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1 Introduction

This article is the summary of [4]. We consider the system for a motion of
compressible viscoelastic fluids:

Op + div(pv) =0, (1.1)
p(Ov 4+ v - Vo) — vAv — (v +V)Vdiv + Vp(p) = B2div(pF 'F) + pg, (1.2)
OF +v-VF =VuF

in a domain

?

Q={z=(2",23); 2’ = (x1,72) € T2x X T2«,0 < 23 < 1}.
ajg az

Here Tz—" = R/%Za o >0 p = p(x,t)7 v = T(vl('r'/t)vvz(x:t)avg(xat))

J ..
and F' = (F"Y(z,t))1<; <3 denote the unknown density, velocity field and
deformation tensor, respectivity, at time ¢t > 0 and position z € 2. We note

that p,v, F are 2%-periodic in z; for j = 1,2. p(p) is the pressure that is

J
a smooth function of p satisfying p/(1) > 0. We denote v by v = +/p/'(1).
v, V' and [ are nondimensional parameters that are constants satisfying
v>0,2v4+3/ > 0,8 >0. Here v and 1/ are the viscosity coefficients;
is the strength of elasticity. If we set 8 = 0 formally, we obtain the usual
compressible Navier-Stokes equations. g = g'(x3,t)e; is a given external
force, where ¢; = '(1,0,0) and ¢' is a smooth function of (x3,t) converging
to gt = gL (73) # 0 as t goes to infinity. Here and in what follows " stands
for the transposition.

We impose the initial condition

(pav7 F)ltzo = (p07U0aF0):« diV(POTFO) :Oa (14)



and the non-slip boundary condition
7)|m3:0,1 =0. (15)

Under the suitable assumption for g, the problem (1.1)-(1.5) has a non-
trivial solution (p, 9, F') = (1,0 (w3, t)er, (V(x — ¢ (z3,t)er)) ') satisfying

atq/_Jl = 1_)17 17[_}1|t:0 = 07 (’L—)lv djl)|$3:0,1 - 0

Here 1)(x3,t) = ¥'(z3,t)e; denotes the displacement vector. This solution
represents a motion of parallel flow. Moreover, we will show that © and F
satisfy the following estimates;

1
||171HH4(0,1) < Cllvol)3s + O <;> et

IF = Fullason < Sl + 0 (55)
where Fl, = (V(z —¥le)))™ =T+ V(¢Lle); vl = L (z3) is the unique
solution of the problem —/32032:31@0 = gL, ¥ |s—01 = 0; I is the identity
matrix.

The purpose of this article is to investigate the stability of the parallel
flow under the large numbers of v, v and .

The system (1.1)-(1.3) is one of the basic models describing motion of
compressible viscoelastic fluids. The first equation (1.1) and the second equa-
tion (1.2) are the compressible Navier-Stokes equations including the elastic
force B%div(pF " F). The third equation (1.3) is the time evolution of the
deformation tensor. We refer to [2, 11] for more details of the physical back-
ground.

In the hydrodynamic theory parallel flow is a good example of the simple
shear flow and its stability has been widely investigated. Kagei [5] studied
the stability of stationary parallel flows in the usual compressible case. It
was proved [5] that if the Reynolds number and the Mach number are suffi-
ciently small, the nonlinear stability of stationary parallel flow holds. Endo,
Giga, Gotz and Liu [1] discussed the stability of time-dependent parallel flow
effected by the pressure gradient for the incompressible viscoelastic case. As
for the compressible viscoelastic case, there are no mathematical results of
the stability of nontrivial flow, while the stability of the motionless state
(1,0,7) has been studied by [3, 9, 10].

In this article we will show that if v > 1, 4> > 1, 2 > 1 and
||ﬁ0|\§{5(071) < 1, then the problem (1.1)—(1.5) has a unique global solu-
tion (p, v, F) such that (p,v, F') € C([0,00), H*(Q2)) and [|(p(t),v(t), F(t)) —
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(1,9(¢), ())||Hz(9 — 0 exponentially as ¢t — oo, provided that (py —
1,09 — T, Fy — Fy) € H%(Q) is sufficiently small. Moreover, we prove that
(p(t),v(t), F(t)) — (1,0, Fy) exponentially in L>(Q) as t — oo by ap-
plying the decay estimate of the parallel flow immediately. Here, 6, =
(1,0, ) is a stationary solution of the problem (1.1)—(1.5) in the case
g = g (x3)e;.We call this the motionless state with nontrivial deformation
given by F,, throughout this article.

The proof of the main result of this article is obtained by the Matsumura-
Nishida energy method [8] to establish a priori estimate of exponential decay
type. Let 1) be the displacement vector denoted by

7/)(33’ t) = X(‘Tv t) -

Here X (x,t) is the material coordinate which has the inverse x = x(X,t)
solving the flow map

dx
& a(X.).0),
z(X,0) = X.

We set ((z,t) = (x3,t) — (—*(x3,t)e;). We then see that F is written in
terms of ¢ as

F=F—FV(F+h(V(),
where h satisfies h(V() = O(|V(]?) for |V(| < 1, 8> 1 and ||5y]|gs < 1.
By using 1), the problem for the perturbation is reduced to the one for u(t) =
(6(1). w(t). €(1)) = (p(t) — L,o(t) — (1), 0(t) — (~(t)ex)) which takes the

following form:

0 + divw = f1,
Oyw — vAw — vVdivw + 2V + B2(Al + K.¢) = f2,

_ 1.6
O+ w—w-Vihe = f3, (1.6)
w|13:071 = 0’ C|l'3=0,1 = 07 (@7 w, C)‘t=0 = (¢07 Wo, CO)
Here 7 = v+ v/ and ¥ = LZ_J;oel; K, C is a linear term of ( satisfying

1KooCllr2 < %HVCHHl; fi, i = 1,2,3 are written in a sum of nonlinear
terms and linear terms with coefficients including @, ! — ¥!.. Applying a
variant of the Matsumura-Nishida energy method given in [9] to (1.6) and
dealing with the interaction between the parallel flow and the perturbation,
the following estimate holds:

t
||,u‘(t)||%12><H2><H3 +/ 6701(1575)HU(S)”%IQXHQ‘XH3 ds < CeicltHuOH%]?tzxH?w
0



provided that v > 1, v > 1, § > 1, and the initial perturbation is sufficiently
small.

We finally note a comparison between the case = 0 and the case 8 >
1. When g = 0, we formally obtain the usual compressible Navier-Stokes
equations as mentioned before. In this case, the system (1.1)-(1.3) with
B8 = 0 has a stationary parallel flow @5 = (1,7s(x3)) with @5(z3) # 0; and
it was shown by Kagei [5] that @, is asymptotically stable provided by v >
1 and v > 1. On the other hand, the main result of this article imples
that the time-dependent parallel flow @ in the compressible viscoelastic fluid
is asymptotically stable if v > 1, v > 1 and 5 > 1. When g(x3,t) =
gc{o(.rg)el, gL, # 0, the parallel flow in this article is a stationary solution

= (1,0, Fx(z3)), which represents the motionless state with nontrivial
deformatlon given by Fo. Namely, the motionless state 7o, with nontrivial
deformation is stable if g >> 1, while the parallel flow with non-zero velocity
field is stable if § = 0. This offers an interesting question what happens
when the elastic force weakens; it should occur some transition to nontrivial
flows at some value of 3. We are going to deal with this issue in the future
work.

This article is organized as follows. In Section 2 we introduce the parallel
flow and then state the main result of this paper on the stability of the
parallel flow. In Section 3 we give the outline of the proof of the main result.

2 Main Result

In this section we summerize the results in [4]. For 1 < p < co and D =
(0,1),Q, we denote by LP(D) the usual Lebesgue space on D and its norm
is denoted by || - ||». Let m be a nonnegative integer. We denote by H™ (D)
the m-th order L? Sobolev space on D with norm || - ||z=. We denote by
Hj (D) the completion of C°(D) in H*(D). Here C>°(D) is the set of all C>
functions with compact support in D.

The inner product of L?(D) is denoted by

(f.9) = /f ) dz, f.g € LA(D).

Divergence of a matrix-valued function F' = (F7);; ;<3 is denoted by

(divF)’ Z Oy, F.
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For matrix-valued functions F' = (F');<; j<, and G = (G")1<; j<n, we denote
FVG by

3
(FVG)' = (div(G'F) - G(div'F))' = Y F™*9,,G™.

k=1
In this article, we assume the following conditions for pg, Fy:
div(po 'Fy) = 0, (2.1)
podetFy = 1. (2.2)

It then follows from (1.1)-(1.5) that these quantities are conserved. See [10,
Proposition 1] for a proof of Lemma 2.1.

Lemma 2.1 If (p,v, F) is solution of the problem (1.1)—(1.5), then the fol-
lowing identities hold fort > 0:

div(p'F) =0, (2.3)
pdetF = 1. (2.4)

We set £ = min { v, %2} . We state the existence of a parallel flow of the

problem as follows.

Proposition 2.2 Let g' € H} ([0,00); H3(0,1)) satisfy suitable compatibil-
ity conditions and gt € H3(0,1). If g' satisfies e©~'0,g* € L*((0,00); H3(0, 1))
for some positive constant cq, then the following assertion holds:

If ¥|—o = 0o € H?(0,1), then there exist a parallel flow (p,, F) of the

problem (1.1)—(1.5) satisfying the following estimates uniformly for t > 0:

> —CoR > 1 1 cok

[8(t)15s < Cemo (|vo||§,s + 5 lg Ol + —5lle tatglliao,oom) ’
~ —CoK ﬂ4 — 1 cokt ¢

[03(0) 3 < Ce °t(;uvo|zs+||gl<o>|z3+;ne° 09 000t ) -

7 7, —Ccok 1 = 1 1 CoR
19 (8) = @hll < Cemeo (;mnzs + galla O + gl tat91||i2(o,oo;H3>> -

Here 1}, is the solution of the problem —f3*02, 1 = g, YL |uy—01 = 0.

The proof can be found in [4, Appendix] . So we omit it.



We consider the stability of the parallel flow (1,9, F). We set U(t) =
(p(t),w(t), G(t)) = (p(t) — 1,v(t) — 0(t), F(t) — F(t)). Then U satisfies the
following problem
0o + divw = f,

Oyw — vAw — vVdivw + v*V¢ — f2divG
+52div(GTEL 4+ Ex'G) = /2,

0,G — Vw + w30, B, — (Vw)Ey = 13,

Vo= —div'G + "Exdiv'G + fi,

w|:c3:0,1 - 07 (¢7w7G)‘t:0 = (QS(),'LU(%G()).

Here 7 = v+ 1/, o = ¥l 61, B = Fou — I = V(1 e1); and f7, i = 1,2,3, 4,

denote the sum of nonlinear terms and linear terms with coefficients including

v, 7/:emp - 1% - 1%00;

=+
fl=—2'9,¢, fi =—div(ow),
2=+
[} = —0'0,w — (w?0,,5")er — V(992,75 )er — B2Aiv(G By + Eeyy'G),
o Vo - 02 = ve o
My,u;Vw+T:5(Aw+w%.ﬁﬂ 5o 1+o
2 2

1ﬁ+¢¢dlv(GTE +E'G) + b ¢d1v(GTG +o(F'G+G'F+G'q)),

=R+

f3 = —0'0,,G + VwEuyy — w0y, Buyy + VG, f3 = —w- VG + VG,
Fr=fi+
fi = —TE.div'G, fi=—TF'div(¢'G),

where

E=F—1I, Eypy=F—Fy =V

ezp )

M@:&/fwrmwmﬂm:OwW¢mww<L
0

We are now in a position to state the main result of this article.
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Theorem 2.3 ([4]) Under the assumption of Proposition 2.2, there exists
positive constants v, Y1, B1 such that if v > vy, ,,W_j,, > 42, z—z > 32,
then the following assertion holds. There is a positive number ey such that
if (po,vo, Fo) € H*(Q) and vy € H®(0,1) satisfy ||(po — 1,v0 — Do, Fy —
D2 + ool a501) < €0, Jo(po — 1)dz = 0, then there exists a unique
solution (p(t),v(t), F(t)) € C([0,00); H?(2)) of the problem (2.5), and the

perturbation U(t) = (p(t) — 1,v(t) — v(t), F(t) — F(t)) satisfies

t
U ()12 +/O N () [z rads < Cem | U(0)][72

fort > 0 uniformly.

3 Outline of the proof of the main result

In this section we explain the outline of the proof of the main result. Theorem
2.4 is proved by a standard manner from the local solvability theorem and
a priori estimate. We first state the local time existence of the solution of
the problem (2.5). By a similar argument to that in [6, 9, 12|, the local
solvability theorem is guaranteed.

Proposition 3.1 If (py, v, Fo) € H*(D) satisfies (2.1)~(2.2) and py > 1,
then there exists positive numbers T and C' such that the following assertion

holds. The problem (2.5) has a unique solution (p,v, F') € C([0,T]; H*(D))
satisfying Oyp, O, F € C([0,T]; L*(D)), v € L*([0,T]; H*(D)), dyv € C([0,T); L*(D))N
L*([0,T]; HY(D)).

A priori estimate for U(t) is stated as follows.

Proposition 3.2 There exist positive numbers vy, v and By such that if
v > v, ”fy, > 42 and f—; > 32, then the following assertion holds. Let T
be an arbitrarily given positive number. Then there exists a positive constant
o such that if ||To||%s g1 + E(t) < & uniformly for t € [0,T], it holds the

following estimate:

t t
E(t) +/ e~ 1) D(s)ds < C (ecltE(O) +/ e (ts)ﬁ(s)ds>
0 0

uniformly for t € [0,T], where C is a positive constant independent of T'.
Here E(t) and D(t) are some quantities equivalent to

IUO72 + 10U @)1
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and
1O O 2 1z + 10U ()72 1 25

respectivity; R(t) is a function satisfying

- 1 1 v 9 = N
RW<C<Z+@+7?+E>””+@W

uniformly for t € [0, T] with a positive constant C' independent of T' .

+ E(1))D(1)

rol=

Proposition 3.2,together with Proposition 3.1, implies Theorem 2.3 if ||Up||2,.+
||170||§{5(071) is small enough and v > vy, % >3, fj—; > (3¢ for some positive
constants vy, v and fy.

To prove Proposition 3.2, we introduce the displacement vector and rewrite
the problem (2.5) for the perturbation U by using the displacement vector
in place of G. We denote the displacement vector by :

P(x,t) =x — X(2,t).

Here X (z,t) is the inverse of the material coordinate (X, t) which is intro-
duced in Section 1. Then ¢ satisfies

o +v=—v-Vi,
1/)|m3:0,1 - 0

We see from Lemma 2.1 that F has its inverse F~! for ¢ > 0. According
to the continuum mechanic theory, the deformation tensor [ is defined by
F = 2% in the material coordinate. Hence we expect that F~! is written as

= ox
Fl=VX. (3.1)
We next impose the following conditions for £~! and X:

{ F~1(2,0) = VX(z,0) for z € €, (32)

X =xzon{z3=0,1} for t > 0.
The formal relation (3.1) is justified by the following lemma.

Lemma 3.3 If G = '~ satisfies the condition (3.2), then the identity (3.1)
holds for x € Q and t > 0.

In terms of ¢, we see from (3.1) that F' is written as

F=I+VY) ' =1-Vy+h(Vi).



162

Here
h(Vy) = (I + V)™t — I + V.

We set 1) = —1)te; + (. Since
G = —FV(F + 1 (V).
with
h' = h(FV()F,
1| = O(IV¢P) for [V(] < 1,
we see that u = (¢, w, () solves the following initial boundary problem:
D¢+ divw = f1, (3.3)
ow — vAw — pVdivw + 12V + BAHAC + Koo() = 12, (3.4)
O +w—w- Vi = [, (3.5)
V¢ = Vdiv( + Mo ¢ + f*, (3.6)
Wlzg=01 =0, Clag=01 =10, (&, w,()|i=0 = (o, wo, Co)- (3.7)
Here K ¢ and M, are given by
Kool = div(ExV( + ExV( + ExV(Ey) + (FuV(F)VEw + EV(FV(Fy),
Moo = div((ExV( + V(Ey + ExV(Ey)) — ELdiv((FxuV(Ey)),

and f', i = 1,2,3,4, denote;

fr=fiL+ I\

2= fi+ fi

fi=—0-Vw—w-Vo—v(pd2,0")e; — [ KeppC,

2 ) ve ) 2 1 v . ¢ o8 272
fy=-w-Vw+ m(—Aw + (905,07 )er) — delVU/ - mvﬁb 17 ¢VQ(¢) + 8717,
=1+

fgz_w'vd_)ea:p_l_)'v<7 f]g\)[:_wv<7

fr=rfi+

fi = MeyC, fi = TFHdiv(T(¢(FVCE) — (1+ ¢)ht)),
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where
h? = FVh' + (FVCF)V(FVCE — hY) + h'V(F — FVCF + h'),
KewpC = (FVCF)V By + (FaoV(Eeap + EeryVFo + EeryV(Eeyy)V s
+EeeyV(EVCE) + FooV(FV(Eerp + EerpV(Fo + EerpV(Eep),
MppyC = TENAivT(Buyy VCFno + FooVCE ey + EonyV(FEeup) — Eegpdiv((FVCEF)).

We then have the following a priori estimate for the perturbation v =

(6,0, ).

Proposition 3.4 Under the assumption of Proposition 3.2, the following
assertion holds. There exists a positive constant § with 0 < 1 such that if
H7_"0||§15(0,1) + E(t) < ¢ uniformly for t € [0,T], then it holds the following
estimate:

E(t) + /0 te_cl(t_s)D(s)ds <C (e‘cltE(O) + /0 te_cl(t_S>R(s)ds) (3.8)

uniformly for t € [0,T] with a positive constant C independent of T'. Here
E(t) and D(t) are equivalent to

) 2w r2semrs + 10|22 211
and
()52 s s + N0 |72 1 11

respectivity; R(t) is a function satisfying

Vv 1
R()<C< +ﬁ+7+B)D()+(E(t) + E(t))D(t)

uniformly for t € [0, T] with a positive constant C' independent of T' .

Proposition 3.4 yields Proposition 3.2. We can verify the detail of the
proof of Proposition 3.4 in [4, pp.2082-2099]. So we will derive the estimates
for ||[Vwl||2, and ||V(||2, only in this article.

We prepare some propositions. We see from (3.3)-(3.5) that the estimate
of |[Vw||%, is given as follows.

Proposition 3.5 It holds the estimate:

1d
5 5 (PN + [l + B2IVCIE:) + Dow)

< B (|(Kol w)| + [(V(w - Vi), VO)[) + N,
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where

Do(w) = v||Vw|: + #l/divw|[7.,

N =22|(1 o)+ (f2 w)l + B2|(V 2,V Q).
To control |[V(|[3., we need the following estimate.

Proposition 3.6 It holds the estimate:

d
_E(UJ’C) _HVC”LZ JF ||d1VCHL2

2
3.10
(HG@)WMH+Mmmwm (5.10)

T2 (MG, O + B2 ( Kool O] 4 [(w - Vo, w)] + N2,
where
N2 = (2Ol + (2, w)| +2°1(f4, Ol

(3.10) is obtained by (3.4) and (3.5). The key point of the proof is using
(3.6) to eliminate V¢. By using the Poincaré inequality and the Schwartz
inequality, the right-hand side of inequality (3.9) is estimated by

v C
2 IVwls + Vel + N

We thus obtain

d C
&EOJFDO < ;HVCH%Z + 2N, (3.11)

where
Eo = 7|10ll72 + w7z + B2 VC|I72

Similarly, the right-hand side of inequality (3.10) is estimated by
1 v o1 ,
C +—+—+ e Dy +C 52 IVCII7. + N2

We thus obtain
d
Cdt priCy

1% 1% 1
<O( B2+ +U—62>DO+C<1 52>||VC||L2+N2

2
Q)+ —HVCHLz + 5 ”diVC“QL?
(3.12)
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By (3.11) 4 (3.12), we have

d 2 ~2
(g~ (.0 + (Do 2w, + /—||div<|%z)

| 3.13
<C< +E+“_+ 5)DO+C( +%+ )HVCHLQ (3.13)
+2N' 4+ N2,

By taking v, ¥, v2, 32 large such that C' (}/ + 5+ w% + #) <iC (1 + g—j + %) <
2 : : : :
7 the following estimate is obtained by (3.13)
d 1
—F+-D; <CR;.
st

Here

El = EO - (U),C)7
Dy = Dy + 32| V(|72 + [l div¢][2,
Ry = N'+ N*.
We note that F; is equivalent to E, for 52 > 1.
This conclude the estimates of [|[Vw||2, and [|[V(][2,.
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