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1 Introduction 

For a 2D velocity field (u1(x, y), 匹 (x,y))at (x,y) E配，thevorticity is defined by w = a許1-8四 2・
Interactions among high vorticity regions give rise to various complicated flow patterns. For 

instance, when the fluid flow is subject to an external force in planar domains, these vorticity 

regions are localized and self-organizing into beautiful stationary lattice patterns [26, 28, 30]. Such 

vortex lattice structures, whose physical meaning varies depending on problems, are observed 

not only in fluid flows but also in the other physical phenomena such as superconductors in 

electromagnetic fields [2, 24], quantized vortex structures in superfluid helium [25, 64] and Bose-

Einstein condensates [1, 22, 23] in low-temperature physics. In order to understand the formations 

of vortex lattices, we are tempted to create a phenomenological model based on the interactions 

among vortex structures. In this model, we assume that the potential function describing the 

interaction between two localized vortex structures has a logarithmic singularity, whose inducing 

azimuthal velocity field depends on the distance r and decays as 1/r as r goes to infinity. The 

model is different from process-driven partial differential equations such as the Navier-Stokes 

equations and the Ginzburg-Landau/Gross-Pitaevskii equations with localized vorticity initial 

data, but we can make use of it more flexibly to investigate the formation of vortex lattices for 

large number of high vorticity regions. A good survey of the model's history is given by Newton 

& Chamoun [46], in which many related references are found. See also a discussion in the Nobel 
Lecture by Abrikosov [3] regarding its physical relevance. 

Suppose that the high vorticity regions concentrate in a finite set of isolated points. That is to 

say, the vorticity distribution is represented by Dirac's delta measures whose supports are defined 

on these points, called point vortices. Owing to the singular distribution, the vorticity is no longer 

a meaningful quantity since it diverges at the points, while the circulation for a small Jordan 

curve around the point is well-defined. Hence, we regard the circulations as the strengths of point 

vortices. For this vortex distribution, we can obtain a logarithmic interaction energy between 

two point vortices, thereby investigating the equilibrium states of point vortices, which are called 

vortex crystals. The study of vortex crystals in planar domains dates back to the "vortex atom" 

theory of matter by Thomson [61] more than a hundred year ago. Later, Campbell & Ziff [12] and 

Campbell & Kadtke [13] provided a catalogue of vortex crystals in a circular disc domain. Aref et 

al. [5] and Newton [42] survey the mathematical aspects of vortex crystals and give many vortex 

crystals in planar domains with/without boundaries, on a sphere and the hyperbolic plane. Fixed 

vortex equilibria in multiply connected circular domains are found in [52]. 

In the meantime, the search of vortex crystals is related to finding "good" point configurations 

that can be used for quadrature rules, computer designs and interpolation of functions in finite 

element schemes. A comprehensive review of the problem on point configurations is presented by 
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Hardin and Saff [31]. For a given particle-interaction energy function, one can define good point 

configurations as a local minimizer of the energy function. The most famous problem is finding 

a set of N points, WN  = {叫似 overd'-dimensional compact set A embedded in d-dimensional 
Euclidean space that minimizes the following Riesz s-energy. 

£.(A, N) := inf L Ix; -Xjl-s, 
WNCA 
白

where s > 0 and I・I denotes the Euclidean distance. The parameter s controls the particle 
interaction. If s = 1, ふ(A,N) is the minimization for Coulomb energy corresponding to the 
classical potential theory of charged particles. As s→ oo with keeping N unchanged, this is 
equivalent to the best packing problem. On the other hand, for s→ 0, we obtain the minimizing 
problem of the following inter-particle energy, 

贔(A,N)= inf Lloglx;-xjl, 
WNCA 
i#j 

in which there appears an interaction energy with a logarithmic singularity. One of the central 

concerns in this problem is clarifying the behavior of£8(A, N) as N→ oo. According to [9, 10, 32]. 
we obtain£8(A, N) = O(NりforO < s < dH and E:s(A, N) = O(N打ogN)for s~ 向 whenpoints 
are on d-rectifiable compact manifolds with Hausdorff dimension dH. Another minimizing energy 

problem in connection with quadrature rules on compact manifolds is considered by Damelin et 

al. [17, 18]. Point configurations on the surface of a sphere has also been well-investigated, since 

the problems of s = oo and s = 0 are related to Tammes problem [60] and Smale's seventh 

problem [57], respectively. In [45], a connection between vortex crystals and the optimal packings 

of the spherical surface is discussed. See also the the introduction and the references of this paper, 

regarding the applications to physical and biological problems. 

The purpose of this article is reviewing the author's recent studies [53, 54, 55, 56] on vortex 

dynamics on the surface of a torus. Although the flows on the surface of a torus is no longer a 

physical relevance to real fluid flow phenomena, it is theoretically interesting to observe whether 

this geometric nature of the torus, which is a compact, orientable 2D Riemannian manifold with 

non-constant curvature and one handle, yields different vortex structures that are not observed 

so far. Vortex dynamics on the toroidal surface is not only an intrinsic theoretical extension in 

the field of classical fluid mechanics, but it would also be applicable to modern physics such as 

quantum mechanics and flows of superfluid films as discussed by Turner et al. [63]. As a matter of 

fact, a vector field of superfluid confined in a thin film on a toroidal surface has been considered 

analytically [14, 39]. A two-phase flow with a sharp interface on a torus was observed numerically 

in [48]. On the other hand, Hardin and Saff [31] showed some examples of point configurations on 

the surface of a torus that minimize Riesz s-energy: for s≪1, most of the points are distributed 

in the outer domain of the torus where the curvature is positive, while they spread uniformly 

for larger s > 1. The model of vortex dynamics proposed here adds more examples of point 
configurations on the toroidal surface in terms as vortex crystals [31]. 

The construction of the article is as follows. In Section 2, we provide the derivation of our 

vortex dynamics model based on the vorticity-streamline formulation. In Section 3, we consider 

the discrete vorticity distributions, i.e., point vortices, to investigate vortex crystals, whose linear 

stability and interactions are also discussed. In Section 4, we derive an analytic solution of a 

modified Liouville equation on the surface of a torus, which corresponds to a continuous vorticity 

distribution in the plane, known as the Stuart vortex [59]. The last section is summary and 

discussions. 
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2 Vortex dynamics on the surface of a torus 

Let M be an orientable closed surface and g be the Riemannian metric on M. We derive the equa-

tion of vortex dynamics on the manifold (M, g) based on the mathematical formulation provided 

by Dritschcl & Boatto [21]. We first consider a special Green's function G瓜，(o)for (, (o E M, 
called the hydrodynamic Green's function, satisむing

1 
▽ XfGH((, (o) = 8(。- GH((, (o) = GH((o, (), 

Area(M)' 

where▽ Xf and 8(。denotethe Laplace-Beltrami operator and the dirac function at a point (o 
on (M, g) respectively. Analogous to vortex dynamics in the unbounded plane訊 thevortex 
dynamics on M is described in terms of the vorticity w and the stream-function心. That is 
to say, for a vorticity distribution w((), the stream-function炒(()satisfies Poisson's equation, 
―▽沿心=w. With the hydrodynamics Green's function, the solution is given by the following 
inversion formula. 

心(()= -J向（ふ(o)w((o)dμ((o),
M 

(1) 

whereμdenotes the Riemannian volume form. 

We shall construct the vortex dynamics when the vorticity distribution is given on the surface 

of a torus 11'R,r of major radius R and minor radius r, which is embedded in the three-dimensional 

Euclidean space as follows [27]. 

l: (0,rp) E 1l'R,r→ ((R -r cos 0) cos¢, (R -rcos0) sin 0, r sin0) E訊

in which (0, rp) E (R/2d) x (恥/21r.Z)is the toroidal coordinates in the latitudinal and the Ion-
gitudinal directions. The modulus of the toroidal surface is given by a = R/r > 1, from which 
we introduce the two real parameters A and p as A = .../c翌=-1> 0 and p = exp(-2冗 4)E (0, 1). 
On the other hand, the toroidal surface is endowed with a complex analytic structure through the 

following stereographic projection: 

(: (0,rp) E 1l'R,r→ e叫 xp(-10 du)  E V C C, 。a-cos0 
in which V = {(E (CI p < 1(1 < 1} is an annular domain. It is conveniently written as (=  
臼 exp(rc(0))by introducing 

゜噂）＝ーJdu . 。a-cos 0 
This function is monotonically decreasing owing to r知(0)< 0 for a > 1, satisfying a quasi-
periodicity凡(0士加） = rc(0)干 21rA. The Laplace-Beltrami operator▽ 2 for the toroidal 

宜，r

surface is then expressed explicitly by using the toroidal coordinates (0, ¢) as follows: 

▽2 
1 a a 1 沙

咋，r=戸(R-rcos0)而 ((R-rcos0国） + (R-rcos0)2戸
For the stream-functionゆ(0,¢) and the vorticity distribution w(0, ¢) on the toroidal surface, we 
consider Poisson's equation, ―▽2 心=w. By solving the equation, we can derive the incom-

'll'R,r 

pressible velocity field (u0(0,¢),u¢(0,¢)) on the toroidal surface as follows [27]. 

u0(0, ¢) = 
1 aゅ 181/;

R-rcos0枷'
U¢(0, rp) = ---

r 80・ 
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Since the toroidal surface is compact without boundaries, we take Gauss'constraint into consid-

erations. 

ff亨 =0,
'II'R,r 

(2) 

where dO" denotes the area element of the toroidal surface. 

The analytic formula of the hydrodynamic Green's function G爪鱈） for (1 =く(0凸） and 
(2 =く(02,必） has been obtained [53]: 

叫 1,匂 =~log 詞（門+ 1 噂 1)這 2)+ F(01) + F(02)―上冗(01)-上rc(02),(3) 
く2 4召A 41r 41r 

in which the Schottky-Klein prime function P(() associated with the domain V and the function 

F(0) are given by 

00 

P(() = (1 -() II (1 -p梵）(1-pnい），
n=l 

F(0) = -4叫~0:2l゚:u二。:::du. (4) 

Note that伽 ((1心） is a doubly periodic function on the annular domain 1J with respect to the 
two arguments. 

In this article, we consider the two types of vortex distributions. One is the singular vorticity 

distribution consisting of r5-measures at N points, called point vo廿ices,which is given by 

N 

w(く）＝区rm似・ (5) 
m=l 

Here, 伍=(0加 cf>m)E 1l'R,r represents the location of the mth point vortex and the constant 
I'm E罠 isits strength for m = 1, ... , N. Point vortex dynamics in the unbounded plane has 

been used to understand fundamental vortex interactions in flow phenomena. We can find many 

references in the books by Saffman [50] and Newton [42]. The motion of point vortices is also 

considered on surfaces that have various geometric features, and it reveals connections between 

the geometry of flow domains and fluid evolutions. One of the most important examples is the 

surface of a sphere. The evolution equation for point vortices on the spherical surface was derived 

by Bogomolov [8] and Kimura & Okamoto [33], which has been utilized as theoretical models 
of planetary flows on a sphere with/without rotation [19, 43, 58]. It is generalized in a unified 

manner to point vortex dynamics on surfaces with constant curvature by Kimura [34]. Hally [29] 

investigated the stability of vortex street with using a generalized vortex dynamics on symmetric 

surfaces ofrevolutions. Recently, Dritschel & Boatto [21] have considered point vortex dynamics on 
2D surfaces conformal to the unit sphere based on a mathematical framework of [7]. The evolution 

equation of point vortices in multiply connected planar domains has been derived in [51], which 

is used to investigate many physical and engineering problems such as an ocean flow [40] and an 

efficient force-enhancing wing design with linear feedback control [ 41]. 

Another family of vortex distribution is the Stuart-type vortex, whose distribution is given by 

w(() = C占+g(く）， c,dE民 cd< 0. (6) 

The function g(() is specified depending on the Riemannian manifold M. For instance, g(() = 0 

when M is the unbounded plane, which gives rise to the classical Liouville equation. This equation 

appears not only in fluid dynamics but also in many problems of mathematical physics such as 

the field theory and plasma physics. Owing to the physical relevance, many exact solutions have 
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been obtained in [6, 11, 15, 38]. In fluid dynamics, it is regarded as a mathematical model of free 

shear layers. For instance, Stuart [59] obtained a periodic row of smooth vorticity distributions. 

On the surface of the unit sphere, Crowdy [16] extended the notion of Stuart vortex, in which the 

function g(() is given by g(() = 2/d. 

3 Dynamics of point vortices 

3.1 The N-vortex system and its integrability 

Suppose that the initial vorticity distribution is given by the linear combination of 8-measures (5) 

whose supports are located at (m = ((0m, ¢m) and strength are given byに form = 1, ... , N. 
We then obtain the stream-function through the inversion formula (1). 

ゆ(()= -J仰 ((,(o)trm似 dμ((o)=一 £rm仰((,(m) 
M m=l m=l 

By allowing the point supports of the 8-measures to move according to their inducing velocity 

field, we are going to derive the evolution equation of point vortices. Since the stream-function 

has a logarithmic singularity in the neighborhood of point vortex, we remove the self-singularity, 

giving rise to the following modified stream-function [36, 37] associated with (m: 

t 叫 ((m)= - rjc伍((m心）一引五R(ふ），
坪m

where the function R((m), called the Robin function, is defined by 

R((m) 
1 

＝ く隠 ［仰((ふ）― 云logd((ふ）］ ． 

Here, d((, (m) represents the geodesic distance between two points at (and (m on the toroidal 

surface. According to [21, 36], the equation of motion of the mth point vortices at (m(t) is derived 

by 
d知 ー枷m
＝一
dt 
2i入―2((加 (m)---=,

8(m 

where入((,() = (R -r cos 0)/1(1 denotes the conformal factor associated with the metric of the 
toroidal surface. The equation is explicitly written down as follows [53]. 

―
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in which a special function K(() is defined by K(() = (P. ぷ）/ P((). We call the system of ODEs 
the N-vortex system, which is formulated as a Hamiltonian system with N degrees of freedom 

with Hamiltonian 

N N N 
1 

鱈...,0N喜.'.,伽）＝ー2I:I:r凸伍（如，ら）ー；こはR(0m)- (9) 
m=lj'lm m=l 

This contains the logarithmic particle-interaction energy G郎パ）between the two point vortices 
at伍 and(j. Under the theory of Hamiltonian dynamical systems, we can discuss the integrability 

of the system. Let IN be defined by 

N 

IN=区い(a0m-sin0m), 
m=l 

then we have the following results whose proofs are given in [53]. 

Proposition 3.1. IN is invariant in time and it is in involution with the Hamiltonian. 

Theorem 3.1. The 2-vo廿exsystem is integrable for any vortex strengths. 

3.2 Equilibrium states of point vortices 

We find equilibrium states of point vortices, i.e., vortex crystals, in which their relative configu-

ration is unchanged. Let us rewrite the equations (7) and (8) in a simple form. 

似

¢m 

N 

区rj叫 (01,...'0凡仇．．．，伽），
足m

f rj叫 (01,...'0凡虹..., 伽） +rm叫 (0l,・・・,0N),
Jim 

(10) 

(11) 

in which• denotes the temporal derivative, and Fmj, Gmj and Hm are specified by 

F・ mJ 
i K(〈mlら)-K((m/(j) 叫— cos 如） [ 41r ]' 

(12) 

G mJ 
1 K((m/ら） +K((心）叫— sin0m 喝） 1 

r2(a -cos0m)2 [ 41ra + 41r2。＋臼―石], (13) 
Hm 

1 [ a0m -sin0m十在（％）＋上叫— cos0m)2 叫 4召A 47r sin0m] . (14) 

Suppose that N point vortices form a relative equilibrium state rotating at a constant speed Vo in 

the longitudinal direction, say, 0m(t) =心 and如 (t)=五+V0t. Then the substitution of the 
ansatz into the equations (10) and (11) yields the following algebraic equations for vortex crystals. 

trj恥（外．．．，応，'Pl'...'砂） = 0, (15) 
足m

t rpmj({J1, ... , む，互..., 砂） +rm叫（外...,{)N)-Vo=O. (16) 
j,f-m 
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Let us remark that any vortex crystal is a critical point of the Hamiltonian function (9) containing 

the logarithmic particle interaction energy term. The vortex crystal becomes a local minimizer 

of the Hamiltonian 1-l when the eigenvalues of the hessian of 1-l are all pure imaginary, in other 
words, it is neutrally stable. 

There are several ways to find the solutions of the equations (15) and (16). First, one can 
naively prescribe locations and strengths of point vortices, thereby confirming whether or not they 

satisfy (15) and (16). Since the locations of such point vortices are usually generated under the 
assumption that the configuration satisfies a certain discrete symmetry, most of the vortex crystals 

obtained by this approach become symmetric. The second approach is solving the algebraic 

nonlinear equations for given strengths using numerical solvers such as Newton's method. This 

allows us to obtain asymmetric vortex equilibrium states, which was used to construct vortex 

crystals in the unbounded plane [4]. 

The other approaches are based on the linear algebraic formulation of the equations (15) and 
(16). Suppose that we fix the locations (rJ加 'Pm)of N point vortices. Then the equations are 
regarded as a linear algebraic null equation Ar = 0, in which 

゜
Fi2 FlN 

゜F21 

゜
F2N 

゜ r1 

r2 

A=I  FN1 FN2 

゜゚
E股(2N+l)x(N+l)1 r=  € 政N+l_

H1 G12 GNl -1 

G21 H2 G2N -1 fN 

％ 

GN1 GN2 HN  -1 

Since the matrix A encodes the geometric information on the configuration of the point vortices, 

it is referred to as the configuration matrix. The solution vector r consists of the strengths of 

N point vortices and the latitudinal speed of rotation Vo. The linear equation has a non-trivial 

null space, if it satisfies det(AT A) = 0. Hence, if we find the locations of N point vortices whose 

corresponding configuration matrix satisfies Rank(A) = k < N + 1, then the vector r belongs 
to N + 1 -k dimensional null space. When k = 1 in particular, we can identify the strength 
rm of the mth point vortex uniquely up to士 signunder a certain normalization condition. 

The null space of A is numerically constructed by the singular value decomposition, which is 

a standard numerical tool. In the third approach, prescribing the locations of point vortices, 

we check if the configuration matrix A becomes rank-deficient. In the fourth method, we use a 

stochastic method, called the Brownian ratchets, where vortex crystals are searched by generating 

a random walk of points until its corresponding configuration matrix becomes rank-deficient. This 

method was proposed by Newton and Chamoun [44], which was successfully applied to produce 

many symmetric and asymmetric point vortex equilibria in the unbounded plane [44] and on the 

spherical surface [45, 47]. 

In what follows, we show a catalogue of vortex crystals obtained through these approaches. 

The first approach yields several vortex crystals on the toroidal surface [53]. When point vortices 

are located at antipodal points, the configuration is a vortex crystal for any strengths. As a matter 

of fact, it is a fixed equilibria, which is a vortex crystal with Vo = 0. When N identical point 
vortices are equally spaced along the line of latitude 0o, i.e. 

如＝〇。，やm= 21rm/N, rm= r, m = 1, ・ ・ ・,N, (17) 

then it is a vortex crystal, called the (latitudinal) N-ring [53]. 
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p ropos1tion 3.2. Let応 (0o)be defined by 

応 (0o)= 
NI' a0。-sine。十冗（伽）] + rsin0。

(R -rcos0。)2 [ 4召a 4叫 41r(R-rcos釣）2

Then the N-ring along the line of latitude 0o is a relative equilibrium rotating in the longitudinal 

direction at the speed VN(e。)．

Suppose next that two M-rings with the vortex strengths of the opposite signs are aligned along 

two symmetric lines of latitudes, namely 01 and切 with01 +切=21r. Then, the locations of 

N = 2M point vortices with the strengths I'2m-l =rand I'2m = -「 arespecified by 

02m-l = 01, 
21r 

西m-1= -M m, 02m = 27r -01, 
27r 

如＝一Mm, (18) 

and 

02m-l = 01, 
21r 

<P2m-1 = -M m, 02m = 27r -01, 
271" 71" 

鱗＝一Mm+-M' (19) 

form= 1, ... , M. The configuration (18) corresponds to M vortex dipoles, while the configuration 

(19) is called a staggered pair of M -rings. They are vortex crystals, which correspond to von 

K紅叫nvortex streets on the surface of a torus. 

p ropos1t10n 3.3. Let re= exp(磯1)-rc(27r —的） and V: 詞） be defined by 

嗜（的＝―(R-r:。直）2芦[K(reexp(噌j))+-:;re exp(—噌j)) -1] 

M鳥（的—乃(27r —的） rsin81 

4召A(R-rcose憎 47r(R-rco品）2・

Then, the configuration of the M vortex dipoles (18} along the lines of latitudes 81 and 27r -81 

is a relative equilibrium moving in the longitudinal direction with speed VJ:i(印

p ropos1t10n 3.4. Let re= exp(磯 1)一rc(27r —的） and V: 応） be defined by 

V砂）＝―(R-r:。直）2土[K(reexp囀 j+情）） +;: 乃exp(噂 j-情））ー 1]
MI'(r詞）一 rc(27r —的） rsin伍

4召A(R-rcos8州 47r(R-rcos釘）2

Then the configuration of the staggered M rings (19) along the lines of latitudes 81 and 27r -81 

is a relative equilibrium moving in the longitudinal direction with speed V: 紐 1).

In [56], more vortex crystals are provided with the linear algebraic formulation. With the third 

method, we obtain the following vortex equilibria. 

• (Longitudinal vortex rings) Suppose that N point vortices are polygonally arranged along 
the line of longitude r/> = 0. Owing to the discrete longitudinal rotational symmetry by the 

angle 1o = 27r / N, their locations are specified by 

27r 
如＝ー(m-1)+,, 五 =0, m=l, ... ,N, 1E[O,,o)- (20) 
N 

The configuration (20) is referred to as a longitudinal N -ring. As far as we have confirmed, 

longitudinal N-rings up to N = 400 are vortex crystals for any 1. See [56] for the strengths 

of the point vortices. Figure l(a) is an illustration of a longitudinal 6-ring on the toroidal 

surface of R = 3 and r = 1 (a= 3.0) embedded in 3D Euclidean space. 
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(a) 

-05 

-1 

巳戸戸
(d) 

-1 

Figure 1: (a) A longitudinal 6-ring. (b) The 3-aligned 10-ring with 1 = 0. (c) The 3-staggered 
(p,q) 

10-ring with 1 = 0. (d) An asymmetric N = 8 point vortices on the helical line x with p = 4 h 
and q = 1. (e) A point configuration of L = 7 helical longitudinal 19-rings aligned on the helical 
line x~,q) with p = 14 and q = 19. 

• (K-aligned/staggered M-rings) For positive integers K and M, we consider the configu-
ration where K latitudinal M-rings are arranged evenly in the latitudinal direction. Its 

configuration is specified by 

21r 21r 
仇，m= -(k-1) + 1, 匹，m=ー (m-1) +如， k= 1, ... , K, m = 1, ... , M, (21) 
K M 

in which IE [0,11), 11 = 21r/K and 虹€ 股/2迄 denotethe longitudinal and latitudinal 
phase differences between M-rings respectively. For虹=0, the configuration is called a K -

2,r aligned M-ring, while it is referred to as a K -staggered M-ring when <Pk =可(kmod 2). We 

note that N = KM  is the total number of point vortices of this configuration. As examples, 
the 3-aligned 10-ring and the 3-staggered 10-ring for 1 = 0 are shown in Figure 1 (b) and 
(c) respectively. As far as we have examined, for any I E [O, 21r / K) with 3 :;:; K :;:; 10 

and 3 :;:; M :;:; 10, K-aligned/staggered M-rings are vortex crystals whose corresponding 

configuration matrices have a one-dimensional null-space. It is discussed that the limit of 

the configuration as M→ 0 for K = 3 becomes K (or 2K) longitudinal "vortex sheets". 

The Brownian ratchets scheme gives rise to asymmetric vortex crystals that are aligned along 

the helical curve叫臼(s)for p, q E Z on 11'町 ClE丸
ゆ，q)
叫 : sE股/2疇>--+((R -r cosps) cos qs, (R -r cos ps) sin qs, r sinps) E JE3. 

This curve is homotopic to a loop corresponding to the element of the fundamental group asso-

ciated with the toroidal surface, which is denoted by xP炉forthe generators x and y. Letting N 
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point vortices move randomly along the curve, we find asymmetric vortex crystals. An example is 

shown in Figure l(d). We can obtain more vortex crystals with a helical symmetry as follows. Let 

(p, q) be a given pair of coprime positive integers. We choose L lines of longitudes, say 釘€ 恥/2迄
(p,q) 

for /!, = 1, ... , L. Then, each line c/Je intersects with the helical curve x at q points. We thus h 

obtain N = Lq point configurations aligned along the helical curve, which is referred to as longi-

tudinal helical q-rings. By the Brownian ratchets for the lines of longitudes {叫似 weobserve 

numerically that, for a certain pair of (p, q), there exists a real 1『,q)such that the longitudinal 
helical q-rings at 如＝罰— 1) + 1y,q) for/!,= 1, ... , L form a vortex crystal. One example is 
shown in Figure l(e). See more longitudinal helical q-rings in [56] and its supplemental material. 

Moreover, a systematic numerical investigation yields the following conjecture. 

Conjecture 3.1. Let L and q b e prime numbers, and p < q be multiples of L given above. Then 
(p,q) 

there exists a real IL E [O, 21r / L) such that L longitudinal q-rings consisting of the intersection 

points between the helical curve叫r,q)and the lines of latitude 呪＝罰— 1)+ 1y,q) form a vortex 
crystal. 

Let us briefly comment on the linear stability of the vortex crystals. We discuss in Section 3.4 

the stability of the latitudinal N-ring configuration in detail. On the other hand, it is numerically 

confirmed that most of the vortex crystals obtained the third/fourth approaches are linearly 

unstable. 

3.3 Interactions of two point vortices 

We examine in [53] how two point vortices interact with each other. When the two point vortices 

are put in the unbounded plane and on the surface of a sphere without boundaries, the interactions 

between the two point vortices are well-understood. For instance, the identical vortex pair with 

f1 = f2 co-rotates around their centre point at a constant speed without changing the relative 

distance. On the other hand, the vortex dipole with f1 =一応 onthese surfaces propagates 

together along the geodesics at a constant speed without changing relative distance. We here 

observe the interaction of two point vortices on the surface of a torus with the vortex dynamics 

model. 

Since the 2-vortex system is integrable, we reduce the original system into a one-degree-of-

freedom Hamiltonian system with using the two invariants 1i and IN, It is first shown that the 
evolution of the vortex dipole is defined globally in time. 

Theorem 3.2. The vortex dipole on the toroidal surface never collides. 

In addition, we obtain the following symmetry with respect to the evolution of the vortex 

dipole. 

Lemma 3.1. Vt E恥， 01(t) =恥(t)and釘(t)+必(t)= 0 holds if and only ifヨtoE JR, 01 (to) = 
恥(to)and釘(to)+む(to)= 0. 

This lemma indicates that when the vortex dipole is set on the same line of latitude at the 

initial moment, the latitudinal components of the two point vortices remain the same for all 

time. Substituting this relation into the Hamiltonian, we obtain a reduced Hamiltonian, which is 

a function of 01 and仇 Sinceevery contour line of the reduced Hamiltonian corresponds to an 

orbit of the vortex dipole, we can classify the evolution of the vortex dipole by choosing appropriate 

values of the Hamiltonian as we see in Figure 2(a). We find that the distance between the two 

point vortices is not always constant. In addition, the topological structure of orbits changes as 
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Figure 2: (a) Evolutions of the vortex dipole. (b) Evolutions of the identical vortex pair. 

the initial distance between them increases. That is to say, when the two point vortices are close to 

each other, the vortex dipole moves around the handle, whose orbits are homotopic to irreducible 

curves. As the distance increases, the orbits of the vortex dipole become reducible. This change 

occurs as s a consequence of the existence of a handle structure. 

For the identical point vortices, we have not yet proven the global existence of the solution, 

although the 2-vortex system is integrable. On the other hand, we can reduce the system into 

a one-degree-of-freedom Hamiltonian system by using the first integral IN. By choosing several 

contour lines of the reduced Hamiltonian, we observe the orbits corresponding to these contours. 

Some examples are shown in Figure 2(b). The interaction of the identical point vortices is more 

complicated than the vortex dipole. We see a co-rotating orbit as shown in the left panel of 

the figure, which is similar to those of the identical vortex pair in unbounded plane and on the 

spherical surface. On the other hand, for some other values of the Hamiltonian, the two point 

vortices go along repulsive orbits around the handle (in the middle panel), or two independent 

rotating orbits around the antipodal locations (in the right panel). 

3.4 Linear stability of a latitudinal N-ring point vortices 

As we mentioned in Section 3.2, most of the vortex crystals obtained in Section 3.1 are linearly 

unstable. However, the stability of the N-ring on the line of latitude 8。changesdepending on the 
latitude 8。andthe modulus a= R/r. We summarize the linear stability analysis of the N-ring 
carried out in [54]. Introducing small perturbations to the N-ring configuration, 

0m(t) =伽+E:{}叫t),
21rm 

伽 (t)=— +tVN(珈）＋翌m(t), E: ≪I, 
N 

we derive the linearized equation for the perturbations加 (t)and'Pm(t). We obtain all eigenval-

ues入。=0, 樗forp = 1, ... , N and their corresponding eigenvectors of the linearized matrix 
explicitly, from which we have the following stability criterion. 
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Figure 3: Stability region応 forthe N-ring. The components represented by "s" (resp. "u") 

is the parameter region where the N-ring becomes neutrally stable (resp. linearly unstable). (a) 

D4. (b) D7. 

p ropos1t10n 3.5. The N-ring is neutrally stable if and only if 

A(N) (p  2p炉 a-cose。cose。8王 VN底）sin釣(a-cos釣）
p 三 p l-N)+l一伊 ;£(a-cos釣） ( 1ra + N ― NI' ) 

is satisfied for all p = 1, ... , N -1. 

In other words, the condition is equivalent to say that if 

max A1N) ;£(a -cos釣）（a -cose。cose。_8訂％（玩）sine。(a-cos釣）
p=l, …，N-1 1ra + N NI')  (22) 

holds, then the N-ring is neutrally stable. Note that the criterion depends on the two parameters 

(0。,a) for given N. Hence, in order to discuss the linear stability of the N-ring, we show in 
Figure 3 the stability region, say D州0。,a), which is defined by 

DN = {(0。,a) E恥/2迄 x(l,oo)l0。anda satisfy (22)} . 
In this figure, the domains with the symbol "s" represent the domain of stability, while that with 

"u" is the parameter region where the N-ring becomes linearly unstable. The region is symmetric 

with respect to玩=1r. First, we observe small connected components of D4 in the neighborhood 

of (釣，a)= (1r/2, 1) and (31r/2, 1), while they no longer exist in D7. Next, in both of D4 and 
D1, we find that there exists an aspect ratio, say ao(N), such that a connected component of DN 

exists inside the region (0。,a) E [0,1r/2) x [ao(N),oo)U(31r/2,2吋x[ao(N),oo).Theb oundanes 
of these components tend to the lines 0。=1r/2 and 0。=31r/2 as a→ oo. This indicates that 
the N-rings located at the inner side of the toroidal surface is neutrally stable, while those on the 

outer side are linearly unstable. Also, we see ao(4) < ao(7). As a matter of fact, we have observed 
numerically that a0(N) is monotonically increasing as N gets larger. This indicates that, for every 

fixed a, the N-ring on the surface of a torus with the aspect ratio a becomes linearly unstable for 

sufficiently large N. The observations above are confirmed mathematically as follows. 

For sufficiently small a > 1, we show the existence of the small connected components in the 
stability region for 2 ;£N ;£6. 
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Figure 4: Examples of unstable periodic orbits of a perturbed 4-ring. 

Theorem 3.3. For sufficiently small Eo > 0 and for any a satisfying 1 +co> a> 1, there exists 

8 > 0 such that for all e。€ け/2-い/2+8)U(3計2-8, 31r /2 + 8), the N -ring is neutrally stable 
i旦;;N;; 6, and unstable if N~7. 

This result is closely related to the classical results on the linear stability of the N-ring in the 

unbounded plane and on the spherical surface: It has been shown in [20, 62] that the N-ring in 
the plane is neutrally stable for N ;; 7 and皿叫珈紐 N> 7. A stゅ市切皿的函叩畑応匹

on a line of latitude of the sphere reveals that the N-ring around the pole is nonlinearly stable for 

N < 7, neutrally stable for N = 7 and unstable for N > 7, although the stability depends largely 
on the line of latitude where they are placed [49]. For sufficiently small a迄1,the stability of the 
N-ring around玩=1r /2 and 31r /2, where Gauss curvature is zero, is similar to the planar and 
the spherical cases. 

For fixed a and e。,the following claims that the N-ring becomes linearly unstable for suffi-
ciently large number of N. 

Theorem 3.4. For all a>  1 and e。E[O, 21r), there exists N0(0。,a)~1 such that the N -ring 
is unstable for all N~No. 

The final result indicates that, for any N, there exists ao(N) > 1 such that the N-ring on the 

toroidal surface with the spect ratio a > ao(N) is linearly unstable. 

Theorem 3.5. For all N~2, p = 1, ... , N -1 and 80 E [O, 21r), there exists ao > 1 such that 
for all a~a。 the following holds. 

1. 80 E [0,2可¥[1r /2, 37r /2]⇒ Re入i= O; 
2. 80 E (1r/2,31r/2)⇒ Re吋>0 > Re入;;

s. e。=1r/2,31r/2andp~2 • Re入芦=O; 

4. e。=1r/2,3計2and p = 1⇒ Re入i;->O>Re入｝・
In the same paper [53], the evolution of the linearly unstable N-ring under a small perturbation 

is also considered. Since the N point vortex system is not integrable for N~3, the evolution 
of the perturbed N-ring is chaotic in general. However, owing to a discrete symmetry of the 

N-ring, one can obtain some unstable periodic orbits by restricting the Hamiltonian system with 

N degrees of freedom into a reduced Hamiltonian system with one degree of freedom. Figure 4 

shows some unstable periodic orbits when the 4-ring is perturbed in the reduced 2-dimensional 

phase space. When the aspect ratio changes, each orbit of the point vortex is homotopic to a 

longitudinal curve (Figure 4(a)), a latitudinal curve (Figure 4(b)) and a point (Figure 4(c)). 
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4 Steady solution of Stuart-type vortex distribution 

We consider a continuous distribution of the Stuart-type vortex on the toroidal surface, satisfying 

the following modified Liouville equation [55]. 

▽合R,r心=C古 +g((), c,dE股， cd< 0. 

The functional form of g(() is determined so that the solution of this equation is induced from 

that of the Liouville equation in the plane, ▽即昨=ce吟， whichis expressed as follows [15]: 

叫ば）
1 21f'(〈）12 
= dlog [-cd(l + !(()12)]' 

where f(() is a given analytic function on C. After some calculations, we find that the function 
g(() is equivalent to Gauss curvature of the toroidal surface, 

2 cos0 2 
g(0) = --

dr(R-cos0) d 
= !i('TI'R,r)-

Let us remember that the functional form of g(() for Stuart vortex on the surface of the unit sphere 

is given by i This is consistent with the present result, since the curvature of the spherical surface 
is Ii(§ り=1. We thus obtain the analytic formula of the modified Liouville equation as follows. 

心（は）＝咋（は）ー ~log [ R -2~(~os 0] =咋（は）ー ~log 入((,(), (23) 

where入（＜ふ isthe conformal factor associated with the metric of the toroidal surface. We also 
note that the analytic solution for Stuart vortex on the surface of the unit sphere [16] is represented 
by the same formula with the conformal factor of the surface i.e. 入=(1 + 1(1 2 2 ) . Let us also 
remark that the existence of the modification function does not affect Gauss'constraint (2) in this 

case, since Gauss-Bonnet theorem assures the total curvature over the toroidal surface vanishes: 

J J t£('ll'R,r)dcr = 21rx('ll'R,r) = 0, 
1I'R,r 

where x(M) denotes the Euler characteristics of the manifold M. Hence, after the explicit solution 
(23) is obtained by specifying the analytic function/((), we then confirm that the following Gauss' 

condition is satisfied. 

ff古 dCT= 0. 
11'R,r 

The choice of the analytic function/(() is not arbitrary when we consider the solution on the 

toroidal surface, since the function is not only analytic on the annular domain V = { (E C I p < 
(I < 1}, but it should also be doubly periodic with respect to 0→ 0士2m1rand¢ → の士 2n1r
for any n, m E Z. Stuart [59] used /(() = tan(z) = sin(z)/ cos(z) to construct a solution in 
the plane with the periodic boundary condition. We extend the choice of the function to the 
doubly periodic case. That is to say, introducing the conformal mapping (=  ez from V to 

'Dz= {z E Cl -2以;;Rez;; 〇，゚;;Imz;; 加},which is a rectangular fundamental domain, we 
choose the analytic function as follows. 

J(z) = 
sn(z) sn(logく）
＝ 

cn(z) cn(log()' 
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(a) streamfunction (b) vorticity 

〇上 0~ 

-0.5 -0.5 

Figure 5: Solution of the Liouville equation with Stuart-type vorticity distribution on the surface 

of a torus with the aspect ratio a=  2.0. (a) Stream-function and (b) vorticity. 

in which sn(z) and cn(z) are the Jacobi elliptic functions with the quarter periods K = 1rA and 

K'= 1r. Plugging it into the formula (23), we obtain the solution 

訓只） = ! log [- 2ldn(log () 12 
d cd(lsn(log()l2 + lcn(log()l2戸(R-rcos0)2]・ 

The function 

w(z互）＝
ldn(z)l2 

(lsn(z)l2 + lcn(z)l2戸

in this formula is doubly periodic with respect to z→ z + 2K and z→ z + 2iK'with K =冗4
and K'= 1r. We also find that the function has two simple zeros at 0:1 = iK'= 1r and 0:2 = 

K+iK'=元4十面 inthe fundamental domain Dz. Since the complex potential for a point vortex 

at z = a is locally represented byゆ(z,芝）～ー羞loglz -al, there exist two point vortices with 
the identical strength -41r/d at z = a1 and 0:2, which correspond to the antipodal locations on 

the toroidal surface. Since two point vortices located at the antipodal positions are always vortex 

crystal for arbitrary strengths as we see in Section 3.1, the formula yields the steady solution on 

the surface of a torus. It is also shown that the solution satisfies Gauss'constraint (2). Figure 5 

shows the stream-function and the vorticity distribution of the solution on the toroidal surface 

with the aspect ratio a = 2.0. 

5 Summary and future direction 

In this review article, we have introduced several recent results on vortex dynamics on the surface 

of a torus. The model equation is derived based on the mathematical formulation starting from 

Poisson's equation for the stream-function and the vorticity. For vorticity distributions such as 

point vortices and Stuart-type vorticity distribution, we have constructed the stream-function 

explicitly. With this model, we consider the problems finding vortex crystals, which is a critical 

point of the Hamiltonian containing a logarithmic particle-interaction energy. The linear stability 

of vortex crystals and the interactions between point vortices are also discussed. Moreover, we find 
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an analytic formula of a modified Liou ville equation on the surface of a torus, which is the counter-

part of Stuart vortex with a continuous vorticity distribution. One issue of this mathematical 

derivation is that we don't take the circulation theorem around the handle into considerations 

in this mathematical formulation when we allow point vortices to move. In order to make this 

model satisfy the circulation theorem, we may need to introduce a certain external flow, called 

"pore flow" as discussed in [14, 39]. In connection with the configurations of quantized vortices, 

as shown in [56], the strengths of the vortex crystals except the antipodal vortex crystals and the 

N-ring cannot be normalized as an integer generically. In this sense, vortex crystals fail to have 

quantized strengths. This may be remedied by combining point vortices with the Stuart-type 

vortex distributions as considered in [35]. It will be a future direction of the present study. 
Let us finally comment on the relation between the minimizing point configurations and vortex 

crystals on compact surfaces. The point configurations of the vortex crystals are spreading in the 

longitudinal as well as latitudinal directions evenly, which are different from the point configu-

rations minimizing the Riesz energy, although the Hamiltonian (9) has a logarithmic singularity 

as Eo(A, N). Investigating the relation between the enery-minimizing point configurations and 

vortex crystals will also be another interesting future topic. 
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