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Tokyo Institute of Technology* 

1 Introduction 

This is based on a joint work with Kyungkeun Kang and Tai-Peng Tsai [19]. The Navier-Stokes 
equations describe the evolution of a viscous incompressible fluid's velocity field v and its associated 
scalar pressure 7r. They are required to satisfy 

8tV —• v+v・ ▽v十▽1r = 0, div v = 0 (NS) 

in the sense of distributions. For our purposes, (Ns) is applied on配 x(0, oo) and v evolves from a 
prescribed, divergence free initial data v0 : 配→記 Solutionsto (Ns) has a natural scale invariance: 
If v satisfies (Ns), then for any入>0 the pair (v入，pりdefinedby 

企(x,t) =入v(入x,炉t), が(x,t) =入％（入x,炉t)

is also a solution with initial data 

硲(x)=枷（入x). (1.1) 

A solution is called self-similar (SS) if企(x,t) = v(x, t) for all入>0 and is discretely self-similar 
with factor入(i.e.v is入-DSS)if this scaling invariance holds for a given入>l. Similarly, v0 is 
self-similar (a.k.a. (-1)-homogeneous) if v0(x) =入Vo(入x)for all入>0 or入-DSSif this holds for a 
given入>l. These solutions can be either forward or backward if they are defined on配 x(O,oo) 
or配 x(-oo, 0) respectively. In this paper we work exclusively with forward solutions and omit the 
qualifier "forward". 
Self-similar solutions are interesting in a variety of contexts as candidates for ill-posedness or 

finite time blow-up of solutions to the 3D Na vier-Stokes equations (see [12, 16, 17, 24, 29, 30] and 
the discussion in [2]. Forward self-similar solutions are compelling candidates for non-uniqueness 
[17, 12]. Until recently, the existence of forward self-similar solutions was only kn9wn for small data 
(see the references in [2]). Such solutions are necessarily unique. In [16], Jia and Sverak constructed 
forward self-similar solutions for large data where the data is assumed to be Holder continuous away 
from the origin. This result has been generalized in a number of directions by a variety of authors 

[2, 3, 4, 5, 8, 21, 23, 31]; see also the survey [18]. 
The motivating problem is the following: It is shown in Tsai [31] that, if a入-DSSinitial data 
vo EC品（記¥{O}), 0 < a < l, with M = llvollca(B2¥凡）く oo,and if 入— 1~c1(M) for some 
sufficiently small positive constant c1 depending on M, then there is a入-DSSsolution v with initial 
data vo such that v is regular, that is, v E L踪（配 x(O,oo)). The question is: What ifwe weaken 
the assumption of vo so that vo belongs to LP or£P,00 (IRり(i.e.weak LP space)? Note that for 
Vo E£3,oo国） that is入-DSSand divergence free, Bradshaw and Tsai [2] constructed at least one 
入-DSSlocal Leray solution. However the proof does not imply regularity of the solutions, since it is 

based on a weak solution approach and used compactness argument. 

*This research is partially supported by JSPS grant 17K05312. 
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Motivated by this problem, we need to study solutions whose initial data is locally in L叫asit is 
also shown in [2] that, when Vo is入-DSS,then Vo E£3,00(ffi.3) if and only if Vo Eび(B入¥B1)-
In order to state our results, we first recall the notion of the suitable weak solution. For any 
domain !1 C ffi.3 and open interval IC (0, oo), we say (v, 1r) is a suitable weak solution in !1 x I if it 
satisfies (Ns) in the sense of distributions in !1 x I, 

VE L00(J; が(!1))nび(I;か(!1)), 7f E£3/2(!1 XI), 

and the local energy inequality: 
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(1.2) 

for all non-negative </> E C戸(0x I). Note that no boundary condition is assumed. 
The following theorem is our first main result. 

Theorem 1.1. There exist positive constants Eo and C1 such that the following holds. Let (v, 1r) is 
a suitable weak solution of the Navier-Stokes equations (Ns) in B1 x (0, To), Ti。>0, with divergence 
free initial data Vo in the sense limt→ o+ llv(t) -voll口(B,)= 0. For any M > 0, there exists T1 = 
冗(M)E (O,To] such that if(v,1r) satisfies 

llvollL3(B,) :S: Eo 

and 

llvllif'L;,nLfH』(B立 (O,T,))+ ll1rllL叫 (B立 (O,T1))::;M, 

then v is regular in B1;4 x (0, T1) and satisfies 

C1 
lv(x, t)I :S: - in B1;4 x (0, Ti), 
../t 

1 
sup sup 万j lvl3 dz::; 1. 
z0EB 1 x (O,T1) O<r<oo r Q,(z0)n[B1 x (O,T1)] 
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Moreover we can choose T1 (M) = min { c1 (1 + M)-6, Ta} with some universal constant c1・

Ab ove we use the notat10n L『L~(A x I):=び (I;い(A))for Ac記 andI c民， andQr(z) := 
叫 x)x (t-r汽t)for z = (x, t). 

Comments for Theorem 1.1: 

1. It should be noted that the constant C1 is independent of M. Intuitively, the nonlinear term 
has no effect before T1 = T1(M), and hence the solution behaves like a linear solution, and its 
size is given by the initial data. 

2. The boundedness of 1r in L; 炉 isnatural for the Leray-Hopf weak solutions defined in記
as 7r is given by 7r = Ri凡(vの）， whereRj = (—•) -1/2切isthe Riesz transform, and 

ll1rllL; か（応(O,T))S CllvllitL;(応 (O,T))S Cllv l~f'L;,nL; 祀（応(O,T))"

3. The assumption ll1r I s/2 昇ら (B,x(O,T,))S M can be replaced by, e.g., ll1rllい(B立 (o,T,))SM  for 
T 

some q E (3 2, 5/3]. It ensures that Ji。JB,lvl3 + IP 312dxdt is small for sufficiently small 
T = T(M) (thus q = 3/2 is not allowed), which is one of the key in the proof. Our choice of 
exponents 1s to maxi皿 zethe time exponent, so that T1(M) = c(l + M)-m has the smallest 
m=6. 
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4. Theorem 1. 1 is an extension of Jiaぷver紘 [16,Theorem 3.1], in which the initial data is 
assumed in L叫凡）， m> 3. This is similar to the extension of the mild solution theory for 
the scale subcritical data vo E L叫配）， m> 3, of Fabes-Jones-Riviもre[9] to the critical data 
vo E L3(配） of Weissler [33], Giga-Miyakawa [11], Kato [20] and Giga [10]. 

Our first set of applications of Theorem 1. 1 is concerned with local Leray solutions, which are 
suitable weak solutions of (Ns) defined in配 x(0, oo) that satisfy a mild decay condition at spatial 
infinity; see Definition 1.2. In order to state the results, we introduce the uniformly local Lq spaces. 

For q E [1,oo), we say f E L~loc if f ELに（配） and 

11/11口=sup uloc 11/11い(B心））く 00.
xElll.3 (1.7) 

We also denote for p > 0 
IIJIILq = sup uloc,p 11!11い(Bp(x))・

xE艮3

Let Eq be the closure of C戸（配） in L~loc-norrn. Equivalently, Eq consists of those f E L~loc with 
lirn国→00 IJIILq(B心）） = 0, see [22]. 

Definition 1.2 (Local Leray solutions [15, 16]). A vector field v ELに（配 x[O,oo)) is a local Leray 
solution to (Ns) with divergence free initial data vo E E2 if 

1. for some 11" EL忍~2(配 x[O, oo)), the pair (v,11") is a distributional solution to (Ns), 

2. for any R > 0, 

R2 

ess sup sup j lvl2 dx + sup j j 1Vvl2 dx dt < oo, (1.8) 
D~t<R2 xoE即 BR(xo) xoE即 0 BR(xo) 

3. for all compact subsets K of配 wehave v(t)→ vo inび(K)as t→ o+, 

4-(v, 1r) satisfies the local energy inequality (1.2) for all non-negative¢E C戸(Q)with all cylinder 
Q compactly supported in配 x(O,oo),

5. for any R > 0, 
R2 

lim / / lvl2dxdt = 0. 
lxol→00 。和(xo)

(1.9) 

In the following corollary we assume that the initial data belongs toが(Bo)nE2.

Corollary 1.3. Let Eo and C1 be the constants from Theorem 1.1. Suppose v is a local Leray 
solution of the Navier-Stokes equations (NS) with divergence free initial data vo E E2 and there 
exists <5 E (0, oo) such that 

llvollL3(B,)~Eo, (1.10) 

Then the詑 exists花＝花(5,N6) > 0 with N6 :=¾SUPxoEll!.3 J恥 (xo)lvol2dx such that v is regular in 
B6/4 x (0, T2) and satisfies 

C 
lv(x, t) I ::::; ____!. in Bo/4 x (0, T2), 
v't 
1 

sup sup -j lvl3 dz :::; 1. 
zoEB0;4 x (O,T2) O<r<oo T2 Qr(z0)n[B6;4 x(O,T2)] 

Fu叫hermo佗， wecan take T2 = c2(1 + N0)-6炉 withsome universal constant c2. 

Comments for Coroll四 1.3:
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1. Compared to Theorem 1.1, the local Leray solution in Corollary 1.3 is defined globally in配

and the assumption (1.4) for the solution is not necessary. We also have flexibility of the radius 
of the ball in (1.10). Note that the time T2 depends on the radius, which is important for our 
applications. 

2. A result similar to Corollary 1.3 was independently obtained by Barker and Prange [1, Theorem 
1]. In [1], it was proved that any local Leray solution is bounded under similar assumptions 
as those of Corollary 1.3, and the smallness assumption of localび norm(1.10) is further 
relaxed to L3•= or critical Besov norms. Their approach is different to ours and relies upon 
the iteration method by Caffarelli, Kohn and Nirenberg [7], while ours is based on the blow-up 

and the compactness argument by Lin [25]. 

3. Consider general initial data v0 E E2. Define 

p(x) = p(x;vo) = sup {r > 0: vo Eが(Br(x)),1い） lvol3 <:'.'. E~} . 

Let p(x) = 0 if such r does not exist, and let p(x) = oo if JIR3 lvo 3-<::: E5-We also define 

T(x) =叫1+ Np(x))-6p(x)2 E [O, oo]. 

For each x E配 applyingCorollary 1.3 with J = p(x), we see any local Leray solution v is 
regular in the region 

n = { (x, t) : x E訊 0< t < T(x)}, 

C 
lv(x, t) s ---2. in n . 
..fi 

Of course this is interesting only near those x with p(x; vo) > 0. 

In the next corollary we assume the initial data v0 E L3 国） nE乞uloc 

Corollary 1.4. Let Eo and C1 be the constants from Theorem 1.1. Suppose v is a local Leray 
solution of the Navier-Stokes equations (Ns) with divergence free initial data v0 E E2 and there 
exists <5 E (0, oo) such that 

llvo Iび
uloc,8 
S Ea. 

Then there exists T3 = T; 讃） > 0 such that v is詑gularin配 x(0, T3) and satisfies 

C1 
lv(x, t)I S―, (0 < t < T; 孔yt 

where T3 can be taken as T3 = c訳 withsome universal constant c3. 

(1.11) 

(1.12) 

This result is similar to the one by Maekawa-Terasawa [27, Theorem 1.1 (iii)]. Indeed under 

the assumption (1.11) the authors in [27] constructed mild solutions in L00(0, T; L~10c) and showed 
that such solutions satisfy (1.12) with T = G82llvoll-4 . We emphasize that, compared to the £3 

uloc,6 

existence theorem of [27], Corollary 1.4 is a regularity theorem for any local Leray solution, but 
assuming further vo E E2. 

In the second set of applications, we consider solutions with initial data in the Herz spaces. 
These spaces contain self-similar and DSS solutions, and are of particular interest to the study of 

DSS solutions since they are weighted spaces with a particular choice of centre. We now recall the 
definitions and basic properties of Herz spaces [14, 28, 32]. Let Ak = {x E町： 2k-1 ::; lxl <沙｝．
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For n EN, s E良 andp, q E (0, oo], the homogeneous Herz space k如（即） is the space of functions 
f E Lfoj町¥{O}) with finite norm 

1111た；. ~{ (苫'''IIIII:,,ふ））,1, 
Sup 2ks 11/IIL•(Ak) 
kEZ 

if q < oo, 

if q = 00. 

The weak Herz space WK如（町） are defined similarly, withび (Ak)-norm in the definition replaced 
by its weak version, £P,00(Ak)-norm. 

In what follows we take q = oo, which is most suitable for our purpose. In this case, k;,00-norm 
is equivalent to 

llflls,p = sup {lxals・IIJIILP(B (x))}・ 
xo#O¥  

We are interested in the Herz spaces because they seem to be natural spaces for DSS solutions of 
(NS). The existence problem of mild solutions of (NS) in the Herz spaces has been studied extensively 
by Tsutsui [32]. He proved local in time existence of mild solutions for large data in subcritical weak 

Herz spaces W均，OO国）， 0:S: s < 1 -3/p, and global existence for small data in the critical weak 
Herz space wkに（配）• The following results concern the regularity of the solution for the initial 
data in the critical case KP with p 2'. 3. 

Theorem 1.5. Let Eo and C1 be the constants from Theorem 1.1. Let v be a local Leray solution 
of the Navier-Stokes equations (Ns) with divergence free initial data vo E E2. Assume f両 therthat 
there existsμE (0, 1) such that 

sup llvollL3(Bμ1,1 (x)) <::'. Eo, 
x#O 

(1.13) 

Then there existび1=!71(llvo恥） > 0, C2 =ら(Vo恥）， andび2=叫μ,llvo恥） E (0, 叫 suchthat 

2 1/ 1'7げ

0く悶贔 X悶ぶ;;:Br(xo) lv(t)l2 dx +~ 雰 ;;:fa1凡(xo)I▽ vl2 dxdt <'.'. C2 (1.14) 

for any r > 0, and v is regular in the region 

and satisfies 

Comments for Theorem 1.5: 

1. We easily see 

~= {(x, t) : 0 < tくび2臼｝

lv(x, t)I <:'.'. 
C1 

v't 
in 1-:. 

fE応 if and only if sup / lfl3心く oo for anyμE (0, 1). 
xo-/0 Bμlxo I (xo) 

(1.15) 

In p紅 ticul紅， theassumption (1.13) implies llvollK3 = supxo-/0 llvollLs(B芦に）） is finite (but 
2 

not small in general). 

2. For vo E Kp, p > 3, the same conclusion of Theorem 1.5 is true, with the constants de-
pending only on llvollKp・This is obtained from Theorem 1.5, since (1.13) is valid forμ= 

min(l/2, c-1 (co/llvollKP)Pf(p-3)) from the following estimate: 

llvollL3(B正 1(の)） :'S: (Cµ,lxl)1-~llvollLP(B,.1,1cx)) :'S: (Cµ,lxl)1-~llvolbcB国 ;2(x)) :'S: Cµ,1-~llvo I四
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The following corollary answers our motivating problem: 

Corollary 1.6. (i) Let入>1 andv be a入-DSSlocal Leray solution of the Navier-Stokes equations 
(Ns) with入-DSSdivergence free data Vo E£3•00(配）. Then vo E K3, (1.13) holds for some 
μE (0, 1), and the same conclusion of Theorem 1.5 is true. 

(ii) For anyμE (0, 1), there exists入＊＝入.(μ)E (1, 2) such that if any入-DSSdivergence free data 
vo EL応圏） with factor入E(1, 入.]satisfies (1.13), then the入-DSSlocal Leray solution v is 
regular in配 x(0, oo) with 

C 
lv(x, t) I <; ~in 酎 x(O,oo),
VT 

where C3 is a constant depending on vo. 

Remark. In Corollary 1.6, 入ー 1has to be sufficiently small and its smallness depends on the 
ratio parameterμin (1.13). The situation is similar to [31, Theorem 1.1]: The pointwise estimate 
is based on regularity theory, which is known only for short time. If 入— 1 is not small, we cannot 
expect to use the available regularity theory to prove pointwise estimate everywhere. 

The rest of this article is organized as follows. In Section 2 we recall auxiliary results, including 
the theorems of Caffarelli-Kohn-Nirenberg [7], Kato [20], and the localization of divergence free 
vector fields. We also present an interior regularity result for the perturbed Stokes equation, which 
plays a crucial role in the proof of Theorem 1.1. Then we address the local analysis of the Navier-

Stokes equations and the proof of Theorem 1.1 in Section 3. 

2 Preliminaries 

We first recall the following rescaled version of the result of Caffarelli-Kohn-Nirenberg [7, Proposition 
1]. It is formulated in the present form in [29, 25], and is the basis for many regularity criteria, see 
e.g. in [13]. 

Lemma 2.1. There are absolute constants EcKN and CaKN > 0 with the following property. Suppose 
(v, 1r) is a suitable weak solution of (NS) with zero force in Q八,r1 > 0, with 

~j化1 lvl3dx dt +~lri l1rl3i2dx dt :S EcKN, 
then v E L00(Qr,;2) and 

llvllL=(Qr,;2)~ 
CaKN . 
r1 

(2.1) 

We next recall the results due to Kato [20] and Giga [10]. 

Lemma 2.2. There exists E2 > 0 such that if vo E L訳配） with E = llvollL3 ::; E2, then there is a 
unique mild solution v E L可O,oo;が（配）） of (Ns) with zero force and initial data vo that satisfies 

vllL戸L~nLに応 (O,oo)) 十：野112llv(t)IIL=(即） ~CE. (2.2) 

The following lemma concerns localization of divergence free vector fields. 

Lemma 2.3 (localization). Let 1 < pく ooand O < r < R. There is a linear map <P from 
V = {v E LP(B瓦配）： div v = 0} into itself, and a constant C = C(p, r / R) > 0 such that for v E V 
and a= <Pv EV, we have supp a C B½(r+R), v = a in Br, and llallい(Bn)::; CllvllLP(B砂

We will also recall the following lemma, which is proved by Jia and Sverak [16, Lemma 2.1]. 
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Lemma 2.4. Let f be a nonnegative nondecreasing bounded function defined on [O, 1] with the 
following property: for some constants O < u < l, 0 < 0 < l, M > 0, (3 > 0, we have 

M 
f(s):::;0f(t)+ u<s<t<l. 

(t-s)/3' 

Then, 
sup f(s) :::; C(u, 0, (3)M, 
sE[O, びl

for some positive constant C depending only on u, 0, (3. 

We end this section with the following interior result for the perturbed Stokes system. Recall 
Qr= Br x (-r2,0). 

Proposition 2.5. For any q E [5, oo), there exists妬＝妬(q)> 0 such that the following statement 
holds. For any M > 0, if G E L5(Q疇 3x3)with IIGIIL⑩)  :::; M, a E L5⑫) with diva= 0, 

llallL噂 i):::; 15。,~E 配, l~I :::; 1, u E L00び nL2か(Q1),PE L3l2(Q1), 

llullL3(Q1) + IIPll£3/2(Q,) :::; M, 

and they solve the a-perturbed Stokes equations 

Ut —• u +(a+~)·Vu+ u・Va+ divG十▽p = 0, divu = 0 in Qi, (2.3) 

then we have 

u E U(Q1;2), I ullLq(Q,;2)さC(q)M.

This proposition is proved via bootstrap argument based on a localization technique and the 
linear Stokes estimates; see [19] for the details. 

3 Local analysis for the N avier-Stokes equations 

In this section we prove Theorem 1. 1. The proof is split into 3 subsections. 

3.1 Decay estimates for the perturbed Navier-Stokes equation 

Let (u,p) be a suitable weak solution of the following a-perturbed Navier-Stokes equations in Q = 
B1 x (0, T), with a E L5(Q), div a= 0, 

叫—△u+ (a+u)・ ▽ u+u-v'a十▽p = 0, divu = 0. (3.1) 

That is, u E£00び(Q)nL琉 (Q),p E L312(Q), the pair solves (3.1) in the distributional sense, and 
satisfies the perturbed local energy inequality: For all non-negative¢E C戸(Q),we have 

jlul2の(t)dx+2J J団 l2¢dxdt 
゜

:<:: J J間（知＋△rj;)dxdt+ ((間(u+a)+ 2pu)• ▽ rj;dxdt 

+'°l1巧砂（叫）dxd,. LI 
(3.2) 

This is equivalent to (1.2) for v = u + a if v is a weak solution of (Ns) in Q and a is a strong solution 
of (Ns); see the argument in Subsection 3.3 for details. 
Let zo = (xo, to) and Qr(zo) = Br(xo) x (to -r2, to), We denote 

叫，p,r,zo):= (~J u-(u)Qr(zo) 3 dz)½+ 『 J IP-(P)Br(x0)(t)l312dz)j, (3.3) 
Qr(zo) r2 Qr(zo) 
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where 
1 

(u)Qr(zo) = J udz 1 
叫 zo)I Qr(zo) 

, (p)Br(xo)(t) = J 
IB心o)I 凡(xo)

pdx. 

Note that cp is dimension-free in the sense of [7], and its form is invariant under scaling. 

Lemma 3.1 (Decay estimate). For any a E (0, 1), there is a small 8。>0 such that the fallowing 
holds. Let (u,p) be a suitable weak solution to the perturbed Navier-Stokes equations (3.1) in Qr(z), 

withaEL列Qr(z)),diva= 0, llall£5(Qr{z)) = 8 <:'. 8。.Denote (u)r = (u)Qr(z)・Then, for any 
0 E (0, 1/3) there exist E = E(0, a) > 0 and C = C(a) > 0 independent of 0 such that if 

r (u)叶 ~1, rp(u,p,r,z)+rl(u)rlo<E, 

then 

0r l(u)。叶<:'.1, 

ゃ(u,p,0r,z)<:'. C0°'や(u,p,r, z) + r I (u)rl 8]. 

、
1
,

、
1
,

、
1
,

4

5

6

 

．

．

．

 

3

3

3

 

(

(

(

 

Proof. Take q E (5, oo) such that a < 1 -~and choose o。=o0(q(a)) according to Proposition 2.5. 
Since r.p and r(u)r are dimension-free, we may assumer= 1. We may also assume z = 0 and skip 
the z-dependence in r.p without loss of generality. We first show (3.5). Indeed, 

0l(u)el s; 0l(u -(u)i)el + 0l(u)叶

s; BIQel ― ½llu-(u)illL囁） +0 
s; C30-icp(l)+0, 

with C3 = IQ叶―½. By (3.4), 孤1)s; E, hence Bl(u)el < 1 if 

Es; 2゚/3
2C3. 

(3.7) 

(3.8) 

Next we show the decay estimate (3.6). Here we argue by contradion, following a similar argument 
as given in e.g. [25, Lemma 3.2] and [16, Lemma 2.3]. Since some modification is required, we give 
the details for completeness. Suppose that this is not the c邸 e. Then there exist suitable weak 
solutions (uゎp;)of (3.1), a;, and E; with lim; → 00 E; = 0 such that 

~i = (附）1, l~il~1, I a;II い (Q,)~,5。, diva;= 0, 

叫 i,Pi,1) + l~;lllaillび（叩＝和

cp(叫，Pi,0) 2 C20"'E,. 

Here C2 > 0 is a large constant to be chosen later. Setting 切＝（叩—ら）/E; and q; = (p; ―(p;)i(t))/E;, 
it follows that 

llvi Iび(Q,)+ llqillL螂）＋
l~i 
-Ila』ぴ（叩=1, 
Ei 

（嘉l.lvi -(叫Q。13dzf+ (以l.仰— (qi厄 (t)11 dz f ?'. C炉， (3.9)

and (vi, qi) satisfies 

紐—△V; + (砂＋佑十ら）・麗＋（防十 t)・Va;+▽q; = 0, div切 =0.
E; 

Denote 
2 0 

恥） = ess -r~ 悶。L号dx+lr2lr I▽ v;l2dxdt. 



200

By the local energy inequality for (3.1), the calculation in [16, page 242] shows that, for 3/4 < r1 < 
乃く 1,

1 
Ei(r1) ::; 

C 

（乃— r1)2
+ (CllaillL噂 1)十一）凡（乃），

2 

By Lemma 2.4, if llaillL咬 1)::;()。 issufficiently small, we have Ei(3/4) < C for all i. 
By the uniform bound且(3/4)< C for all i, there exist (v,q) E (L3 x L312)(Q3;4),, E配， and
a,GEが(Q3;4)such that (if necessary, subsequence can be taken) 

V; → V strongly in L3(Q3;4), ら→ ふ

q; 一q weakly in L~(Q3;4), a; —a weakly inぴ(Q3;4),

'i — @ai ー G
Ei 

weakly inぴ(Q3;4),

as i→ oo. Furthermore, (v, q) solves the linear perturbed Stokes system in Q3;4 

atv―△ v+~- • v+a・ ▽ v+v・ ▽ a+divG十▽q=O, divv = 0. 

Due to Proposition 2.5, it follows that v Eび (Q1;2),q > 5, for the exponent q chosen at the beginning 
of the proof. Thus, by the strong convergence of Vi to v in L刊Q3;4),we have for sufficiently large i 

(。~2J 
½ 

- Qe似ー（防）。ドdz) :<:: c01-~:<:: C0"'. 

On the other hand, by the pressure equation, we decompose q; = qf + qfl such that 

qf = (―△) -ldiv div ([rn; @ V; + V; @佑十 a;@ 叫XB¾).

(3.10) 

Here XBa is the characteristic function of B¾. Since v; converges strongly to v inび(Q3;4)and 

a; converges weakly to a inび(Q3;4),the Calderon-Zygmund estimate implies that qf converges 

strongly to qR inい(Q3;4),where砂is

砂＝（―△）ー1divdiv([v Q9 a+ a Q9 v]xB¾). 

We note that qR E L1(Q1;2), where 1/l = 1/q + 1/5. Therefore, 

（嘉J
i 

Qe lqR ! dz) <'.'. c02-¾= c01-~ 

Thus, for large i, we also have 

信jlqfl!dzf <::001-L 
Qa 

Since qグisharmonic (in x) in Q3;4, we see that 

信jlqf -(qf厄(t)l!dzf<::c0i. 
Q. 

Adding up the above estimates, 

（嘉jlqi ― (qi厄 (t) け）~<::: 001-¾<::: c0色
Qe 

(3.11) 

The sum of (3.10) and (3.11) contradicts (3.9) if we take C2 sufficiently large. This completes the 
proof. ロ



201

3.2 Regularity criterion for the perturbed Navier-Stokes equations 

In this subsection we prove the following regularity criterion for perturbed Navier-Stokes equations 
(3.1). It is an extension of the result [16, Theorem 2.2] for the perturbed term a E L叫Qi)with 
m> 5. 

Lemma 3.2 (Regularity criterion). For any fixed fJ E (0, 1), there exist small constants E1(fJ) and 
t5 (fJ) > 0 with the following properties: Let (u, p) be a suitable weak solution to the perturbed N avier-
Stokes equations (3.1) in Q3;4, with a EL列Q3;4),diva= 0, llallL噂叫::;5, and 

j lul3 + IPI; dz::; E1, 
Q3/4 

(3.12) 

Then we have 

1 
sup sup -

zo=(xo,to)EQ¼rく 4 Qr(zo)nQs/4 
1性+3{3J 忙+p (p)凡 (xo)(t)l312dz< C(/3). (3.13) 

Remark. Our estimate (3.13) does not imply Holder continuity, but Morrey type regularity. On the 
other hand, the Holder continuity was shown by a different method in [1]. 

Proof. For fixed f3 E (0, 1), ehoose a=  (1 + /3)/2 so that a E (/3, 1), and ehoose 0 E (0, 1/3) so that 
the factor C炉 in(3.6) is bounded by½0/3, and 01-/3 <½-In the following we omit the dependence 
on zo E Q1;4 to simplify the notation. Let B(r) = r l(u)rl and <.p(r) be defined by (3.3). It is proved 
in (3.7) for r = 1 that 

B(0r)::; C30-i({J(r) + 0B(r), 

where C3 = IQ叶―1/3.The proof for general r is the same. Let 

We will show by induction that 

w(r) = r.p(r) + (2応）―10¾+/3B(r). 

condition (3.4) is valid and 

w(0r)さ0瑾 (r)

for r Eh= [0丁，芹]with k EN。=NU {O}. Let 
虹= sup w(r; z0), k EN。・
zoEQ,;4, rEh 

By (3.12), 

W。-<'.C(/3)Ei/3 -<'. E, 

(3.14) 

(3.15) 

(3.16) 

if E1 = E1 (/3) is sufficiently small. In particular, the condition (3.4) is uniformly satisfied for every 

zo = (xo, to) E Q1;4 and r E I,。•
Suppose that (3.15) has been proved for r E Uj<klj and condition (3.4) is satisfied for r Eh  for 
some k EN。.By (3.6) of Lemma 3.1 and (3.14) (note Lemma 3.1 is formulated in any scale), 

W(0r) = <.p(0r) + (2ら）―10i+f3B(0r) 
0/3 0/3 0/3 

- 2 < -<.p(r) + -oB(r) + -<.p(r) + (2ら）ー10i+f3B(r) 2 2 

= 013<.p(r) + 013 (C300―i-/3 + 01-13) (2C3)―1府+/3B(r), 

which is bounded by 0輝 (r)if ,5-<:: min{80(a), (2C3)-1麻+/3}.This shows (3.16) for r Eh-
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As a result,'Vk+l s 0f3wk s・ ・ ・s g(k+l)f3w。sg(k+l)f3E. Hence 

rl(u)rl = B(r) S 2C30-i-f3wk+l S 2C30-i-f3。(3ES 1 
by (3.8), 

rl(u)rlt5 S 1・t5 S E/2, 

皿 d
<p(u,p,r,zo) S ¥flk+l S gf3E S E/2 

for r E h+i• This shows (3.15) for r E h+1・
By induction, we have shown (3.15), (3.16) for all r S 1/4 and all zo E Q1;4. In particular, if 
r Eh, 

IJ!(r, zo) ::::; 屯k:::; 0kf3E:::; CE戸，

which implies (3.13). 口

3.3 Proof of Theorem 1.1 

We now prove Theorem 1.1. Choose a=  1/2, (3 = 1/4 and choose 0 > 0 so small that 0a-f3, 01-(3 
and 0(3 are sufficiently small in the proof of Lemma 3.2. 
By Lemma 2.3, there is ao Eび（配） with 

3 
a。=vo in B3;4, a。=0 in B~, diva。=0, llaollL3⑮)  ::; C(3, 4)11vallび (B1)'.'::E2, 

where E2 is the constant in Lemma 2.2. By Lemma 2.2, there is a unique mild solution a of (Ns) 
with zero force and initial data a(O) = ao that satisfies (2.2). In particular, 

llallい(Ill双 (O,oo))<::'. C豆

Let叩 beits corresponding pressure. We have叩 =R九 a氾j,and 

II四 IIL叫（応(0,oo))<::'. Cllallか(lll3x(O,oo))<::'. C合

By the maximal regularity for the inhomogeneous Stokes system, we have 

▽ a E L512(配 x(O,oo)), ▽叩 EL5/3(配 x(O,oo)).

(3.17) 

(3.18) 

(3.19) 

Let b。=v0-a。,b = v-a, and冗=1r -1ra. Denote T = T1 E (0, 1/2) to be fixed later. Observe 
that (b, 1r砂isa weak solution of the a-perturbed Navier-Stokes equations (3.1) in Q = B1 x (0, T), 
with b(x,O) = bo(x), and bo(x) = 0 in B3;4. It is easy to see that (b,1rb) satisfies the perturbed 
local energy inequality (3.2). By the interpolation, vllL国 (Q):S: CllvllL戸昇nL:H訳(Q)・ Hence the 
assumption (1.4) leads to 

llvllP(Q) :::; CllvllL図 (Q)T-b:::;c✓ 訂Tん

and 1 
ll71"11£3/2(Q) :::; 171"11LlL戸(Q)To:::;GMT同

Thus, taking T :::; E4 M-6 with E sufficiently small, we get 

JT j lbl3 + 17rb i dz :::; 2CE :::; E1, 
O B, 

where E1 is the constant in (3.12) of Lemma 3.2. 

(3.20) 

(3.21) 

(3.22) 

Extend a, b, 皿 d7fb by zero for t < 0 and denote Q'[ := Br x (T -r2, T). By the definition of 
b = v -a and bo(x) = 0 in B3;4 we have limt→ o+ llb(t)IIい(B3;4)= 0. This continuity condition at 
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t = 0 together with the bounds (3.20), (3.21) shows that (b, 叫 isa suitable weak solution of (3.1) in 
Q恥satisfyingthe perturbed local energy inequality (3.2), and¾l(b)Q『14I ::; 1. In particular, (b, 叫
satisfies (3.1) across t = 0 in the sense of distributions. We now apply Lemma 3.2 to see 

1 
sup sup 2+3/3 J lbl3 + 17rbー（叫Br(xo)(t) 1312 dz < C. , r zoEQI r<コ Qr(zo) 
4 

Choose largest r1 <::'.』 satisfyingcri13 <::'. がCKN.We may also take T so that T <::'. rr'which implies 
QIっB1x (0, T), and 

1 
sup sup -
zoEBi x(O,T) r<r, Qr(zo) 

r2 J 似＋日ー（叫B土 o)(t) 3/2 dz< Cr313 < 1 2 
4 

For r 2: 門 wehave 
1 1 

sup sup戸J lbl3 dzく万CE<-
1 

zoEB¼x(O,T) r2': 八 Qr(zo)nQ 八
2・ 

Applying (3.17), (3.23), and (3.24) to v =a+ b, we obtain 

1 
sup sup 戸j lvl3 dz< 1. 
zoEB1 x(O,T)O<rくoo Qr(zo)nQ 
4 

Now for any zo = (xo, to) E B1;4 x (0, T), take r =が瓜.We have r < r1 and 

r2 < t < 4芦 if(x, t) E Qr(zo)-

For this r, let 

示＝叩＋両一 (7rb)Br (x0) (t)・ 

Taking E2 sufficiently small in (3.17), (3.18), and using (3.23) we have 

1 
万J lvl3 + lirl312 dz < EcKN・
r Qr(zo) 

EcKN・

Since (v, 示） is a suitable weak solution of (Ns) in Qr(zo), by Lemma 2.1, we obtain 

C 
lv(zo)I < v < 

CKN 4CcKN 
- IIに (Qr;2(zo))- r /2 =忍・

This completes the proof of Theorem 1.1. 
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