CONSTANT DIAMETER SPHERICAL CONVEX BODIES AND WULFF SHAPES

HUHE HAN

1. Basic definitions

Throughout this note, let S^{n} denote the unit sphere of the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}. For any given point P of S^{n}, we denote by $H(P)$ the hemisphere whose center is P, namely,

$$
H(P)=\left\{Q \in S^{n} \mid P \cdot Q \geq 0\right\} .
$$

Here the dot in the center stands for the scalar product of P, Q in \mathbb{R}^{n+1}. A nonempty subset W of S^{n} is hemispherical if there exists a point P of S^{n} such that the intersection set $W \cap H(P)$ is the empty set. A hemispherical W of S^{n} is said to be spherical convex if the arc between any two points $P, Q \in W$ lies in the W. Equivalently, a hemispherical W of S^{n} is convex if $P Q$ is a subset of W, for $P, Q \in W$, where $P Q$ stands for the following arc

$$
P Q=\left\{\left.\frac{t P+(1-t) Q}{\|t P+(1-t) Q\|} \in S^{n} \right\rvert\, 0 \leq t \leq 1\right\} .
$$

Denote the great-circle distance between two points P, Q of S^{n} by $|P Q|$, namely, $|P Q|=\arccos ^{-1}(P \cdot Q)$. Denote the boundary of W is denoted by ∂W. A spherical convex set W of S^{n} is said to be spherical convex body if W has an interior point and closed. For any subset W of S^{n}, the spherical polar set of W is the following set, denoted by W°,

$$
\bigcap_{P \in W} H(P)
$$

For any non-empty closed hemispherical subset $W \subset S^{n}$, the equality s-conv $(W)=$ $(\mathrm{s}-\operatorname{conv}(W))^{\circ 0}$ holds $([10])$, where $\mathrm{s}-\mathrm{conv}(W)$ is the spherical convex hull of W, namely,

$$
\left\{\left.\frac{\sum_{i=1}^{k} t_{i} P_{i}}{\left\|\sum_{i=1}^{k} t_{i} P_{i}\right\|} \right\rvert\, \sum_{i=1}^{k} t_{i}=1, t_{i} \geq 0, k \in \mathbb{N} \text { and } P_{i} \in W\right\}
$$

The diameter of a spherical convex body W is defined by

$$
\max \{|P Q| \mid P, Q \in W\} .
$$

A spherical convex body W is said to be constant diameter τ, if the diameter of K is τ, and for every point $P \in \partial W$ there exists a point Q of ∂W such that $|P Q|=\tau$ ([7]). We say a hemisphere $H(Q)$ supports W at P if W is a subset of $H(Q)$ and P is a point of $\partial W \cap \partial H(Q)$. The hemisphere $H(Q)$ as defined above is called a

[^0]
HUHE HAN

supporting hemisphere of W at P. For any two points $P, Q(P \neq-Q)$ of S^{n}, the intersection

$$
H(P) \cap H(Q)
$$

is called a lune. The thickness of lune $H(P) \cap H(Q)$ is the real number $\pi-|P Q|$, denoted by $\Delta(H(P) \cap H(Q))$. It is clear that thickness of any lune is greater than 0 and less than π. Let $H(P)$ be a supporting hemisphere of a spherical convex body W. The width of W with respect to $H(P)$ is defined by ([6])

$$
\operatorname{width}_{H(P)}(K)=\min \{\Delta(H(P) \cap H(Q)) \mid W \subset H(Q)\}
$$

The minimum width of W is called thickness of W, denoted by ΔW. A spherical convex body W is said to be of constant width, if all widths of W with respect to any supporting hemispheres $H(P)$ are equal. A convex body W of S^{n} is said to be reduced if $\Delta(X)<\Delta(W)$ for every convex body X properly contained in W ([6]).

2. Some Known results

Lemma 2.1 ([10]). Let X, Y be subsets of S^{n}. Suppose that the X is a subset of Y. Then, Y° is a subset of X°.

Lemma 2.2 ([10]). The subset W is a spherical polytope if and only if W° is a spherical polytope.

Lemma 2.3 ([7]). Every spherical convex body of constant width smaller than $\pi / 2$ on S^{n} is strictly convex.

Lemma 2.4 ([5]). Let W be a spherical convex body in S^{n}, and $0<\tau<\pi$. The following two assertions are equivalent:
(1) W is of constant width τ.
(2) W° is of constant width $\pi-\tau$.

In the case of S^{2}, an alternative proof of Lemma 2.4 given in [9].
Lemma 2.5 ([6]). Every smooth reduced body W of S^{n} is of constant width.
Theorem 1 ([5]). Let W be a spherical convex body in S^{n}, and $0<\tau<\pi$. The following two are equivalent:
(1) W is of constant diameter τ.
(2) W is of constant width τ.

For the cases of smoothness boundary and S^{2}, see [8]. The following corollary is an easy consequence of Theorem 1 and Lemma 2.4.

Corollary 2.1 ([5]). Let W be a spherical convex body in S^{n}, and $0<\tau<\pi$. The following two propositions are equivalent:
(1) W is of constant diameter τ.
(2) W° is of constant diameter $\pi-\tau$.

The following corollary is an easy consequence of Theorem 1 and Lemma 2.5.
Corollary 2.2. Every spherical convex body of constant diameter smaller than $\pi / 2$ on S^{n} is strictly convex.
Corollary 2.3. Every smooth reduced body W of S^{n} is of constant diameter.

3. Applications to Wulff shapes

Let $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$be a continuous function, where \mathbb{R}_{+}is the set consisting of positive real numbers. Then the Wulff shape associated with the function γ, denoted by \mathcal{W}_{γ}, is defined by

$$
\bigcap_{\theta \in S^{n}} \Gamma_{\gamma, \theta}
$$

Here $\Gamma_{\gamma, \theta}$ is the half space determined by the given continuous function γ and $\theta \in S^{n}$,

$$
\Gamma_{\gamma, \theta}=\left\{x \in \mathbb{R}^{n+1} \mid x \cdot \theta \leq \gamma(\theta)\right\} .
$$

By definition, Wulff shape is a convex body and contains the origin of \mathbb{R}^{n+1} as an interior point. Conversely, for any convex body W contains the origin of \mathbb{R}^{n+1} as an interior point, there exits a continuous function $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$such that $\mathcal{W}_{\gamma}=W$. For more details in Wulff shapes, see for instance $[1,2,3]$. Let Id : $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1} \times\{1\} \subset \mathbb{R}^{n+2}$ be the mapping defined by

$$
I d(x)=(x, 1) .
$$

Let $N=(0, \ldots, 0,1) \in \mathbb{R}^{n+2}$ be the north pole of S^{n+1}, and let $S_{N,+}^{n+1}$ denote the north open hemisphere of S^{n+1},

$$
S_{N,+}^{n+1}=S^{n+1} \backslash H(-N)=\left\{Q \in S^{n+1} \mid N \cdot Q>0\right\} .
$$

Let $\alpha_{N}: S_{N,+}^{n+1} \rightarrow \mathbb{R}^{n+1} \times\{1\}$ be the central projection relative to N, defined by

$$
\alpha_{N}\left(P_{1}, \ldots, P_{n+1}, P_{n+2}\right)=\left(\frac{P_{1}}{P_{n+2}}, \ldots, \frac{P_{n+1}}{P_{n+2}}, 1\right) .
$$

We call the spherical convex body $\widetilde{W}_{\gamma}=\alpha^{-1}\left(\operatorname{Id}\left(\mathcal{W}_{\gamma}\right)\right)$ is the spherical Wulff shape of \mathcal{W}_{γ}. The Wulff shape

$$
I d^{-1} \circ \alpha_{N}\left(\left(\alpha_{N}^{-1} \circ I d\left(\mathcal{W}_{\gamma}\right)\right)^{\circ}\right) .
$$

is called dual Wulff shape of \mathcal{W}_{γ}, denoted by $\mathcal{D} \mathcal{W}_{\gamma}$. We call a Wulff shape \mathcal{W} is a self-dual if $\mathcal{W}=\mathcal{D W}$, namely, \mathcal{W} and its dual Wulff shape $\mathcal{D W}$ are exactly the same convex body. By Theorem 1, Lemma 2.4 and Corollary 2.1, we have the following.

Corollary 3.1 ([5]). Let $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$be a continuous function. Suppose that the spherical Wulff shape $\widetilde{W}_{\gamma}=\alpha_{N}^{-1} \circ \operatorname{Id}\left(\mathcal{W}_{\gamma}\right)$ of \mathcal{W}_{γ} is of constant width. Then
(1) $\Delta\left(\widetilde{W}_{\gamma}\right)+\operatorname{diam}\left(\widetilde{W}_{\gamma}^{\circ}\right)=\pi$,
(2) $\Delta\left(\widetilde{W}_{\gamma}\right)+\Delta\left(\widetilde{W}_{\gamma}^{\circ}\right)=\pi$,
(3) $\operatorname{diam}\left(\widetilde{W}_{\gamma}\right)+\Delta\left(\widetilde{W}_{\gamma}^{\circ}\right)=\pi$,
(4) $\operatorname{diam}\left(\widetilde{W}_{\gamma}\right)+\operatorname{diam}\left(\widetilde{W}_{\gamma}^{\circ}\right)=\pi$,
where $\Delta(C)$ and diam (C) are the width and the diameter of spherical convex body C in S^{n}, respectively.

A characterization of self-dual Wulff shape is given as follows.
Proposition 3.1 ([4]). Let $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$be a continuous function. Then \mathcal{W}_{γ} is a self-dual Wulff shape if and only if its spherical Wulff shape is of constant width $\pi / 2$, namely, the spherical convex body $\alpha_{N}^{-1} \circ \operatorname{Id}\left(\mathcal{W}_{\gamma}\right)$ is of constant width $\pi / 2$.

By Theorem 1, we have the following:

Corollary 3.2 ([5]). Let $\gamma: S^{n} \rightarrow \mathbb{R}_{+}$be a continuous function. Then \mathcal{W}_{γ} is a self-dual Wulff shape if and only if its spherical Wulff shape is of constant diameter $\pi / 2$, namely, the spherical convex body $\alpha_{N}^{-1} \circ \operatorname{Id}\left(\mathcal{W}_{\gamma}\right)$ is of constant diameter $\pi / 2$.

References

[1] F. Morgan, The cone over the Clifford torus in \mathbb{R}^{4} in Φ - minimizing, Math. Ann., 289 (1991), 341-534.
[2] H. Han, Maximum and minimum of convex integrands, to be published in Pure and Applied Mathematics Quarterly.
[3] H. Han and T. Nishimura, Strictly convex Wulff shapes and C^{1} convex integrands, Proc. Amer. Math. Soc., 145 (2017), 3997-4008.
[4] H. Han and T. Nishimura, Self-dual Wulff shapes and spherical convex bodies of constant width $\pi / 2$, J. Math. Soc. Japan., 69 (2017), 1475-1484.
[5] H. Han and D. Wu, Constant diameter and constant width of spherical convex bodies, preprint (available from arXiv:1905.09098v2.)
[6] M. Lassak, Width of spherical convex bodies, Aequationes Math., 89 (2015), 555-567.
[7] M. Lassak and M. Musielak, Spherical bodies of constant width, Aequationes Math., 92 (2018), 627-640.
[8] M. Lassak, When a spherical body of constant diameter is of constant width?, Aequat. Math., 94 (2020), 393-400.
[9] M. Musielak, Covering a reduced spherical body by a disk, arXiv:1806.04246.
[10] T. Nishimura and Y. Sakemi, Topological aspect of Wulff shapes, J. Math. Soc. Japan, 66 (2014), 89-109.

College of Science, Northwest Agriculture and Forestry University, China
Email address: han-huhe@nwafu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 52A30.
 Key words and phrases. Constant diameter, Wulff shape, constant width, spherical convex body, spherical dual Wulff shapes.

