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ON THE MILNOR FIBRATION FOR f(z)g(z) II

MUTSUO OKA

1. LOCALLY TAME NON-DEGENERATE COMPLETE INTERSECTION PAIR

1.1. Introduction. Let f(z) and g(z) be holomorphic functions vanishing
at the origin. For h(z) := f(z)g(z), there exists a tubular Milnor fibration
h : E(r,8)* — Dj or a spherical Milnor fibration a/|h| : S, \ K, — S! for
small  and § < r ([15, 11]. Here E(r,0)* := {z € B?" |0 # |f(z) < 6} and
K, = f~10) N S?""1. We consider the mixed function H(z,z) := f(z)g(z)
and the existence problem of its Milnor fibration. The link of H is the same
as the complex link given by h(z) but the fibration structure along the link
of ¢ = 0 is conversely oriented. It turns out that such a fibration does
not exist for an arbitrary pair. This problem has been studied by several
authors but there are not yet satisfactory results ([26, 27, 28, 24]). For a
non-degenerate mixed function, it is known that the Milnor fibration exists
([19]). However for n > 3, H can not be non-degenerate as f = g =01is a
non-isolated singular locus for H. In our previous paper [23], we have shown
the existence of Milnor fibrations for H under the assumption that f, g are
convenient non-degenerate functions, satisfying the multiplicity condition.
A convenient non-degenerate function f has an isolated singularity at the
origin. In this paper, we consider the same problem without assuming the
convenience. That is, we consider the case that f = 0 or ¢ = 0 may have
non-isolated singularity at the origin.

1.2. Vanishing coordinate subspaces and locally tameness. Let f(z)
be a holomorphic function of n complex variables z1, ..., 2z, which vanishes
at the origin. Consider a coordinate subspace C! := {(21,...,2,) € C"|z; =
0,7 ¢ I} where I C {1,2,...,n}. C! is called a vanishing coordinate sub-
space of f if the restriction of f to C! is identically zero. The restriction of f
is denoted as f!. We denote the set of vanishing subspaces of f (respectively
of g) by Vs (resp. by V,). Let P = (p1,....pn) be a semi-positive weight
vector. We put I(P) := {i|p; = 0}. Take a vanishing coordinate subspace
C! and take an arbitrary semi-positive weight vector P = (p1,...,pn) such
that I(P) = I. Then the face function fp is a weighted homogeneous func-
tion of the variables (zj)j@ with a positive degree d(P; f) with respect to
the weight vector P.
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Recall that f is non-degenerate if for any strictly positive weight vector P
(i.e., I(P) =0), fp : C* — C has no critical points ([16]). We say that the
function f (or the hypersurface V(f) := f~(0)) is locally tame and non-
degenerate if it is non-degenerate and for any vanishing coordinate subspace
C!, there exists a positive number r; such that for any weight vector P
with I(P) = I, fp is a non-degenerate function of (z;);¢; with the other
variables (z;)ie; € C*! being fixed in the ball 3, |z:[* < 77 ([21, 8]). Put
V()= UC1¢VfV(fI) N C*. Recall that V(f)* is smooth near the origin
(Lemma (2.2), [17]).

For the pair of function {f, g}, consider the following conditions.

(1) The hypersurfaces V(f) = f~1(0),V(g) = g~ (0) are locally tame
and non-degenerate.

(2) The variety V(f,9) = {f = g = 0} is a locally tame non-degenerate
complete intersection variety. Namely (2-a) for any strictly posi-
tive weight vector P, the variety {z € C**| fp(z) = gp(z) = 0}
is a smooth complete intersection variety. (2-b) For any common
vanishing coordinate subspace C!, there exists a positive number rf
such that for any weight vector P with I(P) =1, {fp = gp = 0} is
a non-degenerate complete intersection variety in C*/ with J = I¢
and z; € C*! is fixed in the ball 3, |2|* < r;.

We say {f, g} is a locally tame non-degenerate pair if it satisfies only (1) and
(2). The pair {f, g} is a disjoint locally tame non-degenerate complete in-
tersection pair if it satisfies (1), (2-a) and (3) {f, g} satisfies the disjointness
of vanishing subspaces, i.e. Vy NV, = 0.

Note that if C! € Vi \ Vy, there exists a positive number r7 such that for
any semi-positive weight vector P with I(P) =1, gp = gland fp=gp =0
is a non-degenerate complete intersection variety.

2. ISOLATEDNESS OF THE CRITICAL VALUE

2.0.1. Multiplicity condition. We slightly generalize the multiplicity condi-
tion which is introduced in [23]. We say that H := fg satisfies the multiplic-
ity condition if there exists a good resolution 7w : X — C" of the holomorphic
function h := fg such that
(i) 7 : X\ 7 Y(V(h)) — C™\ V(h) is biholomorphic and the divisor
defined by 7*(fg) = 0 has only normal crossing singularities and
the respective strict transforms V(f) of V(f) and V(g) of V(g) are
smooth.
(ii) Put 771(0) = Uj—1D; where Dy, ..., Ds are smooth compact divi-
sors in X. Denote the respective multiplicities of 7* f and 7*¢g along
Dj; by m; and nj. Then mj # nj for j =1,...,s.
Assume that there exists a regular simplicial cone subdivision ¥* of the dual
Newton diagram I'*(fg) and let 7 : X — C" be the corresponding admissible
toric modification. Let VT be the set of strictly positive vertices of ¥*. Then
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it gives a good resolution of the function fg and the compact exceptional
divisors are bijectively correspond to { E(P) | P € V*} ([17]). Recall that the
multiplicity of #* f and #*¢ along the divisor F(P) are given by d(P, f) and
d(P, g) respectively. We say that 7 satisfies the toric multiplicity condition
for H if

d(P,f) #d(P,g), VPeV'.
For further detail about the toric modification 7 : X — C", we refer to [17].

Lemma 1 ( Isolatedness of the critical value, Lemma 3 [23]). Assume that
{f, g} is a locally tame and non-degenerate complete intersection pair. As-
sume that there exists an admissible toric modification 7 : X — C™ which
satisfies the toric multiplicity condition. Then there exist positive numbers
r1 such that 0 is the unique critical value of H on B?,l"

The proof follows by the exact same argument as Lemma 3,[23].

2.0.2. A sufficient condition for the toric multiplicity condition. We consider
the following truncated cone. Let h(z) = ), a,z" be a holomorphic function
which is not necessarily convenient. Let I'y(h) be the convex hull of the
union |J,, ., o{v + (R")"} as usual. The Newton boundary I'(h) is defined
by the union of compact faces of 'y (h). To give a sufficient condition for
the multiplicity condition, we further consider following.

Definition 2. We define the set T'44(h) and IntT' 4 (h) as
Fiv(h)={rv|r>1,vel(h)}, Intl'y4(h) ={rv|r>1,veT(h)}

Note that Ty, (h) C T'1(h) and the equality holds if and only if A is
convenient. The following gives a sufficient condition for the multiplicity
condition.

Lemma 3. Assume {f, g} is a locally tame non-degenerate complete inter-
section pair. Suppose the following condition is satisfied.

(#): I'(f) € IntI'y1(g) or I'(g) C Int I'14.(f).

Then the multiplicity condition 1s satisfied with respect to any admaissible
toric modification.

See Figure 1 which shows the situation IntT'y(f) D I'(g). The con-
dition (f) is a generalization of Newton multiplicity condition in [23] for
non-convenient f and g. We call (1) the tame Newton multiplicity condition.

Example 4. 1. Assume that f(z) (respectively g) is a convenient function
and assume that T(f)NT(g) = 0 and T'(g) is above T'(f)(resp. T(f) is above
['(g)). Then the tame Newton multiplicity condition is satisfied.

2. Assume {f, g} is a locally tame non-degenerate complete intersection
pair and let 7 : X — C" is an admissible toric modification. Let VT be the
strictly positive vertices of ¥*. Consider the mapping @, : C* — C™ defined

by o(z) = (27", ...,20") and put fn(z) = ¢*f(z) and gm(z) = ¢*g(z).
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Ficure 1. I'(g) C IntT'; 4 (f)

Then there exists a sufficiently large m such that @ : X — C™ satisfies the
toric multiplicity condition for fmg and fgpn, respectively. This follows from
the canonical equality d(P, fp,) = md(P, f) and d(P,gm) = md(P,g) and
the stability of the dual Newton diagrams T*(f) =T*(fm), T*(g9) = T (gm).

3. Let f(z) = 12y + -+ + cp2l. Let g(z) be any locally tame non-
degenerate function. Then {f, g} is a locally tame non-degenerate pair for
generic coefficients cy, . .., c, and satisfies the Newton multiplicity condition
ifa=1. Ifa>1,{f.g][l 2} satisfies the Newton multiplicity condition,
as 'y (f) O IntT'44 (g).

Remark 5. If f is locally tame and non-degenerate and if C! is not a van-
ishing coordinate subspace for f, f! is also locally tame and non-degenerate
as a function on C!. See the argument in Proposition (1.5), Chapter III
[17]. Locally tameness has been defined for mized functions (Definition 2.7,
[8]). If a holomorphic function f(z) is locally tame, it is also locally tame
as a mized function.

3. FIBRATION PROBLEM FOR FUNCTION fg

We study the existence problem for the Milnor fibration of the mixed
function H(z,z) := f(z)g(z) in a more general situation. In this paper,
we do not assume the convenience of f and g and therefore V(f) or V(g)
may have non-isolated singularities at the origin. There are also interesting
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works from more general viewpoint in Parameswaran and Tibar [25, 24] and
Araujo dos Santos, Ribeiro and Tibar [5] where authors consider the case of
critical values being not isolated.

3.1. Canonical stratification. We assume that {f, g} is a locally tame
non-degenerate complete intersection pair. Consider the hypersurface V' (fg) =
V(f)UV(g). Note that the mixed hypersurface V' (fg) is equal to V(fg) as
real algebraic varieties. We consider the following canonical stratification S
of C*" which also give a stratification of V(fg). Put V*/(f) = V(fI)ncC*!
if C! is not a vanishing coordinate subspace.

Here C*! = {(2;) € C!|Vz; # 0, i € I'}. We first define a stratification S of
C*! as follows.

{CIN\ WUV (), V) V), VI NV (g)},if F1#0, g8 #0
{CIA\VH (), V(N it =0, 1 #0

{C\V*(g), v (g)} if f = 0,9" #0

{C*I}, if f1=0,4" =0.

and we define S = UrS’. If {f, ¢} is a disjoint locally tame non-degenerate
pair, the last case does not exist. Here V*/(f) = V*(f)\ V*/(g) and
VH(g) =V (g)\ V¥ (f). VI(f) is empty only if f! is a monomial.

We call S the canonical toric strafitication of V(fg) = V(fg). Note that
S is a complex analytic stratification.

3.2. Transversality and Thom’s a;-regularity. We use the notation
V(H,z) := H'(H(z)) hereafter. Another key condition for the existence of
the Milnor fibration is the transversality of the nearby fibers H~1(n), n # 0
and the sphere S?"~!. Assume that 0 is the unique critical value of H in
B2,

Transversality of nearby fibers: For any pair ro < rp, there exists a
positive number § such that for any r, ro < r < r; and non-zero n with
In| < 6, H '(n) and S?"~! intersect transversely. This condition follows
if H satisfies the Thom’s as-regularity (See for example, Proposition 11,
[21]). Recall that H satisfies as-condition at the origin if there exists a
stratification S of H~1(0) N BEI” for some 11 > 0 such that for any sequence
qv, v =1,2,... which converges qg € M, M € § and qp # 0, the limit of
the tangent space Tq, V (H,q,) (if it exists) includes the tangent space of M
at qp.

Theorem 6. Assume that either (i) {f,g} is a locally tame non-degenerate
complete intersection pair which satisfies also the tame Newton multiplicity
condition () or (i) {f, g} is a disjoint locally tame non-degenerate complete
intersection pair. In the case (i), we assume also that H has a unique
critical value 0 in a ball BEI” Then H = fg satisfies ay-regqularity.
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Note that in case (i), the tame Newton multiplicity condition guarantees
the isolatedness of the critical value of H. For the proof, we consider the
canonical toric stratification S on V(fg). We choose 79,71 > 19 > 0 suffi-
ciently small so that for any r < rg, the canonical toric strata are smooth
in B2" and any sphere Sg”_l with 0 < p < rg meets transversally with
every strata of S of positive dimension. We use Curve selection lemma (see
[15, 10]). Suppose we have a real analytic curve z(t), 0 < t < 1 such that
z(0) = a € V(H)NB¥, a+# 0 and z(t) € C"\ V(H) for t > 0. Put

K = {i|z(t) # 0} and write the expansion as
zi(t) = a;t?* 4 (higher terms), a; # 0, 7 € K
=0, i¢ K

Let M € S! be the stratum which contains a. We have to show that the
limit of the tangent space of the fiber V(H,z(t)) at z(t) for ¢ — 0 contains
the tangent space of the stratum M at a. The restriction of f,g and H
on CX satisfy also the locally tame non-degenerate assumption. As the
argument for the proof is exactly the same, we assume for simplicity that
K ={1,...,n} hereafter. That is, we assume that z(t) € C*" for t # 0 and
z(0) = a. Put P = (p1,...,pn) and

I:={i|p; =0},
(1) { J=I°={1,...,n}\ I, w:=(a1,...,a,) € C™

Note that p; = 0 if and only if i € I. Thus a = wy and 0 # |ja|| < ro. We
will show that
lim Ty V (H. 2(1)) > TaM.

We use the key property that the tangent space of the level hypersurface
V(H,z(t)) at z(t) contains the intersection of two tangent spaces of the
level complex hypersurfaces V' (f,z(t)) and V (g, z(t)) by Proposition 14, [23].
Here we are assuming that rq is sufficiently small so that 0 is the only critical
value for f and g on B%‘. We divide the situation into three cases.

(a) CL ¢ VyuV,, ie fL#£g #0.

(b) C' e Vyand C! ¢ V,, ie. f1=0, g' £0.

(b) Cl eV, and C! ¢ Vy,ie. f1£0, ¢ =0.

(c) Cleviny, ie fl=0, ¢4 =0.
As (b) and (b)’ is symmetric, it is enough to consider three cases (a), (b)
and (c).

We first consider the case (a). The case (a) can be divided into two
subcases:

(a-1) ae M =V (f)ynV+(g).

(a-2) a€ V() =V (f)\V*(g), or a € V*(g) = V*(g) \ V*(f).
In the case (a-1), a is a non-singular point of a € V(f,g). As the tan-
gent space T,V (f, z(t)) converges to TaV/(f) which includes ToV*/(f) and
T,V (g,2(t))) converges to T,V (g) which includes TaV*!(g) and ToM =
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TV (f)NTaV*(g) by the Newton non-degeneracy assumption, the asser-
tion follows from Proposition 14, [23].
In the case (a-2), a € V*/(f)’ or a € V*/(g), a is a non-singular point of
V(H) and the assertion is obvious from the continuity of the tangent space.
Consider the case (b). Thus we assume that C! € V;\ V,. By the
local tameness assumption, the limit of the normalized holomorphic gradient
vector lim;_,0 0 f(z(t))/||0 f(z(t))| along z(t) is a vector in C’. Here J =

{1,...,n} \ I. (Recall 0f(z) = (%—;Z), e 8afz(:))) Thus the limit of the
tangent space of V(f,z(t)) contains C! by the local tameness assumption.
There are two subcases.

(b-1) a € V*(g), or

(b-2) a € C\ V¥ (g).
Note that M = V*!(g) in the case (b-1) and M = C*/\ V*/(g) in the case
(b-2) respectively. In the case of (b-1), the limit of the normalized vector
of 0f(z(t)) is a vector in C’ by the local tameness assumption of f. Thus
the limit of T,V (f.2(t)) includes C'. On the other hand, as dg’(a) is
non-zero, T,V (g) is transverse to C! at a. Thus for any sufficiently small ¢,
they are transverse and the limit of the intersection of two tangent space of
the tangent space of V(f.z(t)) and V(g,z(t)) contains T,V *!(g).

Now we consider the case (b-2). We claim that the limit of the tangent
space T,,yV (H,z(t)) includes C!, the tangent space of the stratum M =

C*'\ V*I(g) at a. First we prepare a sublemma.

Sublemma 7. Let f be a holomorphic function and write f(z) = k(z,z) +
il(z,Z) where k = R f, £ = S f. Then we have Ok = %8_]” and 00 = LOf
In particular, two gradient vectors Ok and Of are linearly dependent ov
but linearly independent over R at a mon-critical point z of f.

ol
Q

f.
r C

)

The assertion follows from the identities:
Ok =0k, 00 = 00, Of = Ok +1i0¢ =0, Of = Ok + i0L.
Put ppin = min{p; |j ¢ I}. First we can write

Lemma 8. The orders ofg)?f(z(t)) and 03 f(z(t)) are equal to the order
of 0f(z(t)). Put s =orderdf(z(t)). Then s and strictly less than d(P; f) —
DPmin- We can write further as follows.

0f(z(t)) = vt* + (higher terms), Iv € C’
ORf(z(t)) = %Vts + (higher terms)
O f(z(t)) = %vts + (higher terms)
In particular, limy—oT,u)V (f,2(t)) is the complex orthogonal of v.

Now we are ready to analyze the case (b-2). Note that the limit of nor-
malized gradient vector df(z(t)) is v/||v||. For a vector v, let v-¢ be the



M. OKA
subspace of C" which are complex orthogonal to v. Namely v+¢ = {w €
C"|(w,v) =0}. Now we claim
Assertion 9. Assume a € C* \ V*/(g). Then lim; o T,V (H,z(t) =
limt_m Tz(t)V(f, Z(t)) .

Proof. Put b:= g(a) and write b = by + iby with b1, bs € R. First we use the
equalities:

R(H) = R(R(G) = S(N)S@), S(H) =R(f)S(g) + 3(f)R(3).
Then the gradient vectors are given as
OR(H)(2(1)) = (OR(S)R(7)(=(1)) + (R(S)OR(7)) (=(t))
= (03(£)3(@)(=(t) — (3()I3(7))(=(t))
= b1OR(f)(2(t)) — b0 f(z(t)) modulo (t571)
= V—bts modulo (t571)

(FR(F)ST)(2(1)) + (R()TS@)) (2(1))
5%(f)9‘f(g)(2(t))+d( >a‘ (@) (2(1))
b (t
(

| N

z(t)) modulo (t*+1)

and therefore the normalized vector of these gradient vectors OR(H)(z(t))
and OS(H )(z(t)) converges to the vectors

vb _vb

— i

[vol [vb]
respectively. This implies the limit of the tangent space T,V (H,z(t)) is
the real orthogonal of the real 2-dimensional subspace span by these two
vectors, that is nothing but the complex subspace v which is equal to the
limit of T4V (f,2(t)). The proof of the assertion for (b-2) is now completed.
The case {f, g} is a disjoint tame non-degenerate complete intersection pair
is now proved.

Now we consider the last case (c) C! € Vy NV, Recall that w =

(a1, .., ap). We divide the situation into three subcases.

(c-1) fp(w) = gp(w)=0.
(c-2) fp(w) =0 and gp(w) # 0 or (c-2)" fp(w) # 0 and gp(w) = 0.
(c-3) fr(w) #0, gp(w) # 0.

We restate the assertion as the following lemma.

Lemma 10. Assume that C! € Vi NVy. The the limit of the tangent space
Tpw)V(H,z(t)) includes C! as a subspace.
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Proof. First assume that fp(w) = gp(w) = 0. Put 0f(z(t)) = (uy(t),. .., us(t))

and 0g(z(t)) = (v1(t),...,v,(t)). We can write as

ofr
%j

v(t) = %(w)td(ﬂg)_m + (higter terms).
j

uj(t) = (w3 =Pi 4 (higher terms)

Put oy and o4 be the orders of df(z(t)) and Jg(z(t)) respectively. That
is oy = min {ordsu;(t)|i = 1,...,n} and oy = min{ordv;(t) [i = 1,...,n}.
Then the limit of df(z(t)) and dg(z(t)) up to scalar multiplications are
represented respectively by

(2) lim —8f( (t)), lim %ETg(z(t))

t—0 (°F t—0 1

We denote these limit vectors as hmt_>0 Jf(z(t)) and hmg_zo dg(z(t)). If
these two limits are linearly independent over C, the intersection

TV (f,2(t) N TV (9,2(t))

converges to the the complex orthogonal subspace to these two limit vectors.
That is,

< Of(2(1)), g(z(t)) > < Im ™I (2(1)), lim Mg (z(t)) >+ .
t—0 t—0
The problem happens if these two limits are linearly dependent. We use a
similar argument as the one which is used in the proof of Theorem 20, [21] or

Theorem 3.14, [8] to solve this problem. For the simplicity of the argument,
we assume that J = {1,...,m}and I = {m—+1,...,n} and we assume that

przp22-2pm >0, pug1 = =pn =0,
Note that p,.;n = pm under the above assumption and
ordu;(t) > d(P; f) = pj, ordv;(t) =2 d(P;g) =pj, j=1,...,m
while for j > m + 1,
ordujt) > d(P; f), ordwv;(t) >d(P;g),j=m+1,...,n

Now we consider first (c-1): fp(w) = gp(w) = 0. By the locally tame
non-degeneracy assumption, there exists 1 < a,b < m, a # b so that we
have

Frw) Frw >>
3 det | 2za 0z #0.
@ (%{:(m %(w)

Here we assume that a # b but we do not assume that a < b. In particular,

Of < max{d(P; f) = pa, d(P; f) — pp} < d(P; f) — pm,
g < max{d(P;g) — pa, d(P;g) — pp} < d(P;g) —
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For simplicity, we may assume that oy < o, and consider
lo :=min{j|ordu;(t) = or}, mo :=min{j|ordv;(t) = o4}.

We call £y, mq the leading indices of Of(z(t) and dg(z(t)).
Case 1. Assume that £y # mg. Then the two limit gradient vectors given
by (2) are already linearly independent. There are nothing to do further.
Case 2. Assume that {5 = mg. Then we take a monomial function
p(t) = ct?=°f ¢ € C and replace dg(z(t)) by

vi(t) = Bg(a(t)) — p(t)0f (=(t).

We choose a constant ¢ so that ord @,(ig (t) > og. We put ord vﬁ,}g( t) = oo if
v,(;}b()) (t) = 0. Here ol (t) is the mo-th component of v(1)(t). Note that the
two dimensional complex subspace W = (9f(z(t)), 0g(z(t))) generated by
{0F(2(1)),09(z(t))} is the same with subspace (3f(z(t)). v (t)) generated
by {0f(z(t)),v(D(t)}. Thus their complex orthogonal subspaces are also
equal. We continue this operation

37— v Sy

until the leading index of v(¥) changes. Note that the k-times operation
dg(z(t)) — v*)(t) is given as

v (2) = Bg(a(t)) — pi(t)OF (=(t))
where py,(t) is a polynomial of variable ¢t whose lowest degree is 0o, — oy. By

(3), we may assume that dgp/0z.(w) # 0. Note that ord- o )( t) is strictly

increasing as long as v < k — 1 and ord v(¥)(¢) = ord 7)(1/)( t). Let us look the
components a, b which is given by

o0 = 2 a0~ pu() 2 a1, 7 = a0

Assertion 11. One of the following inequalities holds.
ordv((t) < d(Pig) = pa. or ordu(t) < d(Pig) — py.

Proof. Assume that ordt( ) s d(P; g) — pa. We will show that ord vgk) (t) <
d(P;g) — py. As the first term of pg(t)52- X —(z(t)) kill the first term of g—i(t),

the order of pk(t)a_za( ) is equal to d(P;g) — ps. There are two cases to be
considered.

(A) G2 (w) # 0 or (B) 32 (w) = 0.

Assume the case (A). Then we have ord p,(t) = d(P; g)—d(P; f) = og—oy
and which implies that

oxt py() 222 (a(0)) 2 (4(P: ) o) + (A(P5g) ~ (P 1) = d(Pig)
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Then putting A be the coefficient of 479 =d(Pif) in p,(t), we have

ofp afp

720 (W) (w)
0 #det | Zz 0z, >

( ) G (w)

dgp
0zq (W Dz

_det( ) T )_< >>

(W) + AGE (W) G (w) + A

et (%f;{:<w> L Yew) )
0 (w)

62:{,

and thus %(w) + /\%(w) # 0 by (3), ord Uék) =d(P;g) — pp-
Consider the case (B) now. Then ord pi(t) < d(P;g) — d(P; f). By (3),
aﬁ(w) # 0 and ordv®)(t), < d(P; g) — pp. Thus in both cases, under the

0z,
above operation, ord v®) () < d — py,. 0

The above argument implies that the number £ of operations is bounded
by k < d(P;g) — pm — 0g. At the last operation, the leading index of vF) (1)
is different from mg and the limit vector of v(*¥)(t) and 9f(z(t)) are linearly
independent and they are in the subspace C’. As
TV (f,2(t) N T,V (g,2(t)) is the complex orthonormal subspace of the
two dimensional subspace <8_f(z(t)),8_g(z(t))>(C and it is equal to the com-
plex orthonormal subspace of (9f (z(t)), v(*) (t)>c, the limit of T,y V/(f, z(t))N
T,V (g,2(t)) includes the vanishing subspace C'. As T,V (H, z(t)) in-
cludes T,V (f, 2(t)) T,V (9, 2(t)) as a subspace, lim;_,o T,V (H, z(t)) D
C’. Thus the proof of case (c-1) is done.

Now we consider the case (c-2): fp(w) = 0,gp(w) # 0. Consider the hy-
persurface V := {(z; € C*/| fp(z) = 0, z; = a}. By the locally tameness
assumption, V is a non-singular hypersurface in C*/. Let us consider the
restriction gp : V' — C. As gp is a weighted homogeneous polynomial func-
tion of weight Py = (p1,...,pm) and V is invariant under the associated
C* action on C/, gp has no non-zero critical value on V. Namely dgp(w)
is non-zero and linearly independent with 0fp(w). Thus there is a pair
a < b < m which satisfies (3). Thus the rest of the argument is the exact
same as above and limy_, T,V (H,2z(s)) D C'. The case (c-2)": fp(w) #0
and gp(w) = 0 is treated similarly.

Now we consider the case (c-3): fp(w),gp(w) # 0. In this case, we need
the assumption that f, g satisfies the tame Newton multiplicity condition.
Let degp f = dy and degpg = dy. Put d, := dy +dy and dp = dy — d.
Then the tame Newton multiplicity condition implies d,, # 0. The mixed
function Hp = fpgp : C/ — C is a strongly mixed weighted homoge-
neous polynomial which satisfies H(pe® o z) = p?redr? H(z) and thus 0 is
the only critical value. Thus ORHp(w), 0SHp(w) are linearly independent
over R and we can proceed the same argument as above replacing 0f, dg



M. OKA

to ORH (z(t)),03H (z(t)) to conclude the real two dimensional subspace
(ORH (z(t)), 03H(z(t)))r has a limit which is a real 2-dimensional subspace
of C’. Thus lim;_ T,V (H,z(t)) D C'. See the proof of Theorem 20, [21]
for further detail. O

Now the proof of Theorem 6 is completed.
O

By Proposition 11, [21], we get the transversality assertion:

Corollary 12. Let {f, g} be as in Theorem 6. Then there erists a positive
number ro such that for any r1, 0 < ry < rg, there exists a positive number
d(r1) so that for any n # 0 with |n| < §(r1) and and any p, r1 < p < ro, the
nearby fiber H='(n) is non-singular in B,?gl and intersects transversely with
the sphere S/Q,"_l.

3.3. Existence of a tubular Milnor fibration. By Lemma 1, Theorem6
and Corollary 12, we apply Ehresmann’s fibration theorem ([35]) to obtain:

Theorem 13. Assume that {f, g} satisfies the same assumption as in The-
orem 6. Then there exists a positive number ¢ and a sufficiently small § < €
such that

H=fg:E(g9)" — Dj
is a locally trivial fibration where E(g,0)* := {(2z) |0 # |H(z)| < 0, ||z]| < &}
and Dy :={C € C|0# |¢| <6},

By Corollary 12, the fibration does not depend on the choice of € and 9.
For a disjoint locally tame non-degenerate pair { f, g}, applying the argument
of 2 of Example 4, we have:

Corollary 14. Asssume that {f, g} is a disjoint locally tame non-degenerate
complete intersection pair. Fix an admissible toric modification 7 : X — C".
Take m > 0 large so that {fm,g} and {f,gm} satisfy the toric multiplicity
condition with . Then changing the coefficients of fp or gm slightly if
necessary, {fm,g} and {f,gm} are locally tame non-degenerate complete
intersections respectively for which w: X — C" satisfies the toric multiplicity
condition. Thus Hy, := fmg and K := fg,, have tubular Milnor fibrations.

For the definition f,,, see Example 4.

4. SPHERICAL MILNOR FIBRATION

In this section, we study the existence of the spherical Milnor fibration.
For a fixed small » > 0, we consider the mapping ¢ : Sf”’l \K — S1 where
K=V(H)NS?>" ! and ¢(z) = H(z)/|H(z)|.

Lemma 15 (Lemma 10,[23]). We assume {f, g} is a weak locally tame non-
degenerate complete intersection pair satisfying the assumption in Theorem
6. Then there exists a positive number 3 so that ¢ : S>" 1\ K — S1 has
no critical points for any r, 0 < r <rs.

99
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In the proof of Lemma 17 below, we will simultaneously reprove Lemma
15. Using Lemmal5 and the transversality property of the fibers H~1(n), 0 #
n| < § and the sphere S?"~! (Corollary 12), we obtain the following.

Theorem 16. Assume {f, g} is a weak locally tame non-degenerate complete
intersection pair as in Theorem 6. For a sufficiently smallr, ¢ : Sf’”_l\K —
St is a locally trivial fibration.

Proof. Consider the neighborhood of K defined by N(K) := {z € S?"~1\
K ||H(z)| < 6}. Corollary 12 says that three vectors z, vi(z), va(z) are lin-
early independent over R on N(K). For the definition of vi, va, see the next
section. Construct a vector filed V on S2"~1\ K such that R(V(z), va(z)) = 1
and furthermore if z € N(K), it also satisfies R(V(z),vi(z)) = 0. Then
along the integral curves of V, the argument of H(z) is monotonic increase
and the absolute value of H is constant when it enters in the neighborhood
N(K). Thus the integral curves exists for any time interval. For the local
triviality, we use the integration of V. O

4.1. Equivalence of tubular and spherical Milnor fibrations. In this
section, we consider the equivalence problem of two Milnor fibrations. Let
us recall two vector fields on the complement of V' (H) which are defined as
follows ([19]).

vi = OlogH +0logH = — +

vy = i(alogH—glogH):i( = ——).

v1, Vg are real orthogonal. Let z(t) be a real analytic curve in C" \ V/(H).
Then we have

Thus we vi(z) and va(z) are gradient vectors of Rlog H(z) = log |H (z)| and
Slog H(z) = iarg H(z). They are defined on C" \ V(H). A key lemma is
the following.

Lemma 17. Assume that {f,g} is as in Theorem 6. There exists a pos-
itive number ro such that for any z € ngl \ V(H), either three vectors
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z,v1(z),va(z) are linearly independent over R or they are linearly depen-
dent and the relation takes the following form:

z = \vi(z) + puva(z), \, p € R,
where X is positive.

Proof. Assume that there exists a real analytic curve z(¢) in C™"\ V(H) and
real valued rational functions A(t), u(t) such that

(4) z(t) = A(t)vi(z(t)) + p(t)va(z(t))

and z(0) = 0. If u(t) = 0, the assertion follows from Corollary 3.4, [15].
Thus we may assume that u(t) # 0. Let I = {j|z;(t) # 0}. As fl, g’

satisfies the same assumption, we assume for simplicity that I = {1,...,n}.
Thus z(t) € C*" for ¢t # 0. Consider their Taylor or Laurent expansions
f(z(t)) = ~t™ + (higher terms), v € C*
g(z(t)) = pt"™ + (higher terms), 8 € C*
2i(t) = a;t? + (higher terms), a; € C*
A(t) = Aot"™ + (higher terms), Ao € R
w(t) = poet” + (higher terms), po € R*.

In the proof, we reprove Lemma 15. Thus A9 = 0 only if A(#) = 0 and in
that case, we understand v; = +o00. If this is the case, z(t) is a critical point
of p : §2"=1\ K, where 7 = ||z(t)|| and K, is the link of H~1(0) in this
sphere. Put ¢ := min{d(f; P) — my, d(P;g) — mg} and let us define

B Lifd(P;f) —my=1¢
TV 0 itdPif) —my >0
i 1,if d(P;g) —mg =/
) 0, i d(Pyg) —my > £

(5) vi(t) = <fp’;(a) ey + gp’%(a) sg> thpi
(6) vy(t) = i (fp’;(a) er— gp%(a) 69) tPi 4
Put

P(a) = (p1a1, ..., pnan), Pmin = min{p;|j € I},
J {] |pj = pmin}y vy = min{l/l, 1/2}

o7
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and put d; = 1 or 0 according to v; = vy or v; > 1y respectively for ¢ = 1, 2.
By (4), we get

ajtpj —|‘

= XN (fp’j(a) €f + gp%(a) 59) P

v

gl

= ejtllo—i_é_pj + .«

T i (fP,J (a) ef— gP%(a) Eg) pttp; 4

where

e = {Aoél (j.P%(a) o+ 2202) 59) + o2 (fpiy(a) e - 22 59) } '

B B

If vo +4€ — 2pmin > 0, we get a contradiction a; = 0,7 € J. Thus
vy + £ — 2pmin < 0. Consider the vectors

VEO) = (w},...,w}), wl = 7fp’i(a) e+ Lp’i(a)eg
v 5
véo) = (wi,...,w}), wh=1i fp’i(a)ejc — gpi(a) Eg
Y p
Assume that vg + ¢ — 2pmin < 0. By (7), we get
(7) /\g(slw{ +u062w% =0,75=1,...,n.

If ¢ <0,erfp(a) = 0and e4gp(a) = 0. The above equality gives a contradic-
tion to the non-degeneracy condition either for V(f) if ey = 1,24 = 0, or for
V(g) if ey =0,e4 = 1 or for the intersection variety V(f,g) if ey = ¢4 = 1.
Assume ¢ = 0. Then vy < 2ppmin, ¥ = fp(a) and § = gp(a). We consider
the equality
dz;(t dz;i(t) [~ —
® 0.0 = 3 20 (X + s o)

jeJ jeJ
The left hand side has order 2p,,;, — 1 as

sl ) -3
J 2,2pmin—1
o zj(t): pj‘a,j‘ t<P + ...

jed jeJ

Using (7) and Euler equality, we see that the leading term of the right hand
is t"0~1 which has the coefficient

Xo01(d(P; f) +d(P; g)) + iped2(d(P; f) — d(P; g)) # 0.

The coefficient is non-zero. ( If §; = 0, we use the Newton multiplicity
condition to see the imaginary part is non-zero.) Thus the order is strictly
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smaller than 2p,,;, — 1, which is a contradiction. Thus the case vy + ¢ —
2pmin < 0 does not occur. Thus the following equality holds:
vo + £ = 2pmin = 0.
(7) implies the following equality.
j ; aj j€J
Aodrw] + podawd = J
001W7 T [H002W5 0, jéu

We consider the equality (8) again.

The left side of (7) has order 2p;,in, —1 with the coefficient ZjeJPmin|aj 2 >
0. The right side has order 2p,,,;»—1 and the coefficient is given through Euler
equality as

(d(P; fv)fp(a) e + d(P;g)gp(a) €g>

Aod1
5
[ d(P; a d(P; a
+ by ( (P; £)fp( )sf _d(P;g)gp( )€g>
v : B
If £ <0, fp(a)ey = gp(a)sg = 0 and the above coefficient is zero. Thus we
get a contradiction. Thus the only possible case is £ = 0 and therefore

fl’(a)v 91’(a) # 0, v0 = 2Pmin.

We observe also 01 # 0, as otherwise the coefficient is purely imaginary.
Thus we should have

= 07 v < V2,7 = fP(a)7 ﬁ = gP(a)‘
The leading coefficients of (8) gives the equality:
> pminla” = Xo(d(P;f) +d(P;g)) + idapo (d(P; f) — d(P;g)).
jed
Thus taking the real part of this equality, we conclude that A\g > 0. This

also proves A(t) = 0 does not occur as A\g # 0. This gives another proof of
Corollary 12. (Il

Now we are ready to prove the equivalence theorem.

Theorem 18. Assume that {f, g} is a locally tame non-degenerate complete
intersection pair as in Theorem 6. Consider the tubular and spherical Milnor
fibrations

H:9E(r,6)* — S}
: S\ K — st
These two fibrations are equivalent. Here we use the notations

OF(r,0)* :=={z € B¥||H(z)| =6}, K = S>" ' nV(H).
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Proof. Let ¢ be sufficiently small and put ON(K) = {z € S?"71||H(z)| <
d}. By the transversality, N(K) is contractible to K and N(K) \ K is
diffeomorphic to ON(K) x (0,1) and ¢ : S?"~1\ N(K) — S! is equivalent to
the spherical fibration ¢ : S2"~1\ K — S'. Note that vectors v, vy are real
orthogonal. Take a locally finite open covering U = {U,, o € A} U{Vj, B €
B} of B2"N{z||H(z)| > 6} as follows. Each U,, Vj are open disk with center
Pa-Dg. Secondly in each Uy, {z,v1(2z),v2(z)} are linearly independent over
R, while in Vg, ps can be written as

3 = Avi(pg) + pva(pg), A >0

and we take the radius of Vj3 is small enough so that R(z,vi(z)) > 0 for any
z € V3. (There might exist a point z € V3 where z,v(z), vo(2z) are linearly
independent.) Construct a vector field w,, on U, so that

R(wa(z),va(z)) =0, R(wa(z),vi(z)) =1, R(wa(z),2) =1, Vz € U,.

Such a vector field is called a Milnor vector field in [5, 6]. Along any
integration curve z(t) starting a point p € JE(r,d)*, arg H(z(t)) is con-
stant and |H(z(t))|, ||z(t)|| are strictly increasing. This curve arrives at
z(s(p)) € S?"~1\ N(K) for a finite time s(p) > 0. Using this integration
and the correspondence p — z(s(p)), we can construct a diffeomorphism
¢ OB (r,6)* — S2"1 — N(K) and ¢ gives the commutative diagram:
DE(r,8) - §21 - N(K)

| ¢

S1 — st
where ¢(n) =n/d§. Thus 1 gives an isomorphism of the two fibrations.  [J
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