallness on the derivative of the initial data, consistently with the example of the intro-

duction. 

Proposition 3.3. Let f E C2(1R), g E C1十償） and y_ E艮 satisfying(3.1) and 

!"(旦）ヂ 0.

Then for any C。>1, there exists E: > 0 such that for any v0 E BUC1(恥） satisfying 

Iv。応(Ill.)<::'. E: and l(sgn(f"(y_))如 o)-1L=(IR) <::'. E:, 
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the initial data u(O, •) = y_ + v0 generates a global unique classical solution to (1.1), u E BUC1 (JR.+ x JR.), and 
it satisfies for any t~0 

1 u(t, ・l -旦IL=(l!.J<::: llvollL=(JR)c。eg'(旦）t, 
l(sgn(t"(y_))虹 (t,・))-IL=(良)<::: ll(sgn(t"(山）如o)-1L疇）C。eg'(:!!)t,

18四 (t,・) IL=(J!.) <:'. ll8xvo L=(IR)c。砂(:!!)t. 

We sketch the proof of Proposition 3.3, the proof of Proposition 3.2 being similar. 

Proof of Proposition 3.3. From Lemma 3.1, we may apply apply general theorems on evolution systems4皿 d
deduce from any a E c0([0,T), BUC1(日）） and b E C0([0, T), BUC0(旧）） (with TE (0, oo]) an evolution system 
Sa,b on BUC0(民） generated by the family of operators La(t,-),b(t,-), and such that for皿 yvo E BUC0(股），
皿 yO'.Ss:St<T

IISa,b(s,t)vol L=(IR) <:: ef, supRb(r,-) drl Vo IL=(ll!.), 

and Sa,b(s, t) v0 2 0 if v0 2 0. If moreover bis constant, then v0 E BUG尺政） yields for any O <:: s <:: t < T 

1a心 (s,t) vallL疇） <:: e<t-s) b-J: infRむa(T,)dTIIBxvol L疇）．

Let c E (0, l]. Pick a classical solution u = JJ. 十vstarting from 1! + Vo such that llvall < c. Then if L=(JR) -
u exists (as a classical solution) on [O, t0), for any O <:: t < t0, we have the Duhamel formula 

v(t, ・) = sf'(正），g'(旦）Vo+ ft Sf'(正），g'(旦）(s,t)(g(旦+v)-g(JJ.)-g'位）v)(s,・) ds. 

Therefore if moreover for any t E [O, to), llv(t・) I ，い（良） <:: 2ce9'(旦）t, then for any t E [O, t0) 

e―g'(叫tlv(t, ・)IIL疇） <:: I vollL疇） + ft w9(2ce9'(y_) ")2ce9'位）s (e―g'(叫"Iv(s, ・)IL疇）） ds 

where w9(r) = max1x-yl<::r 
19'Cxl-g'(yll 1 E Lloc(艮）， sothat for any t E [O, t0), 

I v(t, ・)IIL=(恥)<:: lvollL=(JR) eg'(y_)t e六汀炉崎）dr_ 

Choosing c sufficiently small, we may ensure exp(IY'C叫IIt□ (r) d r) < min({2, Co}) and a continuity argu-
ment yields that the£= estimate of the Proposition holds as long as u persists as a classical solution. From 

the identity 

8xv(t, ・)=Sf'但十v),g'(y_+v)-f"但十v)iJ,v(O,t) OxVo, 

by linearity and preservation of non negativity, we deduce 

(sgn(f"(:y_))8xv(t, ・))-S St'(旦十v),g'(旦十v)-f"但十v)8,v(O,t) (sgn(f"(:y_))8xvo)--

Proceeding as above and lowering E: is necessary, we deduce the second estimate of the Proposition -again 
as long as u persists as a classical solution and the third is obtained in the same way. This in particular 
rules out finite-time blow-up, and the proof is complete. ロ

4See for instance [12, Chapter 5, Theorem 3.1] with X = BUC0(JR.) and Y = BUC1(1R.), and apply [12, Chapter 5, Theo-
rem 2.3] to reduce the verification of assumption (H2) there to the case where bis constant 
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3.2 Stable fronts 

In this section we study the stability of bounded continuous fronts, that is u : (t, x)→ じ(x-at) solution 
to (1.1) with f E C2(JE.) and g EC尺股）， wherea E股andIf_ E C1(JE.) n L00(JE.) is strictly monotonous. We 
assume the existence and uniqueness of a characteristic value: 

」!u*Eじ(Ill), !'(叫） = er and g(叫） =0, 

and assume the non-degeneracy and (strict) spectral stability condition at the characteristic value: 

J"(四） -IO and g'(u』>0. 

Denoting u土oo= limx→士oo且(x)E Ill, we assume the non-degeneracy condition at infinity: 

g(u士oo)= 0, g'(u士00)< 0 and J'(u士oo)ヂ!'(四）．

We denote F: じ（政）→艮thec0 map defined by 

VuEじ（艮）， F(u) = {琶 if J'(u)ー五o,
f"(u) otherwise ， 

so that 

Vx E JR, !J..'(x) = F(旦(x)).

Linearizing (1.1) about the traveling solution u yields the linear equation 

如 +J'(u)a砂=(g'(u) -(J'(u))')v, v: 酎 x股→ 恥．

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Studying the spectral stability of旦asa solution to (1.1) hence amounts to studying the spectrum of the 
time-independent operator defined by 

旦”
ム：＝一(J'(If..)-a)(Bx ——) U'. 

However, as in Section 3.1, the nonlinear stability result will stem from resolvent estimates on a wider class 
of linear operators. Based on properties of (f'(I!_) -u) recall Proposition 1.6 we denote 

and consider a E X;(IR) such that 

We then denote 

x渾）：={aEBUC順）： a(O) = O} 

{ a(x) > 0 if x > 0, 
a(x) < 0 if x < 0. 

U" 
La:= -aox + a=, 

旦

the closed, densely-defined operator on BUG刊股） with domain BUび（政）．

(3.7) 

5Here we implicitly set the characteristic point to叫=0, that isじ(0)=叫.This can be done without harm thanks to the 
translation invariance of the problem. 
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Lemma 3.4. Let f E C嘔）， gEC囀） and (!l.., u) sati~ 如ng(3.3)-(3.4)-(3.5)-(3.6) such that FE C匹（沢））
andじ(0)=叫， anddenote 

0 := min({g'(u」-g'(u+oo),-g'(u-oo)}) > 0. 

There exists x E L 1 (IR) n L 00 (IR) such that 

じ”
州((『(!l..))'-(『(!l..)-u) Yf + (f'(!l..) -u)x) 2 0 

For any a EX庫） satisfying (3. 7) and 

0a := i閉 (a' — af,+ax)>o,
and for-any入EC such that 

況（入）＞ー。a'

for-any r EX直）， thereexists a unique v (-; 入） EBUC嘔） such that 

(入-La)v(-;入） = r 

and moreover叩(0)= 0 and 

lvl < 
1 

叫）一況（入）+ 0a I rl立(IR)
where I・ X;(良） is a norm equivalent to I・I W1,=(IR) onX隅） and is defined by 

'efv EX頂）， lvll況 (Ill.) := max ({ lie―f。X[v'ーりvJI応 (Ill.)'IIII.'r : X dyllL=(JR)}) 
〇旦'(y)

Proof. Since F E C1, If. E BUG暉）， andone readily checks that 

x(,)~{-({'::'! 互芦芸誓享，o})
min ({ 
0-(f'(IL))'(x)+(f'(Il_(x))-<r)嬰

Jl_ (x) 

(f'(Il_(x))-<r) , o}) 

satisfies x E L尺股） nL00償） as well as the desired inequality. 

when x > 0, 

when x < 0, 

(3.8) 

(3.9) 

(3.10) 

Dividing byじ'theresolvent problem (入-L砂ii= i', differentiating and then multiplying byビyields

（いa'-aり）い）＇じ口 ((fr,)'じ＇） = (fr,)'じ＇．
Local solvability in W1•00(政） of the above yields, when況（入）＞ー似

（五）＇じ'(x)= [e—I;¼: 入（十:;'-a伶）(fr,)'じ'(y)dy, (3.11) 

and hence, using (3.7) and (3.8), 

u" 
le―f。x[v'-=-v] II < 

1 u" 
旦＇圧 (ll!.)―況（入） + 0a lie ― f。亨—戸l llL=(ll!.)" 



115

When入ヂ 0,local solvability of the resolvent problem in W1•00(JR) also enforces v(O) = r(O)/入andhence 

1 i'(O) x 1 U" 
叩）＝迂(0)ビ(x)+旦'(x)1□ ビ(y)飼ー豆v](y)dy. 

Hence the eigenvalue O of La is of multiplicity 1, with spectral projector defined by (IIi')(x) :=憂紛ビ(x).
When i'(O) = 0 the resolvent problem is uniquely solved in W2•00(戦） for any R(入）＞ー0aby 

叩）＝じ'(x)j 1 U" 

。U'(y)[が-=-v](y) dy U' 

U" where we recall that v'--v  has been uniquely determined in (3.11). It is now obvious to check that 
旦＇

II 
v 
I 

U" 

じ'J•efifx L疇）一
< I e―J。x[v'-=-v

o四訂dy
旦,ll応 (Ill.)'

and the resolvent inequality is proved. 

1seqmvalentto I・II Theproofthat 11・11・ X;(lll.) W' •=(ll.) onX;(股） as soon as x E L嘔） is left to the reader. ロ

We now turn to the consequence of Lemma 3.4 to the nonlinear stability of continuous fronts. 

Proposition 3.5. Let f E c2+(艮）， gE Cl+(政） and (If_, u) satisfying (3.3)-(3.4)-(3.5)-(3.6) and such that 
FE C1(If_(尺））， anddenote 

0 := min({g'(u』,-g'(u+oo), -g'(u-oo)}) > 0. 

For any C,。>1, there exists E: > 0 such that for any v0 E BUC1(民） satisfying 

llvol W',=(ll!,) <:'. E, 

and, denoting x* E恥 thechamcteristic point such thatじ（広） = u*, 

vo(広） =0, 

(3.12) 

(3.13) 

the initial data u(O, ・) =じ十v0genemtes a global unique classical solution to (1. 1), u← BUC1(町 x股）， and
it satisfies for any t ::,. 0 

iu(t,. 十む十at)ーじ(・+叫)llx;(IR) S llvol x;(IR)C。e―0t,
where I・X;(IR) is defined in (3.9)-(3.10), and 

u(t, 叫+at)=じ（叫）．

Proof. Changing the reference frame, we may assume that叫=0. We shall seek u under the form 

u(t,x)=じ(x-at)+ v(t,x -at) 

whereがsatisfies

(3.14) 

(3.15) 

邸— La(韮= N(匂 (3.16)

denoting a : X庫）→X庫） such that a(り）：＝『（じ＋匂ーa,and N: X;(ffi:.)→ X直） such that 

U" 
N(匂：= (J'(If_) -J'(If_十筍）＝冠+g(旦＋筍一g(I!_)-g'(I!_)v -U'(じ＋匂ーJ'(If_)-J" (If_)切じ'.

じ
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One readily checks that there exists co > 0, depending only on f, じandx ---defined as in (3.10) such 
that if u, the solution to (1.1) emerging from the initial data u(O, •) =じ十v0,persists as a classical solution 
to (1.1) on the time interval [O, t0) and satisfies for any t E [O, t0), v(t, ・)EX庫） and 

llv(t, ・)llw1,=(政)<::'. co, (3.17) 

then a(筍EC([O, to); X直）） satisfies (3.7) and (3.8). Hence by the resolvent estimates obtained in Lemma 3.4 
and the aforementioned general theorems on evolution systems, the family of operators La(t,-) generates an 
evolution system Sa on X庫） such that for any O <:: s <:: t < T and any v0 E X直），

ISa(s, t) vol況(IR)Se―J;0a(r,・) dT lvoll況(lll.)' (3.18) 

Then, v E C([O, to); X庫）） the classical solution to (3.16) satisfies Duhamel's formula 

罰＝箪(0,t)(面）＋［賢(s,t)N(行(s))ds. 

゜We may then proceed as in the proof of Proposition 3.3. Let E: E (0, E:0). Assuming that for any t E [O, t0), 

|吋lx;c股） <::'. 2ce-0t, we deduce from Duhamel's formula and the equivalence of I・lx;e11.J with・llw,,=(IR)'a 
quantitative decay estimate on 0 -0a(t, ・) and sharp bounds on N: X;(股）→X庫） which eventually yield 

I v(t, ・)llx;(IRJ <::: C叶voI立（取）e―0t,

where C, > 1 depends only on f, g, じ， xand E:, and can be brought arbitrarily close to 1 provided E: is 
sufficiently small. Choosing E: > 0 such that Ce < min({2, C0}) and such that from llv I < 2E: stems (3.17) 

X嘔）一

we m er rom a contmmty argument that (3.14) using again the equivalence of l・llx虹） with ll・llw,,=(IRJ . f f 

holds on [O, to), and this in particular rules out finite-time blow up. The proof is complete. ロ

The assumption (3.13) is not a restriction to the orbital stability with asymptotic ph邸 eof stable fronts 
since, 邸 statedbelow, any sufficiently small perturbation is an admissible perturbation of a shifted front. 
It is interesting to notice that the邸 ymptoticph邸 eis determined at initial time from the location of the 
characteristic point, contrarily to the more standard situation where the phase is only implicitly defined, as 
in the c邸 eof shocks described in the following section. 

Lemma 3.6. Let f E C囁）， gEC順） and (且，吋 satisfying(3.3)-(3.4)-(3.6) and such that FE Cパ且（股）），
and denote x* E良 suchthat旦（叫） = u*. For any C。>1, there exists E > 0 such that for any v0 E W1•00(恥）
satisfying 

llvol w',=(11!,) :'::'. 0, 

there exists a uniqueふ EJR such thatじ(x*)+ va(x*) =叫， andit satisfies 

Ix*―x*I < 
C。
―|ビ(O)IIva IL=(恥）・

Moreover, denotingじ：＝じ(・+x*―ふ） and 而：＝じ +vo —じ， we haveじ（ふ） = u*, vo(x*) = 0 and 

I fio lw,,=(lll.) :S: llvol w',=(11.) + Iじ'IW1,=(IR)に— x*I•

Proof. We use thatじisstrictly monotonic, ビ（ら） -/-0 andじEw2,oo(団). The existence of元*is easily 
deduced from the intermediate value theorem, while uniqueness and the estimate on x*―る』 followsfrom 
the mean value theorem. The last estimate proceeds from the triangular and mean value inequalities. ロ
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3.3 Stable shocks 

In this section we show the orbital stability with asymptotic phase under regular perturbations of spectrally 
stable strictly entropy-admissible Riemann shocks of (1.1), that is 

u(t,x)=じ(x-(do+ a-t)), 

with initial shock position d。€ 艮， speed び€ 賊 andwave profileじ

如） ={:Y.- ifx<O, 
釦 ifX > 0, 

where (y__追+lE記， :Y.+f-旦_satisfy the equilibrium condition 

9加） = 0 and g(y__) = 0; 

the speed c, E股satisfiesthe R皿 kine-Hugoniotcondition 

J(島.)-!(旦_)= c,(旦＋―y__)'

8Jld stability is ensured by the (strict) entropy admissibility 

{ "','. 墾一貫；＿雷~~/':~);□ 霊芯;-;;エ）
『(y__)> (Y' 

皿 dthe spectral assumptions 
g'(糾） < 0 and g1 (y__) < 0 . 

(3.19) 

(3.20) 

(3.21) 

for any TE (0, 1), (3.22) 

(3.23) 

One could prove the nonlinear stability following the strategy of Section 3.1, after an analysis of the 
corresponding spectral problem, taking into account the position of the shock; recall Section 1.2. However it 
is more effective to rely directly on the result obtained for constant states, Proposition 3.2.6 

Proposition 3.7. Let f E C町恥）， gE Cl+(恥） and (び，y,_追+)E配 satisfying(3.20)-(3.21)-(3.22)-(3.23). 
For any C,。>1, there exists E: > 0 and C > 0 such that for any心aE股 andv0 E BUC1(町） satisfying 

lvo lw,,=(1!.') :','. C, (3.24) 

there exists a unique global-in-time piecewise regular entropy solution to (1.1), u, emerging from the initial 
data u(O, •) = (I!..+ vo)(・十ゆo)with I!.. as in (3.19). Moreover, there existsゆEC刊町） satisfying叫(0)= 0 
and u土 EBUC尺艮+x股） such that for any t ::C:: 〇

u(t,x) = { u_(t,x) ifxく心o+ut十い(t),
叫 (t,x) ifx >心o+吋＋心(t),

(3.25) 

and one has for any t 2: 0 

I匹 (t,・) -阻IIL=(ll!.):S:: llvo IL=(正）C。eg'(1!±)t,
la,, 叫 (t,・lllL疇） :s:: II叩 all£=(記）C。eg'(,,,,±)t,
枷(t)-1/Jool + 11/J'(t)I :S:: ll'vo IL疇.l c emax({9'年），9'(1!)})t,

where鯰 =limt→OO心(t)and satisfies I転 I:s:: lvallい (11.•i°·
60ne could obtain in the same way a result based on Proposition 3.2, assuming only asymmetric smallness on the derivative 
of the perturbation, if one -----{)r both-of the two end-states satisfies f" (JJ,) # 0. 
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Proof. We first extend the left-and right-components of the initial data so as to introduce u0, ±EBUC憫）
such that 

'efx E配， Uo, 土(x)=(If.. 十祝o)(x十心o)

and 

luo, 土一旦土IIL=(IR)さ:ct12llval L=(ll. 士） and IIBxuo, 士I£=(Ill.)::; I 8xvollL=(lll. 打・

C 1/2 By Proposition 3.2 with the amplification factor O and provided the corresponding constraint on c holds, 
we may define u士EBUC1(酎 x恥） as the global unique classical solutions to (1.1) emerging from the initial 
data吐 (O,・)= uo, 士， andthe desired estimates hold. The solution u is then obtained by patching together 
u+ and u_ as in (3.25) where the discontinuity curve is defined through the Rankine-Hugoniot condition 

(u+ -u_)(t, ゆo+at十心(t))X (a十少'(t))= (f(u+) -J(u-))(t, 心o+叶＋心(t)).

Existence and uniqueness of 心€ び（町） satisfying the above with initial datumゆ(0)= 0 follows from the 
standard theory on differential equations. The desired bounds on心areeasily deduced from the corresponding 
bounds on lu士一旦土I,and鯰=Ii。OO心'(t)d t. That (1.7) holds by lessening c further if necessary follows 
from the continuity of 

均：此 x賊 x[0, l]→艮， (a,b,r)…f(ra + (1-r) b) -f(a) _ f(ra + (1-r) b) -f(b) 
ra+(l-r)b-a ra+(l-r)b-b・ 

Then u is an entropy solution to (1.1), and uniqueness is guaranteed by the theory due to Kruぇkov[6]. ロ

Remark 3.8. It should be noted that u土 arenot defined uniquely, because we have freedom in the choice of 
the initial data四 (O,・)= uo士.However, the solution u obtained from (3.25) is of course unique in the class 
of entropy-admissible solutions. 

3.4 Stable composite waves 

In this section we show the orbital stability with asymptotic phase under regular perturbations of bounded 
piecewise regular traveling wave solutions to (1.1) defined by (じ，u,D), under the following assumptions. 

Hypothesis 3.9. The set D c艮 isfinite and non-empty. For any d ED, (1.3)-(1.4)-(1.5) hold and 

[g(且）]d 

［じ]d
く 0.

For any connected component of艮¥D, J, one has either 

z. じニ'Qis constant on J with g('Q) = 0, and g'(JJ) < O; or 

ii. じisstrictly monotonous on J, bounded and satisfies, for any x E J, ビ(x)= F(じ(x))wheた

F(u) = {孟(Y • 

ユ凶- iff'(u)-a-/-0, 

f"(u) othe加 ise,

and F E C1(If_(J)). Moreover, there exists a unique u* Eじ(J)such that f'(四） = a, and one has 
g(u』=0,f"(u』-/-0 and g'(い>0. We denote x* E照 thechamcter-istic point, that is If_(む）＝匹

We denote u±00 =lim,, →士00If_(x), and one has g(u士00)= 0 and g'(u士00)< 0. 
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Recall that under non-degeneracy conditions on f and 9, by Proposition 1.6, If_ may be constant only on 
unbounded connected components of JR¥ D and (see Remark 1.8) there exists at most -and hence exactly— 
one connected component on which If_ is strictly monotonous. For the sake of exposition, we provide the 

result only for the case where the number of elements in D is DI = 2; yet the equivalent statement with 
ID = 1 can be easily inferred. 
As in Section 3.3, we shall infer our stability result by piecing together regular solutions emerging from 
extensions of the different components of the initial data. To this aim, it is convenient to introduce for 
the connected components J* C 艮¥D such that If_ is strictly monotonous, ti_ the maximal solution to 
且1(x)= F(旦(x))such that且=If_ on J*. 

Proposition 3.10. Let f E C2+(恥）， gE Cl+(民） be non-degenerate and (If_, u, D) satisfying Hypothesis 3.9 

with D = {d-, 山}.For any C。>1 there exists E: > 0 and C > 0 such that for any D。={d。'―,dぃ}c配
and v0 E BUG露¥Do) satisfying 

llvallw1,=(11!.¥Do) + Id。,--d_ + Id。,+-d十 :c;E:, 

there exists a unique global piecewise regular entropy solution to (1.1), u, emerging from the initial data 

u(O,)~p/(zj 二:闊：ド。:~·;<du,+, 
叫 oo+vo(x) ifx>d。，十・

Moreover, there exist正 EC2国） with叫 (0)= 0 and u_直＋墨(*)E BUC1(JR+ X股） such that 

weo, u(,,,1~{二い!1 t:。:'。心 ~S-:Y~~::~,ぃ＋叫(1.),
叫 (t,x) ifx>do,++心+(t)+吋，

and for any t 2 0, 

叫 (t)一心al+Iゅ±(t)I:::;(llvollw,,=(IR¥Do) + Id。,--d-1 + d。,+ -d+I) C(l + t)e-et, 

where 0 = min({-g1(u+00), -g1(u_00),g1(u*)}) > 0 and心oE艮 isuniquely determined by 

（旦十vo)(叫＋心o)=叫=!I.(叫），

and satisfies 11/Jol :::; 恢刷Iva区 ((do,―, do,+ll'and one has for any t 2〇，

u(t, 叫＋心o十吋） = U(*)(tぷ＋珈十四） = u* 

and 

匹(t,•)-u土00IIL=(記） -C: lvo(・+d。□IL=(記）C。eg'(u±=lt,
I c如）(t,・)IIL=(記)-c: I c如 o)(・+d。,土)IL=(知）C。砂（四=lt,

iu(*)(t, • 十叩十心o+ut) —じC·+x*)II況 (J;)'.:::'. lvol x闊）Coe―g'(い）t, 

(3.26) 

where I・llx氾） is defined by (3.9)-(3.10), replacing 0 therein with g'(叫） and restricting the L 00 norms to 

the domain J; := (d。,--x*―心o十ゆ_(t),d。叶―x*―心o+7/J+(t)).
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Proof. We proceed as in the proof of Proposition 3.7, and the first step is to introduce regular extensions 
of the initial data for each connected component of股¥D。.On the connected components J±such that 
u(O, ・) = U±oo + vo, we introduce Vo, 土 EBUC順） such that v0, 土(x)= v0(x) for any x E J土， and

lvo, 土II応 (IR):s; ct12llvol L=(J土） and IIEJ砂0,土 1区 (I!.):s; a砂ollL=(J互
1/2 By Proposition 3.2 with the amplification factor C。andprovided the corresponding constraint on E: holds, 

we obtain u±E BUび（町 x賊） global unique classical solutions to (1.1) emerging from the initial data 
四 (O,・)= u±oo + Vo, ±, and the desired estimates hold. 
On the connected components J* such that u(O, •) = If_+ v0, we first extendじtoじEBUC1(JR.) by 
solving the differential equationビ=F(じ） after modifying (if necessary) f and g onじ（股¥J*) in order to 
ensure that J'(じ(x))= J'(u』ifand only if x =叫， and-g'(limx→士00じ(x))> g'(四）• We then uniquely 
determineゆ0-by Lemma 3.6-as the solution to (立+vo)(叩十ゆo)= u*, and set両=vo+ じ—じ(·一心o)-
Finally, we may define v。,(*) so that v。,(*)(・+叫＋ゆo)EX庫），fl_(-一心o)+v。,(*) = u(O, ・) on J* and 

llv。,（＊）（・十叩＋心o)Ix;(政):s; ct! 事（．十叩＋心o)IX;(i2)" 

C 1/2 By Proposition 3.5 with the amplification factor O and provided the corresponding constraint on E: holds, 
we obtain u(*) E BUC1(応 x股） global unique cl邸 sicalsolution to (1.1) emerging from the initial data 
叫）(0, ・）＝じ(・一心o)+v。,(*), and satisfying the desired inequality. 
We now construct u through (3.26), defining叫 fromthe Rankine-Hugoniot condition at discontinuities: 

心~(t) = F[u,, ±, u,, 士](t,1杜(t)) with F[ur, ui] := 
J(u,) -J(u1) 

叫一 Uj

where u, (resp. u1) is the limit from the right (resp. from the left) at the discontinuity, consistently with (3.26). 
Uniqueness and global existence of ゅ士€び（町） satisfying the desired estimates follows from standard results 
on differential equations, using the previously obtained estimates and the fact that 

F[IJ..(・),u_00](d_) = F[u+00,IJ..(・)](d+) =a, 

[g(IJ..)]d_ [g(IJ..)]牛
ox(F[Il..(・), U-ooD (d_) = < 0 and Ox (F[u+oo,Il..(・)l) (d』= < 0. 

[IJ..]d_ [If..]出

By construction, u is a global-in-time piecewise regular entropy solution to (1.1) provided Oleinik's (strict) 
entropy conditions hold on discontinuity curves, but this follows邸 inthe proof of Proposition 3.7. ロ

4 Conclusion 

In Section 3, we proved the nonlinear orbital stability with asymptotic phase of constant equilibria, fronts, 
shocks and composite wave solutions to (1.1) in BUG順 ¥D)xBUC1(飛） (where Dis the set of discontinuities 
of the traveling wave) provided that the entropy and spectral stability assumptions stated in the Theorem 
hold. We have also proved in Section 2 the spectral and nonlinear instability of all other under the non-
degeneracy assumptions on f and g bounded piecewise regular entropic traveling wave solutions to (1.1). 
Further results using different functional spaces may be obtained. Firstly, the nonlinear asymptotic 
stability BUG打艮¥D)x BUG灯艮） for k ::,. 2, without assuming smallness on higher derivatives, is easily 
deduced from the corresponding one when k = 1, after differentiating the equation. Furthermore, using the 
extension/patching strategy employed when dealing with discontinuities in Section 3.3 and 3.4, we may prove 
stability under perturbations admitting small strictly entropic discontinuities. Moreover, Proposition 3.3 
allows to prove, by a classical approximation/compactness argument, the asymptotic stability of dissipative 
equilibria旦E瞑 suchthat J"(11,) -IO (or strictly entropic shocks between such equilibria) in BV(JR.) — the 
space of functions of bounded variation allowing discontinuous initial data generating small rarefaction 
waves as well. We let the reader refer to [3,4] for precise statements and comprehensive discussions. 
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