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ON  THE MILNOR FIBRATION FOR f(z)g(z) II 

MUTSUO OKA 

1. LOCALLY TAME NON-DEGENERATE COMPLETE INTERSECTION PAIR 

1.1. Introduction. Let f(z) and g(z) be holomorphic functions vanishing 
at the origin. For h(z) := f(z)g(z), there exists a tubular Milnor fibration 

h : E(r, 8)*→ DJ or a spherical Milnor fibration h/lhl : Br¥ Kr→ 81 for 
small rand 8≪r ([15, 11]. Here E(r, 8)* := {z EB朽Io-1 lf(z)さ8}and 
Kr :=f―1(0) n 32n-1_ W e consider the mixed function H(z, 元）：= f (z)g(z) 
and the existence problem of its Milnor fibration. The link of His the same 
as the complex link given by h(z) but the fibration structure along the link 
of g = 0 is conversely oriented. It turns out that such a fibration does 
not exist for an arbitrary pair. This problem has been studied by several 
authors but there are not yet satisfactory results ([26, 27, 28, 24]). For a 
non-degenerate mixed function, it is known that the Milnor fibration exists 
([19]). However for n :::=ふ H can not be non-degenerate as f = g = 0 is a 
non-isolated singular locus for H. In our previous paper [23], we have shown 
the existence of Milnor fibrations for H under the assumption that f, g are 
convenient non-degenerate functions, satisfying the multiplicity condition. 
A convenient non-degenerate function f has an isolated singularity at the 
origin. In this paper, we consider the same problem without assuming the 
convenience. That is, we consider the case that f = 0 or g = 0 may have 
non-isolated singularity at the origin. 

1.2. Vanishing coordinate subspaces and locally tameness. Let f(z) 
be a holomorphic function of n complex variables z1, ... , Zn which vanishes 
at the origin. Consider a coordinate subspace (C1 := {(z1, ... , Zn) E en I Zj = 

O,j弘J}where I C {1, 2, } ... , n . (C is called a vanishing coordinate sub-

space of f if the restriction of f to (C1 is identically zero. The restriction of f 
is denoted as J1. We denote the set of vanishing subspaces off (respectively 

of g) by VJ (resp. by V9). Let P = (P1, ... , Pn) be a semi-positive weight 
vector. We put I(P) := {i I Pi= O}. Take a vanishing coordinate subspace 
(C1 and take an arbitrary semi-positive weight vector P = (p1, ... ,Pn) such 
that I(P) = I. Then the face function fp is a weighted homogeneous func-
tion of the variables (Zj)坪1with a positive degree d(P; J) with respect to 
the weight vector P. 
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Recall that f is non-degenerate if for any strictly positive weight vector P 
(i.e., I(P) = 0), f p : (C*n→ (C has no critical points ([16]). We say that the 
function f (or the hypersurface V(f) :=戸(0))is locally tame and non-
degenerate if it is non-degenerate and for any vanishing coordinate subspace 
C1, there exists a positive number r I such that for any weight vector P 

with I(P) = I, fp is a non-degenerate function of (zj)坪1with the other 

variables (zi)iEI E (C*1 being fixed in the ball LiEI lzil2 ::::; 町 ([21,8]). Put 

V(f)~:= u喜 VJV(fりn(C*1. Recall that V(f戸issmooth near the origin 

(Lemma (2.2), [17]). 
For the pair of function {f, g }, consider the following conditions. 

(1) The hypersurfaces V(f) = f―1(0), V(g) = g―1(0) are locally tame 
and non-degenerate. 

(2) The variety V(f, g) = {f = g = O} is a locally tame non-degenerate 
complete intersection variety. Namely (2-a) for any strictly posi-
tive weight vector P, the variety {z E (C*n I fp(z) = gp(z) = O} 
is a smooth complete intersection variety. (2-b) For any common 
vanishing coordinate subspace C1, there exists a positive number r 1 
such that for any weight vector P with I(P) = I, {fp = gp = O} is 
a non-degenerate complete mtersect10n vanety m (C*J with J = JC 
and ZJ E (C*1 is fixed in the ball区たIlzil2 ::::; r1・

We say {f, g} is a locally tame non-degenerate pair if it satisfies only (1) and 
(2). The pair {f, g} is a disjoint locally tame non-degenerate complete in-
tersection pair if it satisfies (1), (2-a) and (3) {f, g} satisfies the disjointness 

of vanishing subspaces, i.e. VJ n V9 = 0. 
Note that if (C1 E VJ¥ V9, there exists a positive number r1 such that for 

any semi-positive weight vector P with I(P) = I, gp I = g and f p = gp = 0 
is a non-degenerate complete intersection variety. 

2. lSOLATEDNESS OF THE CRITICAL VALUE 

2.0.1. Multiplicity condition. We slightly generalize the multiplicity condi-
tion which is introduced in [23]. We say that H := Jg satisfies the multiplic-
ity condition if there exists a good resolution 1r : X→ en of the holomorphic 
function h := f g such that 

(i) 1r : X ¥ 1r-1(V(h))→ び¥V(h) is biholomorphic and the divisor 
defined byが (fg) = 0 has only normal crossing月ingularitiesand 

the respective strict transforms V(f) of V(f) and V(g) of V(g) are 
smooth. 

(ii) Put 1r-1(0) = uJ=l几 whereD1, ... , D8 are smooth compact divi-
sors in X. Denote the respective multiplicities ofがfandがgalong 

Dj by mj and nj. Then mj i-nj for j = 1, ... , s. 

Assume that there exists a regular simplicial cone subdivision~* of the dual 
Newton diagram I'* (f g) and let介： X→ en be the corresponding admissible 
toric modification. Let v+ be the set of strictly positive vertices of~*. Then 
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it gives a good resolution of the functjon f g and the compact exceptional 

divisors are bijectively correspond to { E(P) I P E V汀([17]).Recall that the 

multiplicity ofがfand令*galong the divisor E(P) are given by d(P, f) and 

d(P, g) respectively. We say that介 satisfiesthe toric multiplicity condition 

for H if 

d(P, f) -=f-d(P, g), VP EV土

For further detail about the toric modification介： X→ C叫werefer to [17]. 

Lemma 1 (Isolatedness of the critical value, Lemma 3 [23]). Assume that 

{f, g} is a locally tame and non-degenerate complete intersection pair. As-

sume that there exists an admissible toric modification令： X → en which 
satisfies the toric multiplicity condition. Then there exist positive numbers 

r1 such that O is the unique critical value of H on B罰．

The proof follows by the exact same argument as Lemma 3,[23]. 

2.0.2. A sufficient condition for the toric multiplicity condition. We consider 

the following truncated cone. Let h(z) = L aぷ bea holomorphic function 

which is not necessarily convenient. Let r +(h) be the convex hull of the 

union Uv,a占 o{v+ (町）n} as usual. The Newton boundary r (h) is defined 

by the union of compact faces of r +(h). To give a sufficient condition for 

the multiplicity condition, we further consider following. 

Defimt10n 2. We define the set r ++(h) and Intr ++(h) as 

r ++(h) = {rv Ir 2:: 1, v E r(h)}, Intr ++(h) = {rv Ir> 1, v E r(h)} 

Note that r ++(h) C r +(h) and the equality holds if and only if h is 

convenient. The following gives a sufficient condition for the multiplicity 

condition. 

Lemma 3. Assume {f, g} is a locally tame non-degenerate complete inter-

section pair. Suppose the following condition is satisfied. 

rn): I'(f) C Intr ++(g) or I'(g) C IntI江+(f).
Then the multiplicity condition is satisfied with respect to any admissible 

toric modification. 

See Figure 1 which shows the situation Int r十+(f)っI'(g). The con-

dition rn) is a generalization of Newton multiplicity condition in [23] for 

non-convenient f and g. We call rn) the tame Newton multiplicity condition. 

Example 4. 1. Assume that f(z) (respectively g) is a convenient function 

and assume that I'(f) nr(g) = 0 and I'(g) is above I'(f)(resp. I'(f) is above 
I'(g)). Then the tame Newton multiplicity condition is satisfied. 

2. Assume {f, g} is a locally tame non-degenerate complete intersection 

pair and let n : X→ ccn is an admissible toric modification. Let v+ be the 

strictly positive vertices of~*. Consider the mapping'Pm : ccn→ ccn defined 

by cp(z) = (z『,••• ,z閉） and put fm(z) := cp* f(z) and 9m(z) := cp*g(z). 
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/~," ~ ~ 
FIGURE 1. r(g) C Int r ++(f) 

Then there exists a sufficiently large m such that介： X → en satisfies the 
toric multiplicity condition for f m?i and f?Jm respectively. This follows from 
the canonical equality d(P, f m) = m d(P, f) and d(P, gm) = m d(P, g) and 
the stability of the dual Newton diagrams I'*(f) = I'*(fm), I'*(g) = I'*(gm)-

3. Let f(z) = c1z1 +・ ・ ・+ CnZ~. Let g(z) be any locally tame non-
degenerate function. Then {f, g} is a locally tame non-degenerate pair for 
generic coefficients c1, ... , Cn and satisfies the Newton multiplicity condition 

if a= l. If a> l, {f, g ITf=1 zf} satisfies the Newton multiplicity condition, 

as r ++U)つIntr++ (g). 

Remark 5. If f is locally tame and non-degenerate and if C:1 is not a van-
ishing coordinate subspace for f, f1 is also locally tame and non-degenerate 
as a function on C:1. See the argument in Proposition (1.5), Chapter III 

[17]. Locally tameness has been defined for mixed functions (Definition 2. 7, 
[8]). If a holomorphic function f(z) is locally tame, it is also locally tame 
as a mixed function. 

3. FIBRATION PROBLEM FOR FUNCTION f?} 

We study the existence problem for the Milnor fibration of the mixed 
function H(z, z) := f(z)g(z) in a more general situation. In this paper, 
we do not assume the convenience of f and g and therefore V (f) or V (g) 
may have non-isolated singularities at the origin. There are also interesting 
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works from more general viewpoint in Parameswaran and Tibar [25, 24] and 
Araujo dos Santos, Ribeiro and Tibar [5] where authors consider the case of 
critical values being not isolated. 

3.1. Canomcal stratification. We assume that {f, g} is a locally tame 
non-degenerate complete intersection pair. Consider the hypersurface V(f g) = 
V(f) U V(g). Note that the mixed hypersurface V(fg) is equal to V(fg) as 
real algebraic varieties. We consider the following canonical stratification S 
of cm which also give a stratification of V(f g). Put V*1 (f) = V(fりn(C*l 
if (C1 is not a vanishing coordinate subspace. 
Here (C*1 = {(zi) E (C1 IVzi =J 0, i EI}. We first define a stratification S1 of 
(C*1 as follows. 

{ (C*1 ¥ (V*1 (f) U V*1 (g)), V*1 (!)', V*1 (g)', V*1 (f) n V*1 (g)}, if f1 =f 0, g1 =f 0 

{ (C*I ¥ V*I (f), V*I (f)}'if g1三 0,f1 =f 0 

{c*I ¥ v*I(g), v*I(g)} ,iffl三 o,lヂ0

{C*1}, iff1三 o,l三 0.

and we define S =切S1.If {f, g} is a disjoint locally tame non-degenerate 
pair, the last case does not exist. Here V*1 (f)'= V*1 (f) ¥ V*1 (g) and 
V*1 (g)'= V*1 (g) ¥ V*1 (f). V1 (f) is empty only if J1 is a monomial. 

We call S the canonical toric strafitication of V(f g) = V(fg). Note that 
S is a complex analytic stratification. 

3.2. Transversality and Thom's arregularity. We use the notation 

V(H, z) := H-1(H(z)) hereafter. Another key condition for the existence of 
the Milnor fibration is the transversality of the nearby fibers H-1(ry), rJ -=J 0 
and the sphere s;n-l. Assume that O is the unique critical value of H in 
B2n 

r1 . 

Transversality of nearby fibers: For any pair r2 :S r1, there exists a 
positive number 8 such that for any r, r2 :S r'.S r1 and non-zero T/ with 
ITJIさ 8,H-1(ry) and s;n-l intersect transversely. This condition follows 

if H satisfies the Thom's a1-regularity (See for example, Proposition 11, 
[21]). Recall that H satisfies a1-condition at the origin if there exists a 

stratification S of H-1(0) n B罰forsome r1 > 0 such that for any sequence 
qぃ v= 1, 2, ... which converges q。EM,MES  and q。-/-0, the limit of 
the tangent space T, ① V(H, qv) (if it exists) includes the tangent space of M 

at q。•

Theorem 6. Assume that either (i) {f, g} is a locally tame non-degenerate 
complete intersection pair which satisfies also the tame Newton multiplicity 
condition rn) or (ii) {f, g} is a disjoint locally tame non-degenerate complete 
intersection pair. In the case (ii), we assume also that H has a unique 
critical value O in a ball B罰.Then H = Jg satisfies a1-regularity. 
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Note that in case (i), the tame Newton multiplicity condition guarantees 
the isolatedness of the critical value of H. For the proof, we consider the 
canonical toric stratification S on V(f g). We choose ro, r1 2: ro > 0 suffi.-
ciently small so that for any rさro,the canonical toric strata are smooth 
in B;n and any sphere s2n-l 

p with O < pさ romeets transversally with 

every strata of S of positive dimension. We use Curve selection lemma (see 
[15, 10]). Suppose we have a real analytic curve z(t), 0 ::; t ::; 1 such that 
z (0) = a E V (H) n B訂， aヂ0and z(t) E en ¥ V(H) for t > 0. Put 

K ={"I (t)羊O}i Zi and wnte the expansion as 

叫） = o:itPi + (higher terms), o:i -/-0, i E K 

三 0,i rf_ K 

Let M E S1 be the stratum which contains a. We have to show that the 
limit of the tangent space of the fiber V(H, z(t)) at z(t) fort→ 0 contains 
the tangent space of the stratum M at a. The restriction of f, g and H 
on CK satisfy also the locally tame non-degenerate assumption. As the 
argument for the proof is exactly the same, we assume for simplicity that 
K = {l, ... , n} hereafter. That is, we assume that z(t) E cm fort-/-0 and 

z(O) = a. Put P = (Pi, ... ,Pn) and 

(1) { Jc~{i IP,~O}, 
J=JC={l, ... ,n}¥I, w:=(0:1, ... 10:n)ECm. 

Note that Pi = 0 if and only if i E J. Thus a= w1 and O -/-llall ::; ro. We 
will show that 

四恥）V(H, z(t))つねM.

We use the key property that the tangent space of the level hypersurface 
V(H, z(t)) at z(t) contains the intersection of two tangent spaces of the 
level complex hypersurfaces V(f, z(t)) and V(g, z(t)) by Proposition 14, [23]. 
Here we are assuming that ro is sufficiently small so that O is the only critical 
value for f and g on B均.We divide the situation into three cases. 

(a) C1足VJU V9, i.e. f1芸，g[争〇．

(b) C1 E VJ and C1 rf_ Vg, i.e. f1三 0,g[手〇．

(b)'C1 E Vg and C1 rf_ VJ, i.e. f1羊0,g[三 0.

(c) C1 E VJ n Vg, i.e. f1三 0,g[三 0.

As (b) and (b)'is symmetric, it is enough to consider three cases (a), (b) 
and (c). 

We first consider the case (a). The case (a) can be divided into two 
sub cases: 

(a-1) a E M = V*1 (f) n V*1 (g). 
(a-2) a E V*1 (f)'= V*1 (f) ¥ V*1 (g), or a E V*1 (g)'= V*1 (g) ¥ V*1 (f). 

In the case (a-1), a is a non-singular point of a E V(f, g). As the tan-

gent space Tz(t) V(f, z(t)) converges to Ta V(f) which includes Ta V*1 (f) and 

Tz(t)V(g,z(t))) converges to TaV(g) which includes TaV*1(g) and TaM = 
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Ta V*1 (f) n Ta V*1 (g) by the Newton non-degeneracy assumption, the asser-
tion follows from Proposition 14, [23]. 

In the case (a-2), a E V*1 (!)'or a E V*1 (g)', a is a non-singular point of 
V(H) and the assertion is obvious from the continuity of the tangent space. 

Consider the case (b). Thus we assume that CC E VJ ¥ V9. By the 
local tameness assumption, the limit of the normalized holomorphic gradient 

vector limt→ o a J(z(t))/118 J(z(t))II along z(t) is a vector in CCJ. Here J = 

{1, ... ,n} ¥I. (Recall of(z) = ( 匁 8J(z)如，• • • , Bzn) .) Thus the limit of the 

tangent space of V(f, z(t)) contains CC1 by the local tameness assumption. 
There are two subcases. 

(b-1) a E V*1 (g), or 
(b-2) a E CC*1 ¥ V*1 (g). 

Note that M = V*1 (g) in the case (b-1) and M = CC*1 ¥ V*1 (g) in the case 
(b-2) respectively. In the case of (b-1), the limit of the normalized vector 
of可(z(t))is a vector in (CJ by the local tameness assumption off. Thus 

the limit of Tz(t) V(f, z(t)) includes CC1. On the other hand, as而(a)is 

non-zero, Ta V(g) is transverse to CC1 at a. Thus for any sufficiently small t, 
they are transverse and the limit of the intersection of two tangent space of 
the tangent space of V(f, z(t)) and V(g, z(t)) contains Ta V*1 (g). 

Now we consider the case (b-2). We claim that the limit of the tangent 

space Tz(t) V(H, z(t)) includes CC1, the tangent space of the stratum M = 

CC*1 ¥ V*1 (g) at a. First we prepare a sublemma. 

Sublemma 7. Let f be a holomorphic function and write f(z) = k z, 元十（） 
i£(z, z) where k =町，£=訂. Then we have ok =½of and 祝＝図•
In particular, two gradient vectors Bk and 8£are linearly dependent over CC 
but linearly independent over股 ata non-critical point z of f. 

The assertion follows from the identities: 

狐 =ok,祝＝況， of=ok+i況=o, aJ = ak+i祝．

Put Pmin = min{pj I j rf_ I}. First we can write 

Le竺ma8. The orders of堕f(z(t))andぬf(z (t)) are equal to the order 
of of(z(t)). Puts= orderof(z(t)). Thens and strictly less than d(P; J)-
Pmin・We can write further as follows. 

可(z(t))= Vが+(higher terms), ヨVE(CJ 

1 
滋 f(z(t))= -vだ+(higher terms) 

2 

i 
ぬf(z(t))= -vt8 + (higher terms) 

2 

In particular, limt→ oTz(t)V(f,z(t)) is the complex orthogonal ofv. 

Now we are ready to analyze the case (b-2). Note that the limit of nor-

malized gradient vector司(z(t))is v/llvll-For a vector v, let v..lc be the 
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subspace of en which are complex orthogo叫 tov. Namely v..1_c = {w E 

en I (w, v) = O}. Now we claim 

Assertion 9. Assume a E C*1 ¥ V*1(g). Then limt→ o Tz(t) V(H, z(t)) = 
limt→ O Tz(t) V(J, z(t)). 

Proof. Put b := g(a) and write b = b1 + ib2 with b1, b2 E艮.First we use the 
equalities: 

R(H) =溌(J)溌(g)-S<(J)S<(g), S<(H) =溌(J)S<(g)+ S<(J)扮(g).

Then the gradient vectors are given as 

8溌(H)(z(t))= (8溌(J)溌(g)(z(t))+ (R(J)EJ溌(g))(z(t))

-(EJS<(f)S<(g))(z(t)) -(S<(J)EJS<(g))(z(t)) 

三 b直祈(J)(z(t))-b288'f(z(t)) modulo (t8+1) 

三叫8 modulo (ts+l 
2 

） 

EJS<(H)(z(t)) = (8況(J)S<g)(z(t))+ (扮(J)EJS<(g))(z(t)) 

+ 88<(!)溌(g)(z(t))十 S<(J)EJ溌(g)(z(t))

三 b2(8沢(J)(z(t))+ b直S<(J)(z(t))modulo (t8+1) 

三 (ivb)ザ modulots+l （）  
2 

and血hereforethe normalized vector of these gradient vectors滋 (H)(z(t))
and肉 (H)(z(t))converges to the vectors 

vb . vb 

llvbll' llvbll 

respectively. This implies the limit of the tangent space Tz(t) V(H, z(t)) is 
the real orthogonal of the real 2-dimensional subspace span by these two 
vectors, that is nothing but the complex subspace v..1_c which is equal to the 
limit of Tz(t) V(f, z(t)). The proof of the assertion for (b-2) is now completed. 
The case {f, g} is a disjoint tame non-degenerate complete intersection pair 
is now proved. 

Now we consider the last case (c) C1 E VJ n Vg. Recall that w = 
(a1, ... , an)-We divide the situation into three subcases. 

(c-1) fp(w) = gp(w) = 0. 
(c-2) fp(w) = 0 and gp(w) # 0 or (c-2)'fp(w) # 0 and gp(w) = 0. 
(c-3) fp(w) # 0, gp(w) # 0. 
We restate the assertion as the following lemma. 

Lemma 10. Assume that C1 E VJ n Vg. The the limit of the tangent space 

Tz(t) V(H, z(t)) includes C1 as a subspace. 
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Proof. First assume that fp(w) = gp(w) = 0. Put可(z(t))= (u1(t), ... ,un(t)) 

and而(z(t))= (釘(t),... , Vn(t)) . We can wnte as 

叫t)= 
訂p(w)td(P;J)-pj 
知

+ (higher terms) 

叫=fJgp (w)td(P;g)-pj 
釦j

+ (higter terms). 

Put of and o9 be the orders of可(z(t))and面(z(t))respectively. That 
is of = min { ord叫 (t)Ii= 1, ... , n} and o9 = min{ord叩(t)li= l, ... ,n}. 

Then the limit of fJJ(z(t)) and fJg(z(t)) 1 up to sea ar multiplicat10ns are 
represented respectively by 

(2) 
1- 1-

lim 
t→ 0 t0f 

-fJJ(z(t)), lim -fJg(z(t)). 
t→ 0 tOg 

(n) - -
We denote these limit vectors as limt→ 0 fJJ(z(t)) and lim図。fJg(z(t)). If 
these two limits are linearly independent over C, the intersection 

Tz(t) V(f, z(t)) n Tz(t) V(g, z(t)) 

converges to the the complex orthogonal subspace to these two limit vectors. 
That is, 

く町(z(t))函 (z(t))>J_IC→ < lim(n)可(z(t)),lim(n)面(z(t))>J_IC . 
t→ 0 t→O 

The problem happens if these two limits are linearly dependent. We use a 
similar argument as the one which is used in the proof of Theorem 20, [21] or 
Theorem 3.14, [8] to solve this problem. For the simplicity of the argument, 
we assume that J = { 1, ... , m} and I = { m + 1, ... , n} and we assume that 

Pl ~P2~ ・・・ ~Pm> 0, Pm+l =・ ・ ・= Pn = 0. 

Note that Pmin = Pm under the above assumption and 

ord 巧 (t)~d(P; f) -Pj, ord Vj(t)~d(P; g) -Pj, j = 1, ... , m 

while for j~m+ 1, 

ord 叫） ~d(P;f), ord v1(t)~d(P; g), j = m + 1, ... , n. 

Now we consider first (c-1): fp(w) = gp(w) = 0. By the locally tame 
non-degeneracy assumption, there exists 1 :S a, b :S m, a -/-b so that we 
have 

(3) del (紐(w) 紐(w)
笠(w) 翌(wi),'0. 

Here we assume that a -# b but we do not assume that a < b. In particular, 

OJ~max{ d(P; f) -Pa, d(P; f) -Pb}~d(P; f) -Pm, 

〇， ~max{d(P;g) -Pa, d(P; g) -Pb}~d(P; g) -Pm・ 
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For simplicity, we may assume that OJさo9and consider 

£。:= min{j I ord Uj(t) =OJ}, mo:= min{j I ord Vj(t) = o9}. 

We call .e。， m。theleading indices of可(z(t)and面(z(t)).
Case 1. Assume that .e。-=f-mo. Then the two limit gradient vectors given 

by (2) are already linearly independent. There are nothing to do further. 
Case 2. Assume that .e。=mo. Then we take a monomial function 

p(t) = ct0g-of, c EC and replace og(z(t)) by 

砂 (t)=面(z(t))-p(t)可(z(t)).

(1) (1) 
We choose a constant c so that ord Vmo (t) > o9. We put ord Vmo (t) = oo if 

心(t)三 0.Here v以(t)is the mo-th component of v(1){t). Note that the 

two dimensio叫 complexsubspace W =〈可(z(t)),而(z(t))〉generatedby 

｛可(z(t))町 (z(t))}is the same with subspace〈可(z(t)),y(l)(t)〉generated
by {可(z(t)),v(1)(t)}. Thus their complex orthogonal subspaces are also 
equal. We continue this operation 

而→ y(l)→ ・• •• y(k) 

until the leading index of y(k) changes. Note that the k-times operation 
匈(z(t))→y(k)(t) is given as 

v(k)(t) =而(z(t))-Pk(t)可(z(t))

where Pk(t) is a polynomial of variable t whose lowest degree is o9 -OJ. By 

(3), we may assume that ogp/如 (w)ヂ0.Note that ord v盟(t)is strictly 

increasing as long as vs k -l and ord v(v)(t) 
(v) 

= ord Vm0 (t). Let us look the 
components a, b which is given by 

a9 aJ 叫k)(t)= -(z(t)) -Pk(t)一 (z(t)),T = a, b. 
釦r OZ7 

Assertion 11. One of the following inequalities holds. 

ordv炉(t)S d(P;g)-Pa, or ordv?)(t) S d(P;g) -Pb・ 

(k) (k) 
Proof. Assume that ord Va > d(P; g) -Pa・We will show that ord vb (t) s 

d(P; g) -Pb・As the first term of Pk(t)紐(z(t))kill the first term of是(t),

the order of Pk(t) 万犀 (t)is eq叫 tod(P; g) -Pa・There are two cases to be 

considered. 

(A)胞(w)-/-0 or (B)紐(w)= 0. 
Assume the case (A). Then we have ordpk(t) = d(P;g)-d(P; f) = o9―OJ 

and which implies that 

ordp叩警(z(t))2: (d(P; f) -Pb)+ (d(P; g) -d(P; f)) = d(P; g) -Pb・ 
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Then putting入bethe coefficient of td(P;g)-d(P;f) in Pk(t), we have 

~det8(;:w~;>;: 霊(~門貫t(w))

0 f dct (¥,;. (w) 盟(w)

~dct (a," (w) a,, (w) 

。莞(w)+誓(w))

and thus笠(w)+誓(w)-/-0 by (3), ord亭=d(P; g) -Pb・ 

Consider the case (B) now. Then ordpk(t) < d(P;g) -d(P;f). By (3), 

盟(w)-/-0 and ord v(k)(t)b < d(P; g) -Pb・Thus in both cases, under the 

above operation, ordv(kl(t) S d-Pm・ ロ

The above argument implies that the number k of operations is bounded 
by kさd(P;g) -Pm -Og. At the last operation, the leading index of y(k) (t) 

is different from mo and the limit vector of y(kl(t) and町(z(t))are linearly 
independent and they are in the subspace CJ. As 

Tz(t) V(f, z(t)) n Tz(t) V(g, z(t)) is the complex orthonormal subspace of the 

two dimensional subspace〈可(z(t)),而(z(t))〉ICand it is equal to the com-

plex orthonormal subspace of〈可(z(t)),y(kl(t)〉IC'thelimit ofTz(t) V(f, z(t))n 

Tz(t)V(g,z(t)) includes the vanishing subspace C:1. As Tz(t)V(H,z(t)) in-

eludes Tz(t) V(f, z(t))nTz(t) V(g, z(t)) as a subspace, limt→ o Tz(t) V(H, z(t))つ
C:1. Thus the proof of case (c-1) is done. 

Now we consider the case (c-2): fp(w) = O,gp(w)-/-0. Consider the hy-
persurface V := {(zJ E C*J I fp(z) = 0, ZJ = a}. By the locally tameness 
assumption, V is a non-singular hypersurface in C:*1. Let us consider the 
restriction g p : V→ C. As gp is a weighted homogeneous polynomial func-
tion of weight PJ = (Pl, ... ,Pm) and V is invariant under the associated 

J C* action on C h , gp as no non-zero critical value on V. Namely 8gp(w) 
is non-zero and linearly independent with 8fp(w). Thus there is a pair 
a S b S m which satisfies (3). Thus the rest of the argument is the exact 

same as above and lim8→ o Tz(s) V(H, z(s))っC:1.The case (c-2)': fp(w)-/-0 

and gp(w) = 0 is treated similarly. 
Now we consider the case (c-3): fp(w),gp(w)-/-0. In this case, we need 
the assumption that f, g satisfies the tame Newton multiplicity condition. 

Let degp f = dt and degp g = dg. Put dr := dt + dg and dp = dt -dg. 
Then the tame Newton multiplicity condition implies dp -/-0. The mixed 

function Hp = f pgp : CJ→ C is a strongly mixed weighted homoge-
neous polynomial which satisfies H(pei0 oz) =砂ed並H(z)and thus O is 

the only critical value. Thus滋 Hp(w),ぬHp(w) are linearly independent 
over尺 andwe can proceed the same argument as above replacing DJ, 8g 
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to滋 H(z(t)),ぬH(z(t))to conclude the real two dimensional subspace 
〈8溌H(z(t)),D~H(z(t))厄 has a limit which is a real 2-dimensional subspace 

of CJ. Thus limt→ o Tz(t) V(H, z(t))っC1.See the proof of Theorem 20, [21] 
for further detail. ロ

Now the proof of Theorem 6 is completed. 

ロ

By Proposition 11, [21], we get the transversality assertion: 

Corollary 12. Let {f, g} be as in Theorem 6. Then there exists a positive 
number ro such that for any r1, 0 < r1 :S ro, there exists a positive number 

8(r1) so that for any rJ -=f-0 with lrJI :S 8(r1) and and any p, r1 :S p :S ro, the 
nearby fiber H-1 (rJ) is non-singular in B灼andintersects transversely with 

the sphere S炉―1.

3.3. Existence of a tubular Milnor fibration. By Lemma 1, Theorem6 
and Corollary 12, we apply Ehresmann's fibration theorem ([35]) to obtain: 

Theorem 13. Assume that {f, g} satisfies the same assumption as in The-
orem 6. Then there exists a positive number E and a sufficiently small 8≪E 
such that 

H =Jg: E(尋）＊→ DJ 

is a locally trivial fibration where E(c, 8)* := {(z) IO -=f-IH(z)I :S 8, llzll :Sc} 

and DJ:= {(E Cl O -=f-1(1 :S 8}, 

By Corollary 12, the fibration does not depend on the choice of c andふ

For a disjoint locally tame non-degenerate pair {f, g }, applying the argument 
of 2 of Example 4, we have: 

Corollary 14. Asssume that {f, g} is a disjoint locally tame non-degenerate 
complete intersection pair. Fix an admissible toric modification介： X→ C匹

Take m > 0 large so that {f m, g} and {f, gm} satisfy the toric multiplicity 
condition with fr. Then changing the coefficients of f m or gm slightly if 
necessary, {f m, g} and {f, gm} are locally tame non-degenerate complete 
intersections respectively for which令： X→ en satisfies the toric multiplicity 
condition. Thus Hm := fmg and K := f如 havetubular Milnor fibrations. 

For the definition fm, see Example 4. 

4. SPHERICAL MILNOR FIBRATION 

In this section, we study the existence of the spherical Milnor fibration. 
For a fixed small r > 0, we consider the mapping cp: s;n-l ¥ K→ S1 where 
K = V(H) n s;n-l and cp(z) = H(z)/IH(z)I-

Lemma 15 (Lemma 10,[23]). We assume {f,g} is a weak locally tame non-
degenerate complete intersection pair satisfying the assumption in Theorem 
6. Then there exists a positive number r3 so that cp : s;n-l ¥ K → S1 has 
no critical points for any r, 0 < r :S r3. 
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In the proof of Lemma 17 below, we will simultaneously reprove Lemma 
15. Using Lemma15 and the transversality property of the fibers H-1(77), 0-/ 
1771 S 8 and the sphere s;n-l (Corollary 12), we obtain the following. 

Theorem 16. Assume {f, g} is a weak locally tame non-degenerate complete 
intersection pair as in Theorem 6. For a sufficiently small r, cp: s;n-l ¥K→ 
S1 is a locally trivial fibration. 

Proof. Consider the neighborhood of K defined by N(K) := {z E s;n-l ¥ 
KI IH(z)Iさ8}.Corollary 12 says that three vectors z, v1(z), v2(z) are lin-
early independent over股onN(K). For the definition ofv1, v2, see the next 
section. Construct a vector filed Von s;n-l ¥K such that溌(V(z),v2(z)) = 1 
and furthermore if z E N(K), it also satisfies R(V(z), v1(z)) = 0. Then 
along the integral curves of V, the argument of H (z) is monotonic increase 
and the absolute value of His constant when it enters in the neighborhood 
N (K). Thus the integral curves exists for any time interval. For the local 
triviality, we use the integration of V. ロ

4.1. Equivalence of tubular and spherical Milnor fibrations. In this 
section, we consider the equivalence problem of two Milnor fibrations. Let 
us recall two vector fields on the complement of V(H) which are defined as 
follows ([19]). 

v1 = 8logH + DlogH =~+ -of og 

f り

v2 = i(8logH -8logH) = i (り-1)・
v1, v2 are real orthogonal. Let z(t) be a real analytic curve in en¥ V(H). 
Then we have 

d 

dt 
-logH(z(t)) 

1 
= L一

吋 dzi(t) 1 n 8g dzi(t) 
(z(t)) ＋＿ g(z(t)) L一 (z(t)) dt f(z(t)) 8zi dt 

i=l i=l 
OZi 

= 1 (d:~t), v1(z(t)) -iv2(z(t))) + 1 (d:~t), v1 (z(t)) + iv2(z(t))) 

= R (d:~t), v1(z(t))) + i溌 (d:~t) 立(z(t)))
Thus we v1(z) and v2(z) are gradient vectors of Rlog H(z) = log IH(z) I and 
~log H (z) = i arg H (z). They are defined on en ¥ V (H). A key lemma is 
the following. 

Lemma 17. Assume that {f, g} is as in Theorem 6. There exists a pas-
itive number ro such that for any z E B誓¥V (H), either three vectors 
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z, v1(z), v2(z) are linearly independent over賊 orthey are linearly depen-

dent and the relation takes the following form: 

Z=入v1(z)+μv2(z), 入， μE恥

where入ispositive. 

Proof. Assume that there exists a real analytic curve z(t) in (C八V(H)and 

real valued rational functions入(t),μ(t) such that 

(4) z(t) =入(t)v1(z(t))+μ(t)v2(z(t)) 

and z(O) = 0. Ifμ(t)三 0,the assertion follows from Corollary 3.4, [15]. 

Thus we may assume thatμ(t)季0. Let I = {j I Zj(t)季O}. As J1, g1 
satisfies the same assumption, we assume for simplicity that I= {l, ... , n }. 
Thus z(t) E C*n fort i-0. Consider their Taylor or Laurent expansions 

J(z(t)) 

g(z(t)) 

叫t) = 
入(t)

μ(t) = 

,t叫+(higher terms), 1 E C* 

f]tm9 + (higher terms), fJ E C* 

a炉+(higher terms), ai EC* 

入。炉+(higher terms), 入。 E尺

μo四+(higher terms), μo E股＊．

In the proof, we reprove Lemma 15. Thus入。=0 only if入(t)三 0and in 
that case, we understand附=+oo. If this is the case, z(t) is a critical point 

of <p : S名n-1¥瓦 whereT = llz(t)II and KT is the link of H-1(0) in this 
sphere. Put e := min{ d(f; P) -m1, d(P; g) -m9} and let us define 

｛
｛
 

＝

＝

 

f

g

 

e

e

 

1, if d(P; f) 一町=€

0, if d(P; f)一町 >f

1, if d(P; g)一叫 =f

0, if d(P; g) -m9 > e 

As ordf(z(t)) 2 d(P;f), ordg(z(t)) 2 d(P;g), we have that£::; 0. Put 
叫 z(t))= (vl(t), ... , v,:(t)) fork= 1, 2. Observe that 

吋(t)~(竺(a) 可+ gp'ia)€g) t'-P>十

噸） ~i (tp;(a) 可一 9P,〗(a)€g) 1'-P, 十

(5) 

(6) 

Put 

P(a) := (p1a1, ... ,P砂 n),Pmin = min{pj I j EI}, 

J = {j I Pj = Pmin}, vo = min{匹叫
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and put 8i = 1 or O according to Vi = vo or Vi > vo respectively for i = 1, 2. 
By (4), we get 

叫Pj + 

入。（竺(a)Ej + YP, ~(a) Eg) t~+i-P; + ... 

+ ,,oi (竺(a)Ej -YP,~(a\g) t"'+'-PJ十

ejtvo+R-pj + ... 

where 

匂＝い ep~(a) 打+ QP,t Eg) + 1,082i C¥(a) E f -Ye,~(a\,) } 

If Vo +£-2Pmin >。, we get a contrad1ct10n aj = 0, j E J. Thus 
Vo+£-2Pmin :::; 0. Consider the vectors 

( o)・f  P,j(a) gp,j(a) 
v1 = (wi, ... ,w『)，叫= - r::1+ —祠

'Y (3 

v四 ~(wl,... , 吟），叫 ~i(竺(a\1 _ gp/j(a¥,) 

Assume that Vo +£-2Pminく 0.By (7), we get 

(7) 入。ふ叫 +μo知碕=0, j = 1, ... , n. 

IU < 0, 打fp(a)= 0 and c9gp(a) = 0. The above equality gives a contradic-
tion to the non-degeneracy condition either for V(f) if E f = l, Eg = 0, or for 
V (g) if E f = 0, E 9 = l or for the intersection variety V (f, g) if可=Eg = l. 

Assume£= 0. Then vo < 2Pmin, 1 = fp(a) and /3 = gp(a). We consider 
the equality 

(s) L dzj(t) dt Zj(t) = L 
dzj(t) ―----, - ----, 

dt (入(t)v{(t) +μ(t)吋(t)). 
jEJ jEJ 

The left hand side has order 2Pmin -1 as 

ご (t) n 

dt 
叫） = LPila氾t2Prnin-1 + .... 

jEJ jEJ 

Using (7) and Euler equality, we see that the leading term of the right hand 
is tvo-l which has the coefficient 

入。ふ(d(P;f) + d(P; g)) + iμoふ2(d(P;f) -d(P; g))-/-0. 

The coefficient is non-zero. (Ifふ=0, we use the Newton multiplicity 
condition to see the imaginary part is non-zero.) Thus the order is strictly 



59

M.OKA 

smaller than 2Pmin -1, which is a contradiction. Thus the case vo + P -
2Pmin < 0 does not occur. Thus the following equality holds: 

Vo+ P -2Pmin = 0. 

(7) implies the following equality. 

入。ふ叫+,, 西""'~ {闊 J

J

 

€¢ 
.
J
.
J
 

We consider the equality (8) again. 

The left side of (7) has order 2Pmin -1 with the coefficient I: 炸 JPminla氾＞
0. The right side has order 2Pmin-l and the coefficient is given through Euler 
equality as 

入。81(d(P; f~fp(a) 勺+ d(P; g~gp(a) Eg) 

+μ 心 (d(P;f~fp(a) cf_ d(P; g~gp(a) cg) 

If£< 0, fp(a)c:1 = gp(a)c:9 = 0 and the above coefficient is zero. Thus we 
get a contradiction. Thus the only possible case is£= 0 and therefore 

fp(a), gp(a) -/-0, vo = 2Pmin・ 

We observe alsoふヂ 0,as otherwise the coefficient is purely imaginary. 
Thus we should have 

C = 0, 巧三四， 'Y= fp(a), (3 = gp(a). 

The leading coefficients of (8) gives the equality: 

LPminla爪 ＝ 入 。 (d(P;f)+d(P;g))+ i如 o(d(P; f) -d(P; g)). 
jEJ 

Thus taking the real part of this equality, we conclude that入。>0. This 
also proves入(t)三 0does not occur as入。-/-0. This gives another proof of 
Corollary 12. ロ

Now we are ready to prove the equivalence theorem. 

Theorem 18. Assume that {J, g} is a locally tame non-degenerate complete 
intersection pair as in Theorem 6. Consider the tubular and spherical Milnor 

fibrations 

H: oE(r, 8)*→ Sg 
'P: s;n-1 ¥ K→ 31_ 

These two fibrations are equivalent. Here we use the notations 

oE(r, 8)* := {z E B;n I IH(z)I = 8}, K = s;n-l n V(H). 
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Proof. Let 8 be sufficiently small and put oN(K) := {z E s;n-11 IH(z)I < 
8}. By the transversality, N(K) is contractible to K and N(K) ¥ K is 

diffeomorphic to oN(K) x (0, 1) and cp: s;n-l ¥N(K)→ 炉 isequivalent to 

the spherical fibration cp : s;n-l ¥ K→ 81. Note that vectors v1, v2 are real 
orthogonal. Take a locally finite open covering U = {Ua, a EA} U {V13, f3 E 

B}ofB告n{zI IH(z)I~8} as follows. Each Ua, V13 are open disk with center 
Pa,P/3・Secondly in each Ua, {z, v1(z), v2(z)} are linearly independent over 

恥 whilein V13, P/3 can be written as 

四＝入v1(P13)+μv2(P13), 入＞〇

and we take the radius of V13 is small enough so that況(z,v1(z)) > 0 for any 

z E V13. (There might exist a point z E V13 where z, v1(z), v2(z) are linearly 

independent.) Construct a vector field Wa on Ua so that 

況(wa(z),v2(z)) = 0, 扮(wa(z),v1(z)) = 1, 況(wa(z),z) = 1, Vz E Ua. 

Such a vector field is called a Milnor vector field in [5, 6]. Along any 

integration curve z(t) starting a point p E oE(r,8)*, argH(z(t)) is con-

stant and IH(z(t))I, llz(t)II are strictly increasing. This curve arrives at 

z(s(p)) E s;n-l ¥ N(K) for a finite time s(p) > 0. Using this integration 

and the correspondence p→ z(s(p)), we can construct a diffeomorphism 

心： oE(r, 8)*→ s;n-l -N(K) andゆgivesthe commutative diagram: 

oE(r, 8)*~s;n-l -N(K) 

」t----'--,」,v'
whereし(rJ)= rJ/ 6. Thusゆgivesan isomorphism of the two fibrations. ロ
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