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1 Introduction 

This article is the summary of [4]. We consider the system for a motion of 
compressible viscoelastic fluids: 

如+div(pv) = 0, (1.1) 

p(如 +v• ▽ v) -Vふ— (v+ v')▽ div十▽p(p) = (32div(pFTF) + pg, (1.2) 

8tF + v・¥7 F = ¥7vF (1.3) 

in a domain 

n = {x = (x', 邸）； x'= (x1, 四） E11'2n x11'2n,Oく知く 1}. 
°'1°'2  

Here戸＝股／信Z,O:j > O; p = p(x, t), v = T国(x,t), 炉(x,t), 悦(x,t))
"j 

and F = (F可x,t))i:<:i,j:<:3 denote the unknown density, velocity field and 
deformation tensor, respectivity, at time t 2: 0 and position x E D. We note 

that p, v, F are 闊—periodic in Xj for j = 1, 2. p(p) is the pressure that is 

a smooth function of p satisfying p'(l) > 0. We denote I by 1 =凶可〗
v, v'andけarenondimensional parameters that are constants satisfying 
v > 0, 2v + 3v'2: 0, fJ > 0. Here v and v'are the viscosity coefficients; fJ 
is the strength of elasticity. If we set fJ = 0 formally, we obtain the usual 
compressible Navier-Stokes equations. g =が(x3,t)e1 is a given external 
force, where e1 = T(l, 0, 0) and g1 is a smooth function of (x3, t) convergmg 
tog~= gし（知）ヂ 0as t goes to infinity. Here and in what follows T• stands 
for the transposition. 

We impose the initial condition 

(p,v,F)lt=D = (Po,vo,Fi。)， div(po丁F。)= 0, (1.4) 
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and the non-slip boundary condition 

vi四=0,1= 0. (1.5) 

Under the suitable assumption for g, the problem (1.1)-(1.5) has a non-
―1 trivial solution (p, ii, F) = (1, 戸(x3,t)e1, (▽ (x -ゆ (x3,t)釘））ー1)satisfying 

8ぶ＝訊討lt=O= 0, (訊耐）1四=0,1= 0. 

Here炒(x3,t) =記(x3,t)e1 denotes the displacement vector. This solution 
represents a motion of parallel flow. Moreover, we will show that ii and F' 

satisfy the following estimates; 

IIがII H'(o,,) <: :II"" IIか+0 (~)'―C竺
IIF -F'oollH5(0,1) ::::'.: ア佃ollか+o(畜） e―C竺
―1 where Foo= (▽ (x -心OO釘））ーl=J+ ▽（ゆと叫；ゆ~=ゆ~(叫 is the unique 

solution of the problem -/3芍いえ =gよ，最~I工Fo,1 = O; I is the identity 
matrix. 
The purpose of this article is to investigate the stability of the parallel 

flow under the large numbers of v, 1 and /3. 
The system (1.1)-(1.3) is one of the basic models describing motion of 

compressible viscoelastic fluids. The first equation (1.1) and the second equa— 

tion (1.2) are the compressible Navier-Stokes equations including the elastic 
force /32div(p『 F). The third equation (1.3) is the time evolution of the 

deformation tensor. We refer to [2, 11] for more details of the physical back-

ground. 

In the hydrodynamic theory parallel flow is a good example of the simple 

shear flow and its stability has been widely investigated. Kagei [5] studied 
the stability of stationary parallel flows in the usual compressible case. It 

was proved [5] that if the Reynolds number and the Mach number are suffi-

ciently small, the nonlinear stability of stationary parallel flow holds. Endo, 

Giga, Geitz and Liu [1] discussed the stability of time-dependent parallel flow 

effected by the pressure gradient for the incompressible viscoelastic case. As 

for the compressible viscoelastic case, there are no mathematical results of 

the stability of nontrivial flow, while the stability of the motionless state 

(1, O,J) has been studied by [3, 9, 10]. 
In this article we will show that if v≫l, 召 ≫1,虎 ≫1and 
詞II恥。，l)≪1,then the problem (1.1)-(1.5) has a unique global solu-
tion (p,v,F) such that (p,v,F) E C([O,oo),H刊D))and ll(p(t), v(t), F(t)) -
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(1, v(t), P(t))IIH叩）→ 0 exponentially as t→ oo, provided that (Po -
1, Vo―D。,F。-Fo) EH叩） is sufficiently small. Moreover, we prove that 
(p(t), v(t), F(t))→ (1, 0, F00) exponentially in L00(!1) as t→ oo by ap-
plying_ the decay estimate of the parallel什owimmediately. Here, ii,00 = 

(1, 0, F00) is a stationary solution of the problem (1.1)―(1.5) in the case 
g = g~(x伽.We call this th・1  e mot10n ess state with nontnvial deformat10n 
given by F00, throughout this article. 
The proof of the main result of this article is obtained by the Matsumura— 

Nishida energy method [8] to establish a priori estimate of exponential decay 
type. Letゅbethe displacement vector denoted by 

心(x,t) = X(x, t) -x. 

Here X(x, t) is the material coordinate which has the inverse x = x(X, t) 
solving the flow map 

｛翌 ~v(x(X,t), t), 
x(X, 0) = X. 

We set ((x, t) =心(x3,t) -(ー炉(x3,t)釘）. We then see that F is written in 
terms of (as 

F=P-P▽⑪ +h(Vく），

where h satisfies h(V() = O(IV(l2) for IV(I≪1, (3≫l and llvollH5≪1. 
By using心， theproblem for the perturbation is reduced to the one for u(t) = 
(¢(t), w(t), く(t))= (p(t) -1, v(t) -v(t), 心(t)-(ー炉(t)e1))which takes the 
following form: 

｛［□ ~:, 二,=~~:':二，予＋生（△(+Koo()~f', (i.fi) 

wlxJ=O,l = 0, (I四=0,1= 0, (¢, w, () lt=O = (のo,wo, (o), 

Here ii = v + v'and砂oo_=此e1;Koo〈isa linear term of (satisfying 
IIKoo〈IIL2::; 晨II▽(IIH'; f', i = l, 2, 3 are written in a sum of nonlinear 
terms and linear terms with coefficients including v, 祝ー心~- Applying a 
variant of the Matsumura-Nishida energy method given in [9] to (1.6) and 
dealing with the interaction between the parallel flow and the perturbation, 

the following estimate holds: 

llu(t)lli囁 2xH3+ ft e―c,(t-s) llu(8) lli2xH舷 H3ds :S Ce―c,tlluolli憂 xH3,

゜
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provided that v≫1,'Y≫1, fJ≫1, and the initial perturbation is sufficiently 

small. 

We finally note a comparison between the case fJ = 0 and the case fJ≫ 
1. When fJ = 0, we formally obtain the usual compressible Navier-Stokes 
equations as mentioned before. In this case, the system (1.1)―(1.3) with 

fJ = 0 has a stationary parallel flow元=(1ぶ (x砂） with叫乃） f-O; and 
it was shown by Kagei [5] that ils is asymptotically stable provided by v≫ 

1 and'Y≫1. On the other hand, the main result of this article imples 

that the time-dependent parallel flow il in the compressible viscoelastic fluid 

is asymptotically stable if v≫1,'Y≫1 and fJ≫1. When g(x3, t)三

g~(叫e1, g~f- 0, the parallel flow in this article is a stationary solution 
il00 = (1, 0, F00(x3)), which represents the motionless state with nontrivial 
deformation given by F00. Namely, the motionless state匹 withnontrivial 

deformation is stable if fJ≫1, while the parallel flow with non-zero velocity 

field is stable if fJ = 0. This offers an interesting question what happens 
when the elastic force weakens; it should occur some transition to nontrivial 

flows at some value of fJ. We are going to deal with this issue in the future 

work. 

This article is organized as follows. In Section 2 we introduce the parallel 
flow and then state the main result of this paper on the stability of the 

parallel flow. In Section 3 we give the outline of the proof of the main result. 

2 Main Result 

In this section we summerize the results in [4]. For 1 :::; p :::; oo and D = 
(0, 1), 0, we denote by V(D) the usual Lebesgue space on D and its norm 
is denoted by II・11£P, Let m be a nonnegative integer. We denote by H叫D)
the m-th orderび Sobolevspace on D with norm II・IIH=・We denote by 
HJ(D) the completion of C~(D) in H1(D). Here C~(D) is the set of all 000 
functions with compact support in D. 

The inner product ofび(D)is denoted by 

(J, g) = J J(x)g(x) dx, J, g Eび(D).
D 

Divergence of a matrix-valued function F = (Fii)i<::i,j<::3 is denoted by 

3 

(divF)i = L佐F'J_
j=l 



158

For matrix-valued functions F = (Fり1:Si,j:Snand G = (GiJ)i:c:;i,j:Sn, we denote 
F▽ G by 

3 

(F▽ G)i = (div(GTF) -G(div TF))i = L F1国 G心
k,l=l 

In this article, we assume the following conditions for p0, Fi。:

div(p0 TF'i。)=0, 

padetFi。=1. 
ヽ
｀
’
／
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It then follows from (1.1)-(1.5) that these quantities are conserved. See [10, 
Proposition 1] for a proof of Lemma 2.1. 

Lemma 2.1 If (p, v, F) is solution of the problem (1.1)―(1.5), then the fol-
lowing identities hold fort~0: 

div(p T F) = 0, 

pdetF = 1. 

(2.3) 

(2.4) 

祀We set "'= min {v, ―} • We state the existence of a parallel flow of the 
1ノ

problem as follows. 

Proposition 2.2 Let g1 E Hに([O,oo);い(0,1)) satisfy suitable compatibil-
ity conditions and g~E H刊0,1). If g1 satisfies eco四taぷ EL2((0, oo); H3(0, 1)) 
for some positive constant c0, then the following assertion holds: 

If vlt=o = v。Eが (0,1), then there exist a parallel flow (戸，F)of the 
problem (1.1)―(1.5) satisfying the following estimates uniformly fort 2". 0: 

llv(t) IIかさ Ce―co1<t(llvollか +~IIが (o) 11か+"'~2 lleco噸ぷlll2co,oo;か）），
II園 (t)11加::::;Ce―co1<t (;  肺ollか+llg1(0) II か +~lleco賃g鳴2(0,oo;H3) , 
冒(t) 此IIか::::;Ce―co氏t 1 1 

I)  
（戸肺ollか+7Flll(O)IIか+K,/34 lleco1<t8叫伽O,oo;H3))・

―1 ― Here鯰 isthe solution of the problem -(3勺い心 1 ―1 = goo, 心oolx3=0,l= 0. 

The proof can be found in [4, Appendix] . So we omit it. 
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We consider the stability of the parallel flow (1, v, F). We set U(t) = 

（の(t),w(t), G(t)) = (p(t) -1, v(t) -v(t), F(t) -F(t)). Then U satisfies the 
following problem 

伽 +divw= /1, 
8tw-v△wーfiv'divw+ cy2▽¢ー伊divG

＋虎div(G丁広 +Eoo丁G)=l叫

知—▽w+w因 Eoo―（▽w)広＝戸，

▽ </>=-div℃ + TEJ00div℃ +14, 

wlxa=D,1 = 0, (</>,w,G)lt=D = (</>。,w0,G。)．

(2.5) 

Here v = v+v', 鳥＝ゆ豆1,Eoo = Foo―I=▽（ゆ00釘）； and Ji, i = l, 2, 3, 4, 
den~te the竺um_9f nonlinear terms and linear terms with coefficients including 
ii, 心exp=心一似oo;

l1 =fl+ flv; 
且＝ーが8尋 llv=ーdiv(¢w),

戸＝豆+!和；

且＝—炉佐w -(w38詞）釘ー v(⑭駅）釘ー(32div(G屯exp+Eexp TC), 

匹 砂 "'(2の笠
fえ＝一w・Vw+ (―△ w+  (¢ 心が）叫― ▽ divw — ▽¢― ▽ Q(1>) 

1+¢ 1+¢ 1十の 1 +¢ 

132¢132  
+ div(G屯＋かG)+ div(G℃＋の（『c+cTP+びG)),
1+¢1+¢  

戸=l1 + JR,; 
l1 =ーが仇G十▽wEexp -w鳩ぶxp+▽ vG, f和＝ーW・▽G十▽wG, 
戸=lt+Jt;
ft= -TEexpdiv℃, ft=一TP-1div(厨G),

where 

E = P-I, 己=P-Poo =▽（砂lxp釘），
1 

Q(cp) = cp2 J P"(l + scp)ds, ▽ Q = O(cp)匹 forlc!>I≪i. 
゜

We are now in a position to state the main result of this article. 
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Theorem 2.3 ([4]) Under the assumption of Proposition 2.2, there exists 

positive constants v1, "(1, /31 such that if v 2乃，ユ＞ 2 炉 2
ツ十;:, - 'Y1, r 2 /31, 

then the following assertion holds. There is a positive number Eo such that 

if (Po, Vo, F;。)EH叩） and恥 Eが (0,1) satisfy II (Po -1, Vo ー万。， F。—
I)IIH2(n) + llvollか (0,1):::=: Eo, Ji。(Po-l)dx = 0, then there exists a unique 
solution (p(t), v(t), F(t)) E C([O, oo); H刊D))of the problem (2.5), and the 
perturbation U(t) = (p(t) -l, v(t) -v(t), F(t) -F(t)) satisfies 

IIU(t)IIか+je―ci(t-s)II U(3) lli2xH3xH心：：：：： Ce―citllU(O)IIか

゜for t 2 0 uniformly. 

3 Outline of the proof of the main result 

In this section we explain the outline of the proof of the main result. Theorem 
2.4 is proved by a standard manner from the local solvability theorem and 
a priori estimate. We first state the local time existence of the solution of 
the problem (2.5). By a similar argument to that in [6, 9, 12], the local 
solvability theorem is guaranteed. 

Proposition 3.1 If (Po, Vo, F;。)Eザ (D)satisfies (2.1)-(2.2) and p。こふ
then there exists positive numbers T and C such that the following assertion 
holds. The problem (2.5) has a unique solution (p, v, F) E C([O, T]; が (D))
satisfying OtP互FEC([O,T]; び(D)),v E L2([0, T]; 炉 (D)),OtV E C([O, T]; び(D))n
び([O,T];が (D)).

A priori estimate for U(t) is stated as follows. 

Proposition 3.2 There exist positive numbers v0, 10 and fJ。suchthat if 
V ;::=: Vo, ニミ碕 and告ミ廃， thenthe following assertion holds. Let T v+v' 
be an arbitrarily given positive number. Then there exists a positive constant 

c5 such that if llvoll15(0,l) + E(t) :S:: c5 uniformly fort E [O, Tl, it holds the 
following estimate: 

詞+1 e-ci(t-s) D(s)ds'.SC (e咋 (0)+ 1t e-ci(t-s)た(s)ds)

uniformly for t E [O, T], where C is a positive constant independent of T. 
Here E(t) and D(t) are some quantities equivalent to 

IIU(t) 1112 + ll8tU(t) 1112 
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and 

IIU(t)IIJI2xH3xH2 + IIBtU(t)llf鮫 Hlx£2,

respectivity; た(t)is a function satisfying 

邸）さ叫+~+亨＋］）以t) + (E叫+E(t))D(t) 
uniformly for t E [O, T] with a positive constant C independent of T . 

Proposition 3.2,together with Proposition 3.1, implies Theorem 2.3 if II U,。II枷＋
llvoll枷o,i)is small enough and z; > v0,'> 2 炉 2

v+v'-'Yo, 平 2".(}。 forsome pos1t1ve 
constants v0,'Yo and f3o. 
To prove Proposition 3.2, we introduce the displacement vector and rewrite 

the problem (2.5) for the perturbation U by using the displacement vector 

in place of G. We denote the displacement vector by心：

心(x,t) = x -X(x, t). 

Here X(x, t) is the inverse of the material coordinate x(X, t) which is intro-

duced in Section 1. Then心satisfies

0心十v=-v-▽ゆ，

叫⑬=0,1 = 0. 

We see from Lemma 2.1 that F has its inverse F-1 for tミ0.According 

to the continuum mechanic theory, the deformation tensor F is defined by 
ax . F=寂 mthe material coordinate. Hence we expect that F-1 is written as 

F-1=▽ X. 

We next impose the following conditions for F-1 and X: 

｛戸(x,0) =▽ X(x, 0) for x En, 
X = x on {知=0, 1} for t 2: 0. 

The formal relation (3.1) is justified by the following lemma. 

(3.1) 

(3.2) 

Lemma 3.3 If G = F-1 satis.fies the condition (3.2), then the identity (3.1) 

holds for x E D and t 2:: 0. 

In terms of心， wesee from (3.1) that Fis written as 

F=  (I+▽心）ーl=J―▽心+h(▽心）．
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Here 
h(▽心） =(I+▽心）ーl_J十▽似

We set心＝ー炒出+(. Since 

G=-F▽⑪＋が（▽く）．

with 

が=h(F▽ ()た

間 =O(lv'⑰)for IV(I~1, 

we see that u = (cp, w, 〈） solves the following initial boundary problem: 

励+divw = f (3.3) 

知— u△w -vv'divw + cy2▽の＋厨（ぷ+Koo()=f町 (3.4)

釈 +w-w-v'炒00= f叫 (3.5)

▽ cp =▽ div(+ M00(+ J4, (3.6) 

wl勾=0,1= o, Cl四=0,1= 0, (少，w,Olt=O = (cp。,wo, (o)- (3.7) 

Here K00(and M00(are given by 

K00(= div(E00▽ (+Eoo▽ (+Eoo▽ (E』+(Foo▽ (Foo)▽ E00 + E00▽ (F00 v'(F00), 

M00(= div(T(E00▽ (+▽q羞＋方OO▽(E00)) -E;;;,div(T(fr00 v'(F00)), 

and P, i = 1, 2, 3, 4, denote; 

f1 = fl+! 知
fl= -v• ▽ ¢, J);, =ーdiv(¢w),

『=fi+f和；

Ji= -v• ▽ W-W• ▽ v -v(cpo訳）釘ー防Kexp(,

匹 砂 壺
fir=ー W・▽ w+ (—• w+ (¢ 晏3が）叫―▽divw―▽  ¢- ,2 ▽ Q(cp) +鱈，

1十の 1+¢ 1+¢ 1+¢ 

ド=11+1知
11 = -W• ▽五exp — v• ▽ (, f和＝一W・ ▽く，

『=ft+ft; 

ft= Mexp(, f丸=TP-1div(T(¢(.F▽ (.F) -(1 +の）が）），
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where 

炉 =F▽が +(P▽(F)▽ (P▽⑪ーが）＋が▽(P-P▽ (F +が），

Kexp(= (F▽⑪)▽ Eexp + (Foo▽ (Eexp + Eexp▽くFoo+Eexp▽ (Eexp)▽ Eoo 

＋尻xp▽(P▽ぴ）＋応▽(Foo▽⑰  exp+ Eexp▽く几＋尻ぅxp▽⑰exp), 

Mexp(= TP, ごdivT(Eexp▽ (F00 + Foo▽⑫  exp+ Eexp▽ (Eexp) -Tftexpdiv(T(F▽〈F)).

We then have the following a priori estimate for the perturbation u = 
(¢,w,(). 

Proposition 3.4 Under the assumption of Proposition 3.2, the following 
assertion holds. There exists a positive constant r5 with r5 < 1 such that if 
llvoll恥。，l)+ E(t) ::::; r5 uniformly for t E [O, Tl, then it holds the following 
estimate: 

E(t) + 1t e―ci(t-s) D(s)dsさC(e―citE(O) + 1t e―ci(t-s)R(s)ds) (3.8) 

uniformly fort E [O, T] with a positive constant C independent of T. Here 
E(t) and D(t) are equivalent to 

llu(t) 11i2xH2xH3 + 11a四(t)111校£2xH1,

and 

llu(t)lli2xH双H3+ Iに加(t)lli2xH1 xHl 
respectivity; R(t) is a function satisfying 

邸）さ叫 +~+ii!__+1) D(t) + (E(t壮+E(t))D(t) 
V (32 (3 (3 

uniformly for t E [O, T] with a positive constant C independent of T . 

Proposition 3.4 yields Proposition 3.2. We can verify the detail of the 
proof of Proposition 3.4 in [4, pp.2082-2099]. So we will derive the estimates 
for llv'wlll2 and II▽（応 onlyin this article. 
We prepare some propositions. We see from (3.3)-(3.5) that the estimate 

of 11▽叫恥 isgiven as follows. 

Proposition 3.5 It holds the estimate: 

1 d 
(召II少|出 +llwl出+/3刊▽(I出）+ Do(w) 
2 dt 

::; /32 (l(Koo(, w)I + I(▽ (w. ▽砂oo),▽ ()I)+ N1, 
(3.9) 
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where 

D。(w)= vllVwl出+vlldivwll仇
N1 = 121(!1, c/>)I + l(f2, w)I + (3叶（▽ド，▽C)I-

To control 11▽ CII仇weneed the following estimate. 

Proposition 3.6 It holds the estimate: 

d (32 12 

dt 
--(w, C) + -II▽ CIIわ+-lldiv(lli2 

2 

さ (1 十 ~)11v疇+2~lldivw Ill, (3-10) 

+,y門(Moo(,()I+ (3叶(Koo(,()I+ l(w・ ▽砂oo,w)I +炉，

where 

N2=l(f汽C)I+ IU3, w)I +召1(!4,()1-

(3.10) is obtained by (3.4) and (3.5). The key point of the proof is using 
(3.6) to eliminate▽ ¢. By using the Poincarc inequality and the Schwartz 
inequality, the right-hand side of inequality (3.9) is estimated by 

v C 
-IIVwl応+-IIV(I出+NI_
2 I/ 

We thus obtain 

d C 

dt 
-E。+D。こ―II▽(lli2 + 2N1, 

V 
(3.11) 

where 

E。=,2ll¢lli2 + llwlli2 + f32IIV(lli2-
Similarly, the right-hand side of inequality (3.10) is estimated by 

c(~+ 贔＋喜+ l/>2) D。 +c(1+~)11▽(llf2 + N2 
We thus obtain 

d (32 笠
dt 
--(w,() +-II▽ Cl出+-lldiv(llf2 

2 

<: C じ＋羞＋喜 +v〗:)1)。 +c (1十二） II▽〈|出 +N' (3.12) 
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By (3.11) + (3.12), we have 

嘉 (E。ー (w,())+(n。 +~II▽Cl応+tll<liv(lll2) 

豆□＋羞+~+占）い (1+~ 十~) II▽ (1112 (3.13) 
+2N1 + N2. 

By taking v, D, 12 /32 large such that C (l + .!!... " 1 2 1 
132 V 132 十平十亨）：：：：½,C (1 +嘉+,;)::; 
4, the following estimate is obtained by (3.13) 

Here 

d 1 
-E1 +-Di::; CR1. 
dt 4 

E1 =E。ー (w,(), 
D1 =D。＋炉II▽Cl出+召lldiv(lll2,

凡 =Nl+N2.

We note that E1 is equivalent to E。for/32≫1. 
This conclude the estimates of II▽ wlll2 and II双 II仇
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