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Abstract 

The General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC), proposed by 

Grmela and Ottinger[l, 2], serves as a general framework for the thermodynamically consistent modeling of 
continua, wherein the conservative and dissipative mechanisms are clearly distinguished. The conservative 
mechanism is formulated as a Hamiltonian system using the Poisson bracket, whereas the dissipative 
mechanism is formulated using a dissipative bracket acting on the entropy functional. Barotropic fluids, 
Korteweg-type fluids, and complex fluids with complicated micro-structures that necessitate introducing 
additional structural variables, are all formulated within the GENERIC formalism. 
In the GENERJC formalism for Korteweg-type fluids, the spatial gradient of the mass density 1s 

included in the constitutive relation concerning the internal energy from which the Korteweg stress is 
derived. The interstitial working proposed by Dunn and Serrin[3] appears in the energy equation. In-
deed, the GENERIC formalism provides a fairly simple derivation of the interstitial working, which was 
derived employing a Coleman-Noll type procedure[4] in an elaborate analysis. The GENERJC formal-
ism also shows that the Korteweg stress and interstitial working are isentropic. This is in contrast with 
Cahn-Hilliard type models, which are intrinsically dissipative in nature as apparent from their bracket 

formulations[5]. 
Complex fluids can also be formulated within the GENERIC formalism[2, 6]. An additional structural 
variable, called the conformation tensor, can be introduced to model viscoelastic microstructures. The 
conformation tensor is assumed to be contravariant, similar to the left Cauchy-Green tensor of the defor-

mation, and the time evolution along the flow, which is naturally represented by the Lie derivative of the 
tensor, is prescribed by the Poisson bracket in the GENERJC formalism. Additional terms in the Poisson 

bracket are purely kinematic, as long as the entropy function does not explicitly depend on the confor-
mation tensor. It is advantageous to adopt the internal energy density as a state variable instead of the 
entropy density when constructing a dissipative bracket that models dissipation due to the microstructure. 

1 GENERIC formalism 

We define a state space疋， eachpoint of which uniquely determines the state of the isolated thermomechan-

ical system1l considered. We also define functionals of the total energy E : 疋→ 民 andthe total entropy 

S: X→ JR of the system defined on the state space笈 APoisson bracket {・, ・} : F(X) x F(X)→ Fぽ），
which is a skew-symmetric bilinear mapping, and a dissipative bracket [・, ・] : Fぽ） xFぽ）→rぽ），
which is a symmetric and positive semi-definite bilinear mapping, are also defined, where F(王） is a set 
of functionals defined on疋.The Poisson bracket satisfies the Jacobi identity: 

{A, {B, C}} + {B, {C,A}} + {C, {A, B}} = 0, 

and the derivation property (or Leibniz rule): 

{AB, C} = B{A, C} + A{B, C}, 
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1lHere, we have邸 sumedthe system to be isolated to simplify the discussion. 

(1) 

(2) 
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for all A, B, C E F(笈）， andis assumed to specify the conservative mechanism of the system. The dissipa— 

tive bracket satisfies the derivation property: 

[AB, C] = B[A, C] + A[B, C], (3) 

for all A, B, C E F(X), and is assumed to specify the dissipative mechanism of the system. The Poisson 
and dissipative brackets degenerate in the sense that 

{F, S} = 0 and [F, E] = 0 (4) 

for all FE F(疋）．
Under the above settings, we can describe the time evolution of the system considered. Specifically, 

the time evolution of any functional F E双X)along any trajectory x : 尺→ 疋inthe state space is 
described2) as 

dF 
可(x(t))( 

d 
：＝亙F(x(t)))= {F, E}(x(t)) + [F,S](x(t)), t E艮 (5) 

Then, the laws of energy conservation and increasing entropy (i.e., the first and second laws of thermo-

d ynam1cs), 

dE dS 
- = {E, E} + [E,S] = 0 and - = {S, E} + [S,S] = [S,S] :2: 0, 
dt dt 

(6) 

hold, due to the skew-symmetric property of the Poisson bracket combined with the degeneracy of the 

dissipative bracket and the degeneracy of the Poisson bracket combined with the positive semi-definiteness 

of the dissipative bracket, respectively. 

According to the derivation property of the Poisson bracket, the linear functional {・, E}(x) : Fぽ）→ 恥
may be identified with a "tangent vector"3) of the Hamiltonian vector field with the Hamiltonian E at 

x E X. This is tangential to both the isoenergetic and isentropic hypersurfaces, which are guaranteed 
by the skew-symmetric property and degeneracy of the Poisson bracket. This tangent vector determines 

the velocity of the isentropic trajectory in the state space. In this sense, the Poisson bracket governs 
the isentropic process of the system. Similarly, according to the derivation property of the dissipative 

bracket, the linear functional [・,S](x): F(X)→ JR may be identified with a "tangent vector" at x E箕
which is tangential to the isoenergetic hypersurface and points in the direction of increasing entropy. 

The tangency of the vector to the isoenergetic hypersurface is guaranteed by the degeneracy, whereas the 

entropy ascending direction of the vector is guaranteed by the positive semi-definiteness of the dissipative 

bracket. This tangent vector determines the velocity of the dissipating (i.e., entropy increasing) trajectory 

in the state space. In this sense, the dissipative bracket governs the irreversible processes of the system. 

2 Korteweg-type fluids 

In this section, we give an outline of the GENERJC formalism for Korteweg-type fluids. Details will be 

reported in [7, 8]. 

2.1 State space 

For an isolated system of Korteweg-type fluid in a bounded domain n C E of a three-dimensional 
Euclidean space E with piecewise smooth boundaries, we choose the state space 

疋s= {(p,m,s)IP E C00(fl, 応 a),m E C00(fl, V), s E C00(fl, JR)} (7) 

2) The differentiability of the function F o x : JR→ JR is assumed to be guaranteed in some manner. Note that a state of 
the system x E X itself can be interpreted as a functional on疋ina distributional sense. 
3) Herc, we arc thinking of a naive infinite dimensional analogy of tangent spaces on a finite dimensional manifold 
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composed of the mass density p, the momentum density m, and the entropy density s. Vis the translation 
space of E. We can also choose the state space 

ふ={(p,m,e)IP EC可n,恥 o),m EC可0,V),eEC可n,民）｝， (8) 

which contains the internal energy density e as a state variable instead of the entropy density. 

2.2 Energy and entropy 

We choose the total energy and total entropy functionals defined on the state spaceぷ suchthat 

Es (p, m, s) = L [詈+PE (p, ジ）] dv and S8(p, m, s) = L sdv, (9) 

where E: 恥 OX民 x配→ 民 isthe specific internal energy function and▽ p is the spatial gradient of 
the density. However, if we choose the state space疋e,the total energy and total entropy functionals are 
defined as 

Ee(p,m,e) = L誓 +e]dv and Se(p,m,e) =い (p,ジ）dv, (10) 

where T/: JR>。xlE.x配→ JR is the specific entropy function, which is an implicit function obtained by 
solving the specific internal energy function E = E(p, rJ, ▽ p) with respect to the specific entropy. 
Here we assume a dependence of the internal energy on the gradient of the density to obtain the 
Korteweg stress. 

2.3 Poisson bracket 

The Poisson bracket on the state space疋sis defined as 

{F,G}s = 1パ息遵—嘉：▽翌） dv+ in m-[(謡▽）器—（器▽)蓋] dv 
+Ls (畠遵—嘉▽塁） dv 

(11) 

for F,G E F(ふ） • Note that the Poisson bracket contains only the state variables and functionals, and 
therefore it does not depend on the material properties. This Poisson bracket is the same as that used 
for usual fluids described by the Euler equations. If we choose the state space心 thePoisson bracket 
for a Korteweg-type fluid is defined as 

{F, G}e =い（旦▽翌―嘉▽塁） dv + L m・[ (嘉▽）嘉―（嘉▽)嘉]dv 
+ L {塁[e▽誓＋▽ (pば）］—嘉[e▽笠＋▽ (P~)]} dv 
+1。[(守p)e].(ば嘉—誓品） dv-LP  [ (蓋▽）▽（翌e)-(紐▽）▽（塁り]dv 

for F,G E F(ぷ）， where

2 OE p=p -
op 
and e=p~ 

8▽p 

(12) 

(13) 

are the pressure and a vector related to the Korteweg stress, respectively, and are defined using the 
derivatives of the specific internal energy function with respect to p and▽ p, which depend on the 
constitutive relations. This means that this bracket explicitly depends on the material properties, unlike 
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the bracket (11) on the state space疋8.In the case of usual fluids described by the Euler equations, the 
last two terms in (12) are absent. 
The two brackets defined above are apparently skew-symmetric and satisfy the degenerate conditions: 

{F,Ss}s = 0, VF E Fぽs) and {F,Sふ=0, VF E F(Xe), (14) 

which are easily confirmed via direct computations using the following functional derivatives: 

-OS8 =0 oSs and -5Ss =1 op , -Sm =0, os 
(15) 

and 

8Se g { -&Se =0 and 
8Se 1 

-=--+▽．＿ ,5e = -0' 8p 0 0' 8m ， 
(16) 

where 0 = ac/珈 isthe temperature and g = E -071 + p/ p is the specific Gibbs free energy4l. 
Incidentally, the Poisson brackets defined above can be derived from the canonical Hamiltonian for-
mulation in Lagrangian coordinates. Let Xt : B→ fl be the deformation of the fluid from a reference 
configuration B to the current configuration fl at time t, and let Pt : B→ V be the momentum conjugate 
to Xt defined on the reference configuration. The Hamiltonian is defined邸

H(X,PiT/R) = l [ご+PRE (p(X), T/R, ▽ p(x))] dV, (17) 

where p(x) = PR/ det(ax/aX) is the density on the current configuration determined by a deforma— 

tion, X: B→ fl, and PR andりRare the reference density and entropy, respectively, on the reference 
configuration. The canonical Poisson bracket is defined as 

{F, G} = J (竺竺＿竺竺)dV 
B <5x'5p <5x'5p 

(18) 

Then, the canonical equations of motion for the Hamiltonian system become the momentum equations 
of an inviscid fluid with the Korteweg stress 

Xt = Pt/PR, 

Pt= (detFt)▽ ・{[-pt+ ptv'・(cpt▽ Pt)] 1 -CPt▽ Pt0▽ Pt}, (19) 

where a dot above the variables denotes a time derivative, F = Bx/BX is the deformation gradient, 
p=p知 /Bpis the pressure, and the subscript t denotes the variable at time t. 
The formulation outlined above in Lagrangian coordinates can be formally transformed to Eulerian 
coordinates using the following relations: 

and 

Pt(x) =化（知）(x) = J PR(X)o (x -Xt(X)) dV, 
叫 x)=<l>m(Xt,Pt)(x):J Pt(X)o(x-xt(X))dV, 
叫x)= <l>心）(x) = J PR~X)叫X)o(x ー Xt(X))dV,

B 

叫X)=剌（知）(x) = Pt(x) = PtE (Pt(x), ;: 塁▽叫x))'

(20) 

(21) 

4)Note that these definitions and (13) are needed only if we choose the state spaceぷ.If we chooseふ instead,we do 
not have to give a concrete form for the specific internal encrgy function E or assume local thermodynamic equilibrium 
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which provide transformations if> = (叱，仇町if>s)and <I>= (叱，仇両if>e)from the Lagrangian variables 
(X, p) to the Eulerian variables (p, m, s) and (p, m, e). Indeed, the Poisson brackets {・, ・}s and {・, ・}e on 
the previously defined Eulerian variables are obtained from 

<I>*{F,G}s = {<I>*F, が G} for F,GEF(エ） (22) 

and 

ぷ{F,G}e = {ぷF,ふ*G} for F,GEF(X」 (23) 

where ip* andふ*are pull-back operators defined such that 

<l>*F(x,p)=F(叱(x),<l>叫X,P),<l>s(x)) for FE四ふ） (24) 

and 

ぷF(x,p) = F (<I>p(X), <I>rn(X, p), <l>e(x)) for FE F(ふ）． (25) 

The Hamiltonian functional H on the Lagrangian variables defined above is the pull-back of the total 
energy functional Es or Ee on the Eulerian variables defined in the previous section, that is, H = <I>* Es = 
<l>*E 

2.4 Dissipative bracket 

The dissipative bracket on the state space疋sis defined as 

[F,G]s = fn 2μ0 (〈▽嘉〉― 1~〈▽V〉)(〈▽恙〉―i塁〈▽v〉)dv (26) 

+ l入0(▽器—［翌▽v) (▽ 羞—}翌▽v) dv+ l姐▽0翌）▽0詈） dv, 
for F,G E双ぷ）， where

1 
〈T〉=-(T+T門ーー(trT)1 
2 3 

is the projection of the second-order tensor T onto a symmetric deviatoric tensor, TT and trT denote 
the transpose and trace of T, respectively, 1 is the unit tensor, μand入arethe shear and bulk viscosity 
coefficients, respectively, and氏isthe thermal conductivity. If we choose the state spaceぷ，thedissipative 
bracket is defined邸

[F,G]e = fn 2μ0 (〈▽嘉〉一翌〈▽v〉)・(〈▽芯〉一誓〈▽v〉)dv (27) 

JF JF JG JG JF JG ＋い（▽而―瓦▽V) (▽ 而―百▽v) dv + L t.02 (▽百）（▽百)dv 
for F,G E F(ぷ） • In these brackets, (26) and (27), 

8Es 8Ee 
v= = 
8m 8m 

and 
OE5 8Se 

-1 

0 =Ts=げ）＞〇， (28) 

are the velocity and temperature of the fluid5), respectively. The functional derivative of the total energy 
with respect to the entropy density needs to be positive due to the thermodynamic stability. 

5)The temperature is already defined in (16). We do not need to use it, however, if we choose the state space 疋s• In 
that case, we can define the velocity and temperature as functional derivatives of the total energy (which is given as an 
ingredient of GENERIC) as in (28) and then the dissipative bracket is (26) without any further assumptions, in particular, 
the assumption of local thermodynamic equilibrium 
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The dissipative brackets defined above are symmetric and positive semi-definite as long as the trans-
port coefficients are all positive: 

μ2': 0, 入2':0, and y;, 2': 0, (29) 

and satisfy the degenerate conditions: 

[F, E↓ = 0, VF E四ふ）， and [F, E』e= 0, VF E F(ふ）， (30) 

which can be confirmed via direct computations using the following functional derivatives6l: 

8E8 lml2 8E8 m 
＝一
op 2p2 

+ g-y'・{, 一＝一
om p 

6E s 

ふ
=0, (31) 

and 

8Ee lml2 8Ee m 
＝一8p 2p2''8m = p 

8Ee 
- = 1. 
oe 

(32) 

2.5 Time evolution 

In the GENERIC formalism, the time evolution of any functional F E Fぽs)is prescribed such that 

dF 
可={F,Eふ+[F,S↓ (33) 

If we take a functional F onふ inthe form 

F(p,m,s) = J伽＋く ・m十ゆs)dv
0 

(34) 

for arbitrary functionsの，心 E00(0, 股） and (E  C0(n, V), we obtain the following local balance 
equations for the mass, momentum, and entropy: 

op 
=-
fJt 
▽ ・m 

巳=—▽ • (m⑭翌）＋▽. [(p▽ -e-p)l―▽p咽＋▽. [2μ 〈▽v〉＋入（▽ ・v)l], 

玩＝―▽・ (s~- r.,>0) +~[2µ <• V >• 〈▽V〉＋入（▽ ・v)2 + 7jl'v012], (35) 

at least if the solution is sufficiently smooth. The terms in the momentum equation that contain { 
represent the Korteweg stress. The Korteweg stress models the surface tension acting on the diffuse 
interfaee and comes from the Poisson bracket; therefore, it has nothing to do with the dissipation. 
If we choose the state spaceぷ， thetime evolution of any functional F E :F(エ） is described by 

dF 
盃={F,Eふ+[F,Sよ

If we take a functional F onぷ inthe form 

F(p,m,e)= J 伽＋く •m 十ゆe)dv
[! 

(36) 

(37) 

6)Here, we have assumed local thermodynamic equilibrium and have employed standard relations in equilibrium thermo-
dynamics to compute the concrete form of the functional derivatives of Es. 
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for arbitrary functions¢, 心E C0(!1, 照） and (E  C0(!1, V), we obtain the following local balance 
equations for the mass, momentum, and internal energy: 

竺＝ー
at 
▽ ・m, 

am  m 

at -=―▽  ・(m@-+▽ . [(p▽ -e-p)l―▽p⑭ el十▽ . [2μ 〈▽V〉＋入（▽ ・v)l], 
笠＝―▽・[,巴+::v・v){-,vo]+(Vv)• [(p▽ ・{-p)l―▽ pR{I +2μ <• v >• 〈▽v〉＋入（▽ ・V)叉

(38) 

at least if the solution is sufficiently smooth. The balance equations for the mass and momentum are 

the same as before, and the Korteweg stress, which comes from the Poisson bracket, is contained in the 
momentum equation. The internal energy equation includes the interstitial work flux, which was first 
derived by Dunn and Serrin[3], in the first term on the right-hand side, in addition to the work done by 
the Korteweg stress in the second term. The interstitial work flux also comes from the Poisson bracket, 
and therefore the additional terms, that is, the Korteweg stress and interstitial work flux in this system 
of equations, are purely isentropic. 
This is in contrast to Cahn-Hilliard type models, where the terms included to model two-phase flows 
are intrinsically dissipative. Indeed, the state space for the incompressible Navier-Stokes/Cahn-Hilliard 
equations can be written as 

X = {(w,'P)lw E C00(!1, V)平 EC00(!1, 艮）｝；

the two functionals are the energy and enstrophy: 

1 1 
H = L 21vl2dv + ¥J! and Z = L 21wl2dv +疇，

where 

'¥=Li[加）＋詞▽'Pl2]dv 

(39) 

(40) 

(41) 

is the free energy of a diffuse interface, m is the mobility of the Cahn-Hilliard diffusion, E is a measure of 

the thickness of the diffuse interface, and 8-is a measure of the surface energy; the Poisson and dissipative 
brackets are defined as 

{F, G} = lo (6F/6w 6F/如）（乞；：£心2)(菜：j沈：） dv, (42) 

where 

Cu=―▽ X [w X (v'X・)l, L12 =▽ X (・ ▽ cp), C21=-v'rp・(▽ X・), 

and 

[F,G] = j (oF/ow oF/如） M11 0 oG/ow 。 (oM2J (oG/oip) dv, (43) 

where 

M11 =v△ and M22 =△， 

which are skew-symmetric and symmetric positive semi-definite, respectively. Then, we obtain the vor-
ticity and Cahn-Hilliard equations: 

如

8t 
-=―▽  X (w Xv) -E合▽ X (△改叫十u△w, 

和玩 =-V• ▽ r.p+m△ [if'(r.p) -€ 心］• (44) 
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The last terms on the right-hand sides of the two above equations come from the dissipative bracket, and 
therefore we see that the main part of the Cahn-Hilliard equation is purely dissipative. 

Any solution of the balance equations (35) or (38) derived above satisfies the first and second laws of 
thermodynamics, because the balance equations have the GENERIC structure. Specifically, 

dE dS 
-={E,E}+[E,5]=0 and -={S,E}+[S,5]=[5,5]2".0 (45) 
dt dt 

are satisfied for the total energy and entropy functionals defined so far, irrespective of the state space疋S
orふ.Therefore, we obtain a thermodynamically consistent system of governing equations for Korteweg-
type fluids. 

3 Complex fluids 

In this section, we give an outline of the GENERIC formalism for complex fluids. Details will be reported 
in [9]. 

3.1 State space 

For an isolated system of complex fluid in a bounded domain !1 c E with piecewise smooth boundaries, 
we choose the state space 

疋e= {(p,m,e,C)IP E C00(!1, 知），mE C00(!1, V), e E C00(!1皇），CEC00(!1, Sym)} (46) 

composed of the mass density p, the momentum density m, the internal energy density e, and the 
conformation tensor C, where Sym is the set of all second-order symmetric tensors. The conformation 
tensor models viscoelastic microstructures, and is assumed to be symmetric and contravariant, similar to 
the left Cauchy-Green tensor B = FFT of the deformation x : B→ !1. A contravariant symmetric tensor 
induces an inner product in a cotangent space, and the left Cauchy-Green tensor can be interpreted as a 

change in the metric on the cotangent spaces caused by the deformation. Indeed, the left Cauchy-Green 
tensor is the push-forward of the unit tensor 1 by the deformation, that is, x.: 1 >-+ FFr, because 

(x.I)(a,(3) = I(x*a,x*f3) = (Fra)・l(FT(3) = a・FlFT (3 = (FFり(a,(3) (47) 

for all a, (3 E r;o, where we have used the fact that a cotangent vector a E r;o at a point x in 
the current configuration !1 is pulled back by the deformation x to x*a = FT a E T* 

X―'(x) B at the 

corresponding point x-1(x) in the reference configuration B. Similar to the left Cauchy-Green tensor, 

the conformation tensor is a contravariant symmetric tensor defined on the current configuration and is 
pulled back to the reference configuration as x℃ = F-1cF-r because 

(x*C)({, rJ) = C(x.e, x.'T/) = (F-T {) . C(F-T rJ) = e. F―1CF―r,,., = (F-1CF―T)({,'T/) (48) 

for all {, rJ E攻B,where we have used the fact that a cotangent vector { E TxB at a point X in the 
reference configuration Bis pushed forward to x.{ = F-T{ ET* !1 at the corresponding point x(X) x(X) 
in the current configuration !1 by the deformation X・The time evolution of the conformation tensor 
along the motion is naturally given by the Lie derivative7l: 

らC=江 (DパぷC))= F (Dt(F―icF-r)) Fr 
= F [(DtF-1)cF-r + F―1(Dtc)F-r + F-1c(Dt戸）]FT 

= F [(-F-1▽ v)CF-T + F-1(Dtc)F-T + F-1q-F-1▽ vf] FT 

ac 
=可+(v・ ▽) C-(▽ v)C-C(▽ v)r, (49) 

along the velocity field v = dxt/ dt of the motion t→ Xt, where Dt denotes the material time derivative, 
which is a time differentiation holding the material point fixed. 

7) The Lie derivative is defined asらC(x,(X),t)= limh→ o(l/h) [(心oxい）C(x, 十h(X),t+h)-C(x,(X),t)]= 
(djdT) [(x':_, 0 x;)C(xT(X),T)] IT=t = x"._, [(djdT) (x;C)(X,T)IT=tl, where X = x;1(x). 
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3.2 Energy and entropy 

We choose the total energy and total entropy functionals defined on the state space疋esuch that 

Ee(p,m,e,C) = 1゚［ご+e + ec(P, C)] dv and Se(P, m, e, C) = 1。い(P,~) +四c(C)]dv, 
(50) 

where ec: 艮>OxSym→ 艮isthe internal energy density and 7/c : Sym→ 股isthe specific entropy due to 
the microstructure of the complex fluid. We chose these specific forms of additional energy and entropy 
to make the simplification easier, as shown later. 

3.3 Poisson bracket 

The Poisson bracket on the state spaceぶ forcomplex fluids is defined such that 

{F,G}←い（孟▽紐―品▽塁） dv + l m・[ (謡▽）嘉―（土▽)羞]dv 
+ l {急[e▽翌＋▽ (p翌）］—嘉；い誓＋▽(p塁）]}dv 
-2い噂［訃（▽羞）T_塁（こ）T] dv 

+ l C ド (ffi 邑急—尉嘉）
+(▽嘉）T此―（▽品）T塁＋土（▽嘉）―塁（▽品）] dv (51) 

for functionals F, G E F(エ）. If the last two terms, which contain the conformation tensor, are absent, 
the formulation reduces to that for simple fluids governed by the Euler equations. 
The Poisson bracket defined above is apparently skew-symmetric and satisfies the degenerate condi-

tion: {F, Se}e = 0, for all functionals F E F(エ） • This can be confirmed via direct computations using 
the following functional derivatives: 

fiSe 
-=-f!_ 
fJp 0 

+Tic, 
15Se 
-=0,  
15m ，

 

1
-
0
 

＝
 e
 

e
 

6
5
-
6
 

and 
fiSe 01)c 
応 =p元・ (52) 

The fourth term of the Poisson bracket (51), which is necessary to satisfy the degenerate condition 
as long as the additional entropy'f/c depends on the conformation tensor, includes 0 = (8Se/8e)-1 = 
(iJry/iJt)-1 and OrJc/iJC and therefore depends on the constitutive relations. This is also true for the 

Poisson bracket: 

{F,G}戸い（孟▽芯—嘉：▽塁） dv + L m-[ (嘉▽）品—（犀▽)羞] dv 
+Ls (畠 V~- 贔▽塁） dv 
2い噂［訃（▽羞）T 誓（▽~r]dv 

+LCド(ffi0;急—塁 0~)
+(▽羞）T是―（▽土）T塁＋ば（▽嘉）―塁（▽芯）] dv (53) 
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on the state spaceぷ={(p,m,s,C)IP E C00(n, 応 o),mE C00(D, V),s E C00(D, 罠），CEC00(D,Sym)}, 
which otherwise does not explicitly contain any information concerning the material. The material 
properties enter the Poisson bracket if the entropy depends on the conformation tensor. 

3.4 Dissipative bracket 

The dissipative bracket for a complex fluid on the state spaceぷ isdefined such that 

[F,G]e = J (oF/oe 8F/8C) 叫 /fJC)・R(如 /fJC) -R(如 /fJC) 8G/8e 。 (-n(如 /fJC) n) (oG/oc) dv 
= lo [翌（畠吟知）翌—誓（記 R塁）―（エ豆知）誓＋此 R塁] dv, (54) 

for functionals F, G E汽ふ）， whereR: Sym→ Sym is a symmetric and positive semi-definite fourth-
order tensor satisfying 

A・RB = RA・B and A・RA ::>: 0 (55) 

for all A, B E Sym. 
The dissipative bracket defined above is apparently symmetric and is positive semi-definite because 

[F,F]e = .l [翌（畠吟飽）翌—翌（吟飽鉛）ーに記急）翌＋鉛 R品] dv 
= .l (巳急— ffi) 叫富—土） dv;::, 0 (56) 

for all FE F(エ） • It also satisfies the degenerate condition: [F, Eふ=0 for all F E F(エ）， whichcan be 
confirmed via direct computations using the functional derivatives: 
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(57) 

Note that the dissipative bracket (54) represents the dissipation due to the microstructure. If there 
is heat conduction, for example, we need to add a corresponding term: f n K, 炉▽(8F/8e)・ ▽ (8G/8e)dv, 
which is the same as in the case of Korteweg-type fluids, as explained in the previous section. 

We can also choose the state space疋s,which contains the entropy density instead of the internal energy 
density as a state variable, and define the Poisson bracket (53), as well as the total energy and entropy 
functionals on 叉s• It appears difficult, however, to define the dissipative bracket onぷ transformingthe 
bracket (54) onぷ tothat on疋swhile maintaining the degenerate condition: 

[F, Eふ=l[翌（急吟倍） 1-塁（嘉吟信）―（此吟飽） 1+是吟恰]dv = 0. (58) 
This condition holds because 8Ee/8e = 1 and 8Ee/8C = Dec/DC. However, these functional derivatives 
will be replaced with 8E汎sand8Es/8C in the dissipative bracket onぶ ifwe change the state space疋e
toぶ Inthat case, it will be difficult to satisfy the corresponding condition [F, E↓ = 0 because 8Es/8s 
necessarily contains the temperature 0. 

3.5 Time evolution 

The time evolution of the functional defined on the state spaceぷ isprescribed such that 

dF 
盃={F,Eふ+[F,S』e (59) 
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for FE F(エ） • If we take a functional F onぷ inthe form 

F(p,m,e,C) = j伽＋く-m十心e+ :E・C)dv 
!1 

(60) 

for arbitrary functionsの，心 EC0(0, JR), (E C0(0, V) and~E C0(0, Sym), we obtain the following 
local balance equations for the m邸 s,momentum, internal energy, and conformation tensor: 

翌＝ー ・ID
at 
▽ 

誓＝—▽ (m@~)-p▽鸞—▽ (p1+2p07j6c) +▽ (eel+ 2訳），

慶＝—▽ (e~)-(p1+2p羹c)-(▽~)+且信吋畠— p信），
らC= —杯（畠疇）， (61) 

at least if the solution is sufficiently smooth. Note that p, m, and e are densities, which are quantities to 
integrate over a spatial domain, and their time evolutions are described by partial derivatives with the 
spatial coordinates held fixed. Conversely, C represents a local quantity, which is a microstructure of the 

fluid and advects with the flow. 
If we assume the following constitutive relations: 

1 
叫p,C)= -tr [(C-1)2], 

2 
叫C)= canst., and ゜R=-I, T (62) 

where I is a fourth-order unit tensor and T is the time scale of dissipation, we obtain a standard model 
for complex fluids as follows: 

op -=―▽ ・m Bt 

詈＝—▽・ (m ⑭更）—▽p 十▽{ ! IC -112 1 + 2(C -l)C' 
悶――▽げ）~,(▽ ~) +~21c-11', } 

1 
らC= --:;(C -1), (63) 

where we computed the partial derivatives of the constitutive relations as follows: 

8ec 
＝ 
8p 
0, 
aec 
-=C-1, 
aC 

and 
珈c
8C 
=0. (64) 

The assumed form of the additional internal energy satisfies the objectivity requirement of s_ontinuum 
mechanics because it can be written using the principal invariants of the contravariant tensor C = C -1 

defined on the current configuration. Indeed, 

ec(p,C)= 担心 =~(trC)2 -~[(trC)2 -trむ］＝蒻— Ile, (65) 

- are the first and secon mvanants of the second-order where le = trC and Ile = (1/2)[(trC)2 trCり d・

tensor C, respectively. Note that, if tensor C is a unit tensor, this additional energy vanishes and all 
terms concerning the conformation tensor in the valance equations also vanish. The assumed form of 

the additional entropy guarantees that the Poisson bracket (53) on the state space Xs does not explicitly 
depend on the material properties because仇 /aC= 0, and therefore the fourth term of the Poisson 
bracket (53) also vanishes; the remaining terms contain only state variables and derivatives of functionals 
with respect to the state variables. 
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Any solution of the balance equations, (61) or (63) derived above, satisfies the first and second laws 
of thermodynamics because the balance equations have the GENERJC structure. Specifically, 

dEe dSe 
- = {Ee, Ee}e + [Ee, Sふ=0 and - = {Se, Eふ+[Se,S』e= [Se,Sふ20 (66) 
dt dt 

hold for the total energy and entropy functionals defined in (50). Therefore, we obtain a thermodynam-
ically consistent system of governing equations for complex fluids. 

4 Concluding remarks 

Thermodynamically consistent governing equations for Korteweg-type fluids and complex fluids are de-
rived in the GENERIC formalism, where the conservation of the total energy and the condition of in-
creasing total entropy are always satisfied. Conservative and dissipative terms in the governing equations 
are clearly distinguished, which is a one of prominent features of the GENERIC formalism. 
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