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Abstract

We study the rarefaction waves for a model system of hyperbolic balance laws
in the whole space. We prove the asymptotic stability of rarefaction waves under
smallness assumptions on the initial perturbation and on the amplitude of the
waves. The proof is based on the classical L? energy method.

Introduction

We consider the following model system of hyperbolic balance laws:

@+ q+u, =0.

(1.1)

Here u and ¢ are unknown real valued functions of x € R and ¢ > 0, and the flux f is
a given smooth function of u. We assume that f is strictly convex with respect to u,
that is, f”(u) > 0 for any u under consideration. In this talk, we shall treat the system
(1.1) in the whole space R for brevity. Further, we prescribe the initial condition

(ua q)(.ﬁE,O) = (an qO)(x)v r€R. (12)

Our system (1.1) can be regarded as a model system in kinetic theory. Indeed, u
and ¢ are considered as the variables describing macroscopic and microscopic states,
respectively. In this case, by applying the Chapman-Enskog expansion to (1.1), we have
g =0 and

u+ f(u), =0 (1.3)
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as the first order approximation. Note that (1.3) is regarded as a model of the com-
pressible Euler equation. Also, as the second order approximation, we have ¢ = —u,
and

w+ f(u)y = gy, (1.4)

which is considered as a model of the compressible Navier-Stokes equation. Our rarefac-
tion wave of (1.1) is the function of the form (u", 0), where u" is the centered rarefaction
wave of (1.3) which connects the constant states uy with u_ < uy. Namely, u” is the
continuous weak solution of the Riemann problem for (1.3) with the Riemann data

w(z,0) = ul(z) = {“" z<9, (1.5)
Uy, x> 0.
Notice that u" is given explicitly as
u_, x/t < f'(u),
o t) = ()M, ) S o/t S flus), (16)
Uy, fuy) < x/t.

We assume that the initial data (ug, qo) is close to (uf,0) in a suitable sense and
the amplitude 6 = |uy — u_| of the rarefaction wave (u”,0) is small. Then it will be
shown that a unique solution (u,q) to the problem (1.1)-(1.2) exists globally in time
and approaches the rarefaction wave (u”,0) uniformly in = as ¢ — oco. Namely, we have

l(uw—u",q)(t)]|e — 0 as t— 0.

See Theorem 2.1 below for details.

There are a lot of works concerning the asymptotic stability of rarefaction waves for
physically interesting systems. The pioneering work was done by II'in and Oleinik [3] in
1960 for the scalar viscous conservation law (1.4). The rate of convergence toward the
rarefaction waves for (1.4) was investigate in [, 2]. For the half space problem for (1.4),
Liu, Matsumura and Nishihara [10] first proved the asymptotic stability of rarefaction
waves.

The asymptotic stability of rarefaction waves for the compressible Navier-Stokes
equation (barotropic model) was first proved by Matsumura and Nishihara [12] in 1986.
This stability result was improved in [13] for large data and in [9] for the half space
problem. A similar asymptotic stability result is known also for the full system of the
compressible Navier-Stokes equation. See [5].

The asymptotic stability of rarefaction waves was shown also for related systems.
We refer the reader to [11, 6] for the Broadwell model in the discrete kinetic theory and
to [7] for a model system of radiating gas.



Main result

We state our main result concerning the asymptotic stability of rarefaction waves for
(1.1). Let (u",0) be the rarefaction wave for (1.1), where u" is the centered rarefaction
wave of (1.3) and connects the constant state us with u_ < w,. Note that u” is the
continuous weak solution of the Riemann problem (1.3), (1.5) and is given explicitly by
(1.6). Then our stability result in the whole space is stated as follows.

Theorem 2.1 (Stability in the whole space) Letu_ < uy and put § = Juy —u_|.
Assume that the initial data (ug,q) satisfies ug — ufy € L?, (ug), € H' and qo € H?,
and put

Iy = |luo — ugl| L2 + [[(v0)e |1 + [l qol| z2,

where uf, is the Riemann data in (1.5). If Iy + § is suitably small, then the initial
value problem (1.1), (1.2) has a unique global solution (u,q) in an appropriate sense.
Moreover, this solution approaches the rarefaction wave (u”,0) specified above uniformly
mx R ast — oco:

l(w—u",q)(t)||pe =0 as t— oo. (2.1)

Preliminaries

We now recall the following basic propositions related to Sobolev space (see [14]).

Proposition 3.1 (Convergence at infinity [14]) Let E(t) be an absolutely contin-
uous function on [0,00). Assume that E € L'(0,00) and “C € L'(0,00). Then

lim E(t) = 0.

t—r00

We next recall Sobolev’s inequality in one-dimensional space, which is crucial later.

Proposition 3.2 (Sobolev’s inequality in one-dimensional space [14]) Letu €
H'(R). Then the following statements hold true:

we C'NL®R), lim u(t)=0

t—+o00

and
oz S Cllull ey el ey
Smooth approximation of rarefaction waves In this chapter we make a smooth ap-
proximation of the rarefaction wave u”.
Our rarefaction wave u” is the continuous weak solution of (1.3) and is not smooth.
Following to [12, 11], we construct a smooth approximation of the rarefaction wave u".
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To this end, we recall that if w is a solution of (1.3), then w := f’(u) satisfies the
inviscid Burgers equation

w; + (%uﬂ) —0. (3.1)

Consequently, we find that for our rarefaction wave u”, the function w" = f'(u")
becomes a weak solution of the Riemann problem for (3.1) with the Riemann data

w_, r <0,
w(x,0) = wy(x) = (3.2)
Wy, x>0,
where wy = f'(ug) with u_ < uy, ie, w_ < wy. We know that this w" is given
explicitly as
w_, x/t Sw_,
w'(z,t) =< x/t, w_ S/t S wy,
Wy, wy S w/t.
t T=w-_t
T = w4l
0
T

(w- <wy)

This is the centered rarefaction wave of (3.1) which connects the constant states w,
with w_ < w,.
For our purpose we first construct a smooth approximation of the rarefaction wave

w”. To this end, following to [12, 14], we consider (3.1) with the following smooth initial
data:

w(x,0) = wo(x) == %(uq +w_)+ %(w+ — w_) tanh(ex), (3.3)

where € € (0,1] is a parameter. (In this paper we only use the case ¢ = 1.) It is known
([12, 14]) that the problem (3.1), (3.3) has a unique smooth solution w. We state this
result in the following lemma.

Lemma 3.3 ([12, 14]) Let w_ < wy and put § = |wy —w_|. Let &g > 0 be any fized
constant and assume that § < 0y. Then the problem (3.1), (3.3) has a unique smooth
solution w with the following properties:

(1) w- <w(x,t) <wy and wy(z,t) >0 forz € R andt 2 0.
(ii) [Jwy(t)||zr < min {Ce'=Ps, C6VP(1+t)~U=1P} fort =0, where 1 < p < occ.

(i) |OFw(t)||L» < min {Cer=1rs, Cek=D=VP(1 4+ 1)~} fort 20, where 1 < p < oo
and k =2,3,4.

(iv) |[(w—=w")(t)||= — 0 as t — oo, where w" is the rarefaction wave of (3.1).
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Now, following [12, 13], we define a smooth approximation U of our rarefaction
wave u” for (1.3) by the formula

Uz, t) = (f) ((w(z, 1), de, f(U¥z,t)=mw,t), (3.4)

where w is the smooth solution of (3.1), (3.3) with wy = f’(uy) and e = 1. Note that
this U satisfies

R Ry _
U; +f(U-)m23 (3.5)

Uft(2,0) = Ugi(z) = (') (wo(2)),
where wy is given by (3.3) with wy = f'(uy) and € = 1. As an easy consequence of
Lemma 3.3 with € = 1, we have the following result for our smooth approximation U¥.

Lemma 3.4 (Smooth approximation in the whole space [12, 14]) Let u_ < uy
and put & = |uy —wu_|. Let 09 > 0 be any fived constant and assume that & < do.
Then the smooth approximation UT defined by (3.4) with ¢ = 1 satisfies the following
properties:

(i) u_ <UR(z,t) <uy and UR(z,t) >0 forz € R and t = 0.
(ii) |UE@®)||lzr < min{Cs, C5/P(1+1)~ =P} fort 20, where 1 < p < oco.

(iii) Let @ € [0,1]. Then |OFUR(#)||r < CO(1 4+ )~ fort =0, where 1 < p < oo
and k = 2,3,4. Here the constant C' is independent of 6.

(iv) [[(UR —u")(t)|lz — 0 as t — oo, where u” is the rarefaction wave of (1.3).

Reformulation of the problems

This section is devoted to reformulate the given problems.

We consider the initial value problem (1.1), (1.2). Let u” be the centered rarefaction
wave for (1.3) which is given in (1.6), and let U be the smooth approximation of u".
This U® is constructed in Lemma 3.4 and satisfies (3.5). We regard (U®, —UZE) as a
smooth approximation of the rarefaction wave (u",0) for (1.1), and look for solutions
(u,q) of the problem (1.1), (1.2) in the form

u=U"+¢,  q=-Uf+r (4.1)

Our problem (1.1), (1.2) is then rewritten in the following form for the perturbation
(¢,7):

o+ (FUR+¢) = f(UM) + 10 = UL, (4.2a)
T4 dp = = (U0, (4.2b)
(¢,7)(2,0) = (do,70)(2),  T€R, (4.3)

where
po = up — Uy, ro = qo + (Ug)a-
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For this reformulated problem (4.2), (4.3), we obtain the following result on the global
existence and asymptotic stability.

Theorem 4.1 (Global existence and stability in the whole space [15]) Let
u_ < uy and put § = luy —u_|. Asuume that (¢o,79) € H* and put Eq = ||(¢o,70)| a2
Then there is a positive constant &, such that if Eg+ & < 01, then the problem (4.2),
(4.3) has a unique global solution (¢,r) satisfying

(6,1) € C°([0,00); H*) N C([0, 00); HY),
b, € L*(0,00; HY), r € L*(0,00; H?).
Moreover, the solution (¢,r) decays to (0,0) uniformly in x € R ast — oo:

(o, ) () lwree — 0 as ¢ — oo. (4.4)

The key to the proof of Theorem 4.1 is to show the desired a priori estimate of
solutions to the problem (4.2), (4.3). To state our a priori estimate, we introduce the
energy norm E(t) and the corresponding dissipation norm D(t) as follows:

E(t) == sup [[(¢,r)(7)lls2,

07

t
DR i= [ IVTRS)E + loulr) s + () e .
0
Then the result on our a priori estimate is stated as follows.

Proposition 4.2 (A priori estimate in the whole space [15]) Let T > 0 and let
(¢, 1) be a solution to the problem (4.2), (4.3) such that

(¢.7) € C°([0,T]; H*) N C([0,T]; HY).

Then there is a positive constant 63 not depending on T such that if E(T) + 4§ < ds,
then the solution (¢, r) verifics the a priori estimale

E(t)* + D(t)* < C(Ej +6”) (4.6)

fort € [0,T], where 8 € (0,1/4) is a fivzed number and C' is a positive constant inde-
pendent of T'.

We will give the proof of Proposition 4.2 in Section 5.

Proof of Theorem j.1. The global existence result in Theorem 4.1 can be proved by the
standard method which is based on the local existence result combined with the a priori
estimate stated in Proposition 4.2. Here we omit the details on the proof of the global
existence result and only give the proof of the convergence (4.4).



To this end, we first note that our global solution (¢, r) satisfies the energy estimate
(4.6) for any t = 0. This together with (4.2) yields the estimate for the time derivatives:

t
/ 6es ()22 + [[rell2 dr < C(E2 + 6) (4.7)
0

for any ¢ = 0. To prove (4.4) for ¢, we put ®(t) := [|¢,(t)]|7.. We see that ¢ €
LY(0,00) by (4.6). Also we observe that |®'| < 2||¢,||z2||¢se||z2. Therefore we find that
@' € L'(0,00) by (4.6) and (4.7). By Proposition 3.1 we thus have ® € W1(0,c0),
which shows the convergence ®(t) = ||¢,(t)||7. — 0 as t — co. This together with
Sobolev’s inequality (Proposition 3.2) yields

1/2 1/2
]l < CllSI1L5 |6: 115" — 0,

6:llze < Cllgsll I busll 2" — 0
as t — 0o, where we also used (4.6). Thus we have proved [|¢(t)|lwre — 0 ast — 0.
We can prove (4.4) for r in a similar way. We put R(t) := ||7(¢)||3;:. Then, using (4.6)
and (4.7), we see that R € W'1(0, co), which shows R(t) = ||r(t)[|%, — 0 as t — oo.
This together with Sobolev’s inequality and (4.6) gives the convergence [|r(t)||jy1.0c — 0
as t — 0. Thus the proof of Theorem 4.1 is completed. O

Finally in this section, we give the proof of Theorem 2.1 by using Theorem 4.1.

Proof of Theorem 2.1. We assume the smallness condition in Theorem 2.1. Namely, we
assume that I+ 0 is suitably small, where Iy = |Jug — u||z2 + || (wo)z ||zt + ||go|| 2. For
the initial data (¢, 79) in Theorem 4.1, we see that

(¢, 70)ll22 = Nl (wo — g, qo)llz2 + [[(ug = Ug™, (Ug")a)ll 22 < Lo + C3,

1020, 7o)l < 102, @)l -+ 10—, (U < Ty +C5
Therefore we have Ey < Iy + C6. Since Iy + ¢ is assumed to be small, we know that
Ey+ 6 is also small. Consequently, by applying Theorem 4.1, we obtain a unique global
solution (¢, r) to the problem (4.2), (4.3). Then the function (u,q) defined by (4.1)

becomes the desired global solution to the original problem (1.1), (1.2).
Finally, we show the convergence (2.1) by using (4.4). We see that

1w =", @) () |z S WU =", =UF) )|z + 10, 7) ()| — 0

as t — oo, where we also used Lemma 3.4. This completes the proof of Theorem
2.1. O

A priori estimate in the whole space

The aim of this section is to prove Proposition 4.2 on the a priori estimate of solutions
to the problem (4.2), (4.3) in the whole space. In this section we assume that the
solution (¢, r) satisfies the additional regularity

(¢,r) € C°([0, T]; H*) N CH([0, T); H?).
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This can be realized by using the mollifier with respect to z € R. Also we assume that
E(T)+ 6 < do, (5.1)

where dg > 0 is a fixed constant. In this section 6 denotes a fixed number satisfying
0 €(0,1/4).

First we show the basic energy estimate.

Lemma 5.1 ([15]) We have

(6, ) ()17 +/ IVUES()72 + |Ir(1)][72 dr < CE§ + CO°E(®)2D(t)*. (5.2)

Proof. We multiply (4.2a) and (4.2b) by ¢ and r, respectively, and add these two
equalities. After a technical computation we obtain

e}, +{uwm o - rwme- [ GO - FU -+ o)

+{ U+ 6) = FUR) = fUPGIUE + 12 = GUR — rf(UP),,

We integrate (5.3) over R x (0,¢). Then, using {f(U" + ¢) — f(UF) — f/(UR)p}UE =
cUE$?, we obtain

(6, ) (@®)IIZ +/0 IVUES(T)IIZ2 + Ilr(r)I72 dr < CE§ + C/O RO(r)dr,  (54)

where

+ (5.3)

RO = [ 1GlIUR]+ 171 /U )] do (55)
R

Here we can show that

/tR(O)(T) dr § C(g()E(t)lﬂD(t)l/? (56)

0
Once this is verified, the desired estimate (5.2) follows from (5.4) and (5.6).
We verify the estimate (5.6). Applying Sobolev’s inequality, we have

Al¢||Uﬁ|dz <8l lUR |2 £ Clloll 2 16e |2 UL | o1
< OB ()|l 21+ 7) 7079,

where we have used Lemma 3.4. Therefore we obtain

t
[ [ 160z 1asir < copy [ ot + 000 ar
0J/R

< e’ B /H@(T)u;df) 4(/(1+7)—%<1—9>d7)3/4
0 0

< CE)V2D(1)"?,

where we used the Hélder inequality and the fact that §(1—6) > 1for 6 € (0,1/4). An-
other term in R (see (5.5)) is estimated similarly and we obtain (5.6). This completes
the proof of Lemma 5.1. O



Next we show the energy estimate for the derivatives.

Lemma 5.2 ([15]) We have
10:(6,7) (8) +/O Ira(7)l[7: dm = CE§ + C(0 + E())D(t)* + C"D(t).  (5.7)

Proof. We rewrite (4.2) slightly as follows.

G+ f(UR+ )by + 10 =g+ UE, (5.82)

T+ by = —fF(U) g (5.8b)
where

g=—(f'(U"+¢)— f(UHUE (5.9)

We apply 0¥ (k < 2) to (5.8) and obtain

O+ f(UR + )05, + OFr, = g" + OFUE, (5.10a)
Oere + 051 + 05 = =0 f(U") e, (5.10b)

where
9" = —[0k, f'(U" + ¢)]¢. + 0kg. (5.11)

Here [+, -] denotes the commutator. We multiply (5.10a) and (5.10b) by 9%¢ and dfr,
respectively, and add the resulting equalities. This yields

[5@02+ @)} + {SrW" + )@k +0ko-obr) + (@b
= LF U+ 0).(050)? + 056 (6" + EUE) — b - 04 (U™,

Integrating this equality over R x (0,t), we obtain
ok .15 + [ 1okl dr < OB v O [ RO ar  a2)
for k = 1,2, where
R® = /R(IUfl + 10201050 + 1g"|105 0] + |0y 105U | + 1057105 F(UT) 0| da. (5.13)
We will show that
/0 tRW(T) dr £ C(6 + E(t)D(t)* + C6’D(t) (5.14)

for k = 1,2. Once this is done, we substitute (5.14) into (5.12) and add for k = 1,2.
This yields the desired estimate (5.7).
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It remains to prove (5.14). Concerning the first term in (5.13), we observe that

/0 /R“Ufl + 162|050 dadr
< C(6+ BW) | 1050(r)If dr < C6 + B@)D)

for k =1,2. Next we estimate the second term in (5.13). Recalling (5.11), we see that
I[OF, £ (UE + ¢)] a2 £ C(6 + Et))||del|mr for k = 1,2. Therefore we obtain

/ / 0%, /(U™ + 6)]6,||0%6| dadr
<6+ B() /u@ 2 dr < C(6 + E(8)D(t)*

for k = 1,2. Also we apply a direct computation to g in (5.9) and find that
195gllze < COB(t)(1+ 1)~ 4 C6| g |1

for k = 1,2, where we used Lemma 3.4. Therefore we obtain
[ [ 1etalitoldodr < 5B [ 10501+ 0700 dr+06 [ o)l
S CSPE(t)D(t) + CoD(t)?
for k = 1,2. Moreover, we see easily that
[ [106010EE + 3tk 0.l i
0
<c / 104(6, ) () l2(1 + 7)1 dr < CD(2)

for k = 1,2. All these estimates give the desired estimate (5.14). Thus the proof of
Lemma 5.2 is completed. |

Finally, we show the dissipative estimate for ¢, .

Lemma 5.3 ([15]) We have

t t
/O 1627l d7 < CEG + Cll(9, ) ()72 + C/O lr ()17 dr

L O+ E()D(t)? + C8D(t).

(5.15)

Proof. We use (5.10) for k = 0,1. (Note that (5.10) with & = 0 coincides with (5.8).)
To create the dissipative estimate for 9%¢,, we multiply (5.10b) and (5.10a) by 9%¢,
and —0%r,, respectively, and add these two equalities. This gives

(af(bz afr)t - (afqbt 8];7%5 + (85(1593)2 + af@ﬂ aI;T - (f/(UR + ¢)8f§bz + 81;“) 8];Tz
= —0yra(¢" + OFULL) — 030, Oy f(U)e



Integrating over R x (0,t), we obtain

t
/0 10860 (7) |22 dr < CEZ + ClJ0%6, ) ()|

t t (5.16)
4 0/0 105 (7|2 dr + c/o S®(7) dr
for k = 0,1, where
59 = [ Igtlokral + 0k IEUL] + 10k lOEF U aslde. (517
We will show that
/O 'S0(r)dr < C(6 + B(H) D) + CoD(1) (5.18)

for k = 0,1. Once this is verified, we substitute (5.18) into (5.16) and add for k£ =0, 1.
Then we obtain the desired estimate (5.15).

To complete the proof, we need to show (5.18). Recalling (5.11), we observe that
I[OF, f(UR + ¢)|dsllze < C(6+ E(t))||dzllrz for k= 0,1. (The commutator vanishes
for k = 0.) Therefore we obtain

/ [ 70+ oot s
< 06+ BO) [ 16000 us ) dr < Ol + B(0) D0

for k = 0,1. Concerning the term g in (5.9), we see that |g| £ CUF|¢|. Therefore we
find that |g||z> < C0Y2||\/UE@||12. Thus we have

[ [ttt dodr < 5 [ 1Tl r < 52D
Jo 0
Also we see that [|0,9]z2 < CSEt)(1 + 7)~ 1= + C6||¢,| 2. Therefore we obtain
/t/ 0,9]|0,7,| dzdr < CSPE(t)D(t) + CSD(t)*.
0/
The remaining terms in (5.17) are estimated easily and we have
[ [ 1081050 + 050080 o] i < 0D

for k = 0,1. Gathering these estimates, we obtain the desired estimate (5.18) and thus,
completes the proof of Lemma 5.3. O
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Proof of Proposition 4.2. We add (5.2) and (5.7) to obtain that

(¢, r)( ||H2+/le/ﬁ¢ iz + ()12 dr

(5.19)
S CE2+C(6+ E(t)D(t)? + CS°(E(t) + D(t)).
We substitute (5.19) into (5.15). This gives
/t (7|32 d7 < CE2 + C(6 + E(t))D(t)* + C8°(E(t) + D(t)). (5.20)

Adding (5.19) and (5.20), we arrive at the inequality
Et)+ D(t)* £ CE; +C(5+ E())D(t)* + C3°(E(t) + D(1)).

This inequality is reduced to E(t)* + D(t)* < C(E3 + §*°) + C(6 + E(t))D(t)?, which
yields the desired estimate (4.6), provided that E(T) + ¢ is suitably small. Thus the
proof of Proposition 4.2 is done. O

Acknowledgement

The author is supported by Foundation of Research Fellows, The Mathematical Society
of Japan. Also, I wish to express his sincere gratitude to Assistant Professor Yoshihiro
Ueda (Kobe Univ.) and Assistant Professor Masashiro Suzuki (Nagoya Inst. Tech.) for
supporting and giving him an opportunity to talk at RIMS.

References

[1] E. Harabetian, Rarefactions and large time behavior for parabolic equations and
monotone schemes, Comm. Math. Phys., 114 (1988), 527-536.

[2] Y. Hattori and K. Nishihara, A note on the stability of the rarefaction wave of
the Burgers equation, Japan J. Indust. Appl. Math., 8 (1991), 85-96.

[3] A.M. Il'in and O.A. Oleinik, Asymptotic behavior of the solutions of Cauchy
problem for certain quasilinear equations for large time, (in Russian), Mat. Sb.,
1 (1960), 191-216.

[4] S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions
of systems for one-dimensional gas motion, Comm. Math. Phys., 101 (1985), 97—
127.

[5] S. Kawashima, A. Matsumura and K. Nishihara, Asymptotic behavior of solutions
for the equations of a viscous heat conductive gas, Proc. Japan Acad., 62, Ser. A
(1986), 249-252.



(6]

[7]

S. Kawashima and Y. Nikkuni, Stability of rarefaction waves of for the discrete
Boltzmann equations, Adv. Math. Sci. Appl., 12 (2002), 327-353.

S. Kawashima and Y. Tanaka, Stability of rarefaction waves for a model system
of a radiating gas, Kyushu J, Math., 58 (2004), 211-250.

S. Kawashima, T. Yanagisawa and Y. Shizuta, Mixed problems for quasi-linear
symmetric hyperbolic systems, Proc. Japan Acad., 63 (1987), 243-246.

S. Kawashima and P. Zhu, Asymptotic stability of rarefaction wave for the Navier-
Stokes equations for a compressible fluid wave in the half space, Arch. Rat. Mech.
Anal., 194 (2009), 105-132.

T.-P. Liu, A. Matsumura and K. Nishihara, Behavior of solutions for the Burgers
equations with boundary corresponding to rarefaction waves, SIAM. J. Math.
Anal., 29 (1998), 293-308.

A. Matsumura, Asymptotic toward rarefaction wave of solutions of the Broadwell
model of a discrete velocity gas, Japan J. Appl. Math., 4 (1987), 489-502.

A. Matsumura and K. Nishihara, Asymptotic toward the rarefaction waves of

solutions of a one-dimensional model system for compressible viscous gas, Japan.
J. Appl. Math., 3 (1986), 1-13.

A. Matsumura and K. Nishihara, Global stability of the rarefaction waves of a
one-dimensional model system for compressible viscous gas, Comm. Math. Phys.,
144 (1992), 325-335.

A. Matsumura and K. Nishihara, Global solutions to nonlinear differential equa-
tion - mathematical analysis of compressible viscous flow (in Japanese), Amazon
(POD), 2015.

K. NAKAMURA, T. NAKAMURA AND S. KAWASHIMA, Asymptotic stability of

rarefaction waves for a hyperbolic system of balance laws, Kinetic Related Models
Vol.12. No.4 (2019), 923-944.

T. Nakamura and S. Kawashima, Viscous shock profile and singular limit for
hyperbolic systems with Cattaneo’s law, Kinet. Relat. Models, 11 (2018), 795-
819.

K. Nishihara, T. Yang and H. Zhao, Nonlinear stability of strong rarefaction
waves for compressible Navier-Stokes equations, STAM J. Math. Anal., 35 (2004),
1561-1597.

S. Schochet, The compressible Euler equations in a bounded domain: Existence
of solutions and the incompressible limit, Comm. Math. Phys., 104 (1986), 49-75.

179





