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Abstract 

Empirical likelihood is an effective nonparametric method for statistical inference, 
having several good properties from both theoretical and practical aspects. One serious 
problem of empirical likelihood is that its confidence regions can have poor accuracy, 
especially when the sample size is small, the parameter is multidimensional, and/or the 
underlying distribution is skewed. Importantly, the fact that the "probability that the 
empirical likelihood ratio function exists" (hereinafter, referred to as "existence probabil-
ity") is always lower than 1 is a strong contributor to such poor accuracy. In this paper, 
we develop a new approach to improvements in coverage accuracy of empirical likelihood 
inference by incorporating the existence probability into the inference. It is demonstrated 
in simulation studies how accurate our methods are; they may work well even in small 
sainple, multidimensional, highly skewed situations. 

1 Introduction 

Likelihood inference is a powerful device in parametric statistics. Empirical likelihood intro-

duced by [4] brings likelihood inference into the realm of nonparametric or semiparametric 

statistical inference, employing a nonparametric version of likelihood functions referred to as 

empirical likelihood ratio function. It is not necessary to specify a family of distributions of 

the data; nevertheless, the empirical likelihood holds several advantages of parametric likeli-

hood inference. Among them, it is appealing that the empirical likelihood does not require the 

construction of a pivotal statistic, does not generally require variance estimation, produces 

confidence regions with the natural shape, and has very desirable asymptotic power. In the 

past three decades, the empirical likelihood has found applications in many areas of statistics 

and is still under active research. 

Here, our interest is in the "practical" difficulties constructing accurate empirical likeli-

hood confidence regions; even though Bartlett corrected empirical likelihood introduced by 

[1, 2] has the coverage error of O(n-2) with sample size n, it still has poor accuracy when 
the sample size is small, the data is multidimensional, and/or the underlying distribution is 

highly skewed; see, for example, [6]. These difficulties are partially attributed to the existence 

probability, the probability that the empirical likelihood ratio function exists. 

We develop two calibration methods for improvements in coverage accuracy of empirical 

likelihood confidence regions; these incorporate the information of the existence probability 

into empirical likelihood inference each in a different way but are based on a common idea, 

the quasi-bootstrap. The quasi-bootstrap is a statistical resampling method for estimating the 

existence probability, in which the data is resampled from what we call the quasi-bootstrap 
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distribution. We put a detailed discussion of our methods in Section 3, including their asymp-

totic properties. On top of that, in Section 5, simulation studies show that our methods have 
better performance than conventional counterparts. 

We only discuss the mean as a parameter of interest in this paper; nevertheless it may be 

possible to apply our methods to other parameters. 

2 Preliminaries 

Here, we provide some notations and previous studies concerning empirical likelihood neces-

sary for later sections. 

2.1 Empirical likelihood 

To set up notation, let X 1, …，Xn E配 bei.i.d. random variables having meanμ0 and variance-
covariance matrix Vo. The empirical likelihood ratio function for the mean is defined by 

R(μ) = sup {rt nw; I芦叫X;-μ) = O,w; 2: 0, tw; = 1}; 
we also define the empirical log-likelihood ratio function C(μ) = -2logR(μ). Here we intro-

duce two conditions: 

Condition 2.1. Vo is finite and has rank q > 0, 

Condition 2.2. lim suplltll→ 00 IE[exp(it丁Xi)]I< 1. 

One noteworthy property of the empirical likelihood is that, under Condition 2.1, 

仰 o)= -2 log R(μo) ,..,.. X『q)' (1) 

which provides an asymptotic justification for statistical hypothesis testing that rejectμ。at
some nominal level. Then, given the nominal level 1 -a, we typically choose the threshold 

2 'Yl satisfymg P(x <'Y1-a) = 1 -a; the 100(1 -a)% empmcal likelihood confidence 
心 (q)-
region for the mean may be written as 

{ n 
cn,a ={μI£(μ)さ"/1-a}=言wふ I-2logJ且 nwi さ "/1-a,Wi~0,苔i= 1}・ 

This is the basic way to calibrate empirical likelihood, what is called chi-squared calibration. 
[1] showed that the coverage error of cn,a is of order n―1 under Conditions 2.1 and 2.2: 

P(μo E cn,a) = P(£(µo)~ こ"/1-a)= P(xzq) :S "/1-a) + O(n―1). (2) 

In the same time, they established another key property that, under Conditions 2.1 and 2.2, 
the empirical likelihood is Bartlett correctable, reducing the coverage error to O(n-2): for a 

constant a chosen in an appropriate manner, 

P (c(μo) (1 ー~)さ 'YI-a) = P(xzq) ::;'YI-a)+ O(n―2). (3) 
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Then the corresponding confidence region is defined by 

cn,a a 
Bart = {μI£(μ) (1 -~) :<;'Yぃ｝．

We refer to [1, 2] for the details. 
Another effective calibration method is the bootstrap calibration. Define the bootstrap 

empirical likelihood ratio function forふ by

R*(ふ） = sup {りnwiIt叫Xt-ふ） = O,wi 2". 0, 言Wi= 1}, (4) 

wher,e Xi, …, X~are independently sampled from the empirical distribution of X1, …, Xn. 
Let (n,a be the 1 -a quantile of -2 log R* (ふ） • Then the confidence region of the bootstrap 
calibrated empirical likelihood is written as 

C炉={μI£(μ) ::; (n,a}, (5) 

Since it is almost impossible to obtain the exact values of (n,a in practice, the simulation 

procedure is used for approximating them: for a sufficiently large B, calculating the quantiles 

of -2 log Rb* (ふ）， b= I, …, B. 

2.2 Existence Probability 

By the definition of the empirical likelihood ratio function for the mean, It is obvious that 
R(μo) and C(μo) is defined if and only if 

μo E {μI£(μ)< oo} ={μIμE Conv(X1, …,X砂｝，

where Conv(X1, …, Xn) is the convex hull of Xi; otherwise, £(μ0) = oo. Then what we call 
the existence probability is written as 

p = P(£(μ) < oo) = P(μo E Conv(X1, ... , Xn)). 

The important thing is that p itself may be in part responsible for the poor accuracy of 

empirical likelihood inference. We illustrate how p acts on the the chi-squared calibration 
and the bootstrap calibration. 

As for the chi-squared calibration, 1 -p may be regarded as negligible, for, in the proof 

of (1) (see [5]), it is assumed that sample size n is large enough that 1 -p = P(μ。¢
Conv(X1, …, Xn)) is negligible and the meanμ0 is inside the convex hull of Xi; (2) and (3) 
are more precisely expressed as 

P(C(µo)~"fl-a I£(μo) < oo) = 
P(C(µo)~'Y1-a) 
p 

=l-a+O(n―1) 

and likewise 

P (C(μo) (1 -;) :S ,1-a I C(μo) < oo) = 1 -a+ 0(n―2). (6) 
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This implies that when p is small, the coverage probability of chi-squared calibrated empirical 

likelihood may tend to be lower than the nominal level 1 -a: 

P(C(μo) :::; 11-a) = (1 -a)p + O(n―1)' 

P (c(μo) (1 ー〗） ::::11-a) =(1-a)p+O(n―2). 

(7) 

(8) 

There is no doubt that both (2) and (3) are correct since, by taking n→ oo, we have p→ 1 
with higher order than O(n-2) as we shall see in Section 6. 

In the second place, the bootstrap calibrated empirical likelihood is subject to influence 

by the existence probability; it is possible that its coverage probabilities are much greater 

than their nominal levels in contrast with the chi-squared calibration in which the coverage 

probabilities are subject to undere互timation.L_et us see how such overestimation happens. 
For a sufficiently large B, let£1*(Xn), …，伊＊（ふ） be bootstrap replicants of the empirical 
likelihood likelihood ratio function for the empirical meanふ， givenX1, …，Xn having mean 
μo. Let£ 尺μo),…，伊(μ0)be empirical log-likelihood ratio functions forμ0 obtained by a 
simulation procedure. Note that some of the bootstrap replicants and the simulated functions 

are infinite; £'(μ0) = oo with the probability 1 -p = P(£(μ0) = oo) andが＊（ふ） = oo with 
P(£*(ふ） = oo I 1Fn), in which the notation P(・I 1Fn) indicates that the distribution of the 
observations is恥 givenX1, ... , Xn, What is matter here is that the number of P,i•(ふ） being 
infinite is prone to be larger than the counterpart of£i(μo), In other words, P(£*(ふ） = oo I 
1Fn) overestimates 1 -p. There is an implication that the coverage probabilities of bootstrap 

calibrated empirical likelihoods may still be above their nominal levels. 

What we want to highlight here is that it needs to incorporate the information of the 

existence probability into empirical likelihood inference for practical use. 

3 Proposed Methods 

In this section, we propose two calibration methods incorporating existence probabilities into 

empirical likelihood inference. They are based on a common idea, the quasi-bootstrap, which 

is a new resampling scheme designed to estimate the existence probability p well. There are 

two ways to apply the quasi-bootstrap to empirical likelihood inference, corresponding to our 

two methods. The quasi-bootstrap calibration, our first method, employs the quasi-bootstrap 

for resampling empirical likelihood ratio functions. On the other hand, the modifying chi-

squared calibration, our second method, uses it for estimation of the existence probability. 

3.1 Quasi-Bootstrap 

The quasi-bootstrap is a resampling method, constructed so as to take the existence prob-

ability into account in empirical likelihood inference. It is basically much the same as the 

bootstrap introduced by [3]. The only difference between the quasi-bootstrap and the boot-
strap is their distributions used for resampling. Let Xi, …, Xn E配 bei.i.d. random variables 
with meanμo, let 1Fn be the empirical distribution obtained from Xi, …，Xn, let E = d/n, 
and let G be some projection symmetric distribution having meanふ＝汀 Xdnand fi-i=l 

nite variance-covariance matrix. Here, the distribution of Y is projection symmetric if the 

distribution of the projection of Y on the unit sphere is symmetric with respect to its mean; 

for example, Gaussian distributions and uniform distributions on the surface of spheres. A 
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quasi-bootstrap sample Xi, …, X~is drawn from 

Tn = (l -c)凡 +cG;

meanwhile the bootstrap relies on恥 only.Hence, its distribution function is written as 

1 
Tn(x) = (1 -c:)恥(x)+ c:G(x) = (1 -c:)一区山X心｝十c:G(x).

n 
i=l 

(9) 

This formulation may seem strange and to reduce estimation accuracy. In fact, Tn is intended 

to estimate the existence probability well: 

P(£*(ふ）く ooI Tn)~P(£(µo) < oo), 

where 

C*(ふ）＝ー2log[sup {g nwi It→: —ふ） = 0, Wi::,. 0, 戸=1}] (10) 

The notation P(・I Tn) denotes that the observations are sampled from Tn given X1, …, Xn. 
Indeed, P(£*(ふ） < oo) may be good estimator of P(£(μo) < oo), whereas the bootstrap 
tends to underestimate. 

3.2 Quasi-Bootstrap Calibration 

The quasi-bootstrap calibration is almost the same as the bootstrap calibration except for 

their distributions. Let X1, …, Xn E配 bei.i.d. random variables with meanμ0. Denote 
the quasi-bootstrap distribution by Tn as in (9). For b = 1, …，B, i = 1, …，n, let X;*b be 
i.i.d. random variables according to quasi-bootstrap distribution Tn. Now, we can derive 

け（ふ） in accordance with (10). Then the quantiles of炉（ふ） under Tn are used as an 
estimator for a quantile of£(μa); the 1 -a quantile is provided as the smallest value x = fn,a 
that satisfies 

#{b I C*b(ふ）：：：：： x} 

B 
2: 1-a. 

Hence, the quasi-bootstrap calibrated (1 -a)100% confidence region C心名 iswritten as 

噂名={μI£(μ) :s: む，a},

3.3 Modifying Chi-Squared Calibration 

(11) 

The modifying chi-squared calibration is different from the usual chi-squared calibration in 

that the nominal level 1-a may be modified. To be more precise, we use the (1-a)p quantile 

of chi-squared distribution as the threshold instead of 1 -a, where p is the estimator of the 
existence probability. 

X 
2 We assume Condition 2.1 so that£(μ0) "" as n goes to infinity. As mentioned (q) 

previously, the quasi-bootstrap is aimed to estimate the existence probability p = P(£(μo) < 
oo); the estimator p is defined by 

P = P(R,*(ふ）く 00I Tn)'::' 叫 oE Conv(X仇…， x~り｝・
B 
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In practice, the right-hand side is typically used as fJ for a sufficiently large B. Here, plugging 
in p = p for (7) yeilds 

P(£(μo) ::; "(1-a) Co'(1 -a)p. (12) 

Then, it follows immediately that 

P(£(μo) :::;'Y(l-a)/p)'.::::'1 -a, 

where'Y(l-a)/fi is the (1-0:)/p quantile of xzq)・It is implied that the (1-a:)100% confidence 
region based on the modifying chi-squared calibration is 

C駕={μI£(μ) :::;'Y(l-a)/p}-

What matters is that, under Conditions 2.1 and 2.2, the modifying chi-squared calibrated 

empirical likelihood can have second order accuracy by employing the Bartlett correction, 

that is, for an appropriately chosen constant, 

P (£(μa) (1 ー~) :::;'Y(l-a)/p) = 1 -a+ O(n―2). 

The corresponding confidence region is expressed as 

C立名2={μ1£(μ)(1
a 
-;;) ::::; 1(1-a)/f,}・ 

These properties will be seen once again through Theorem 4.3 in Section 4. 

4 Asymptotic Properties 

In this section, we introduce some asymptotic properties of our methods. The consistency 

of the quasi-bootstrap calibration is illustrated first, which is broken down into two parts, 

Proposition 4.1 and Theorem 4.2. Then we introduce Theorem 4.3 that summarizes the 

asymptotic properties of the modifying chi-squared calibration. We will prove them in Section 

6. 

4.1 Consistency of the Quasi-Bootstrap Calibration 

The consistency of the quasi-bootstrap calibration can be regarded as the consistency of the 

quasi-bootstrap estimator relative to the Kolmogorov-Smirnov distance; see Chapter 23 in 

[7]. That is, we call that the quasi-bootstrap calibration is consistent if 

sup IP(『（ふ） :S:'YI Tn) -P(£(μo) :S:'Y)Iぢ0.

The following lemma indicates that it suffices to show the consistency of the quasi-bootstrap 

calibration that, for every'Y, 

P(£(μo) :S:'Y)→ P(x『q):::;'Y), P(£*ふ） '.S:'YI Tn)互P(x『q):::;'Y). 

p ropos1t10n 4.1. Let X1,X2, … be i.i.d. random variables with meanμo, and letふ＝
江~1 ふ/n. For some q > 0, suppose that£(μa) -v-+ x『q),and that£* (ふ)-v-t X恥， given
X1,X2, …, in probability, where£* (ふ） is defined as {10). Then, the quasi-bootstrap calibra-
tion is consistent. 
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Since Owen (1990) showed that, if i.i.d. random sample Xi has meanμo and finite variance-

covariance matrix of rank q > 0, then£(μo) ""* x『q),what remains to be done for our objec-
tive is to show the assumption left in Proposition 4.1 is satisfied, that is, conditionally on 

X1,X2, …, £*(ふ)""* x2 in probabiulity. In fact, a strong result, (q) 

P(£*(ふ)::=;"'(I Tn)→ P(x『q)::=; 1) a.s. 

is obtained. 

Theorem 4.2. Let X1,X2, …E配 bei. i. d. random v叩 ableshaving meanμ。andvariance-
covariance matrix Vo, and let Xi, …, X~be i.i.d. random variables according to Tn, given 
X1,X公…， asin (9). The corresponding quasi-bootstrap empirical likelihood ratio function is 
denoted by£* (ふ） as (10). Then under Condition 2.1, for almost eve内 sequenceX1,X2, …， 

『(ふ)""* X『q)'

given X1, X2, …• 

Combining Proposition 4.1 and Theorem 4.2, we can establish the consistency of the 

quasi-bootstrap calibration. We refer the reader to Section 6 for their proofs; the similar 

processes can also be applied just as well to the bootstrap calibration, which indicates that 

the bootstrap calibration is asymptotically consistent. 

4.2 Asymptotic Properties of the Modifying Chi-Squared Calibration 

The modifying chi-squared calibration is not only asymptotically valid, but Bartlett cor-

rectable and then can achieve the second order accuracy. These properties are put together 

by the next theorem. As for its proof, see Section 6. 

Theorem 4.3. Let X1,X2, …E配 bei. i. d. random variables having meanμo and variance-

covariance matrix怜 satisfyingCondition 2.1. Then, for a E (0, 1), 

P→ 1 a.s., P(R.(μo) :s;'"Y(l-a)/p)→ 1-a, 

and under Condition 2.2, 

P (R.(μo) (1 -~) :s;'"Y(l-a)/fj) = 1 -a+ O(n―2), 

where a is an appropriately chosen constant. 

Consequently, both of our methods are asymptotically valid. The reason behind is p→ 
1 a.s., implying that the quasi-bootstrap calibration is asymptotically equivalent to the boot-

strap calibration, and the same goes for the modifying chi-squared calibration and the chi-

squared calibration. In other words, the conventional chi-squared calibration can be regarded 

as the modifying chi-squared calibration with p = 1. Most important thing is, as repeatedly 
said yet, p = P(μo E Conv(X1, …, Xn)) itself indeed produces superfluous bias and makes the 
accuracy of empirical likelihood inference poor in practice; it is necessary to incorporate the 

information of p into the conventional empirical likelihood inferences. 
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Table 1: Simulated coverage probabilities with the underlying distributions N(O, I) with 

sample size n and dimension d; these are based on 1000 samples and, as for B-EL and QB-

EL, 2000 bootstrap replicants. The columns of MC-EL and QB-EL are shown in bold for 

highlighting our methods. 
Dist n d level EL Bart-EL MC-EL B-EL QB-EL 

N(O,I) 10 1 0.90 0.853 0.872 0.877 0.896 0.896 

0.95 0.898 0.917 0.930 0.954 0.950 

0.99 0.956 0.966 0.977 0.986 0.989 

2 0.90 0.747 0.795 0.843 0.917 0.911 

0.95 0.804 0.850 0.910 0.965 0.958 

0.99 0.882 0.905 0.974 0.974 0.974 

20 3 0.90 0.802 0.839 0.840 0.904 0.905 

0.95 0.867 0.898 0.899 0.949 0.948 

0.99 0.936 0.951 0.953 0.991 0.991 

5 0.90 0.713 0.789 0.813 0.950 0.930 

0.95 0.782 0.844 0.875 0.990 0.970 

0.99 0.871 0.902 0.993 0.993 0.993 

30 3 0.90 0.845 0.876 0.876 0.900 0.898 

0.95 0.906 0.930 0.930 0.960 0.958 

0.99 0.975 0.984 0.986 0.993 0.993 

7 0.90 0.682 0.773 0.778 0.926 0.916 

0.95 0.765 0.841 0.852 0.970 0.956 

0.99 0.874 0.906 0.925 0.998 0.995 

50 10 0.90 0.707 0.780 0.780 0.900 0.898 

0.95 0.785 0.841 0.841 0.966 0.960 

0.99 0.887 0.929 0.929 0.997 0.995 

15 0.90 0.496 0.631 0.647 0.976 0.933 

0.95 0.583 0.711 0.732 0.993 0.979 

0.99 0.718 0.816 0.976 0.997 0.997 

5 Simulation Studies 

We put some of simulation studies together in this chapter, which compare our methods 

and conventional ones. We denote throughout this section the chi-squared calibrated em-

pirical likelihood by EL, the Bartlett corrected empirical likelihood by Bart-EL, the second 

order modifying chi-squared calibrated empirical likelihood by MC-EL, the bootstrap cali-

brated empirical likelihood confidence region by B-EL, and the quasi-bootstrap calibrated 

empirical likelihood confidence region by QB-EL. Namely, EL, Bart-EL, MC-EL, B-EL, and 
QB-EL have the corresponding coverage probabilities, P(£(μo) S ,1-a¥ P(£(μo)(l -a/n) S 
,1-a), P(£(μo)(l -a/n) S賀1-a)jp),P(£(μo) Sくn,a),and P(£(μo) S (n,a), respectively. 
Table 1, 2 report some of simulated coverage probabilities of confidence regions for the 

means of N(O, I) and x21 , respectively. Every result in both tables are based on 1000 samples; 
（） 

each simulated observations X1, …，Xn E配 yieldsan empirical likelihood ratio function for 
the mean. At the same time, 2000 bootstrap and quasi-bootstrap samples per simulation are 

drawn from each of 1Fn and Tn, they are needed for B-EL, QB-EL, and estimating existence 
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Table 2: Simulated coverage probabilities with the underlying distributions X(l) with sample 

size n and dimension d; for exarriple, when d = 2, we use (X1, X砂E配 withX1, X2 ~ X詞
The columns of MC-EL and QB-EL are shown in bold for highlighting our methods. 

Dist n d level EL Bart-EL MC-EL B-EL QB-EL 
2 
X(l) 10 1 0.90 0.773 0.876 0.888 0.861 0.859 

0.95 0.832 0.908 0.923 0.901 0.903 

0.99 0.897 0.935 0.951 0.956 0.959 

2 0.90 0.616 0.817 0.858 0.862 0.832 

0.95 0.685 0.842 0.888 0.893 0.886 

0.99 0.766 0.870 0.897 0.897 0.897 

20 3 0.90 0.697 0.861 0.866 0.896 0.870 

0.95 0.771 0.901 0.909 0.943 0.932 

0.99 0.861 0.935 0.966 0.987 0.983 

5 0.90 0.567 0.850 0.871 0.933 0.877 

0.95 0.632 0.870 0.925 0.943 0.935 
0.99 0.730 0.894 0.943 0.943 0.943 

30 3 0.90 0.809 0.902 0.902 0.912 0.904 

0.95 0.870 0.936 0.937 0.957 0.948 

0.99 0.937 0.974 0.976 0.996 0.992 

7 0.90 0.566 0.872 0.880 0.938 0.878 

0.95 0.650 0.905 0.916 0.980 0.936 

0.99 0.751 0.934 0.982 0.984 0.984 

50 10 0.90 0.595 0.902 0.902 0.927 0.887 

0.95 0.674 0.940 0.941 0.974 0.948 

0.99 0.803 0.974 0.976 0.998 0.991 

15 0.90 0.369 0.877 0.885 0.972 0.871 

0.95 0.436 0.902 0.915 0.973 0.931 

0.99 0.558 0.926 0.973 0.973 0.973 

probabilities in MC-EL. Here, as for the quasi-bootstrap distribution Tn, we use the Gaussian 

distribution having the empirical mean and variance-covariance matrix as G. Then it is 

obvious that Tn meets the requirements of the quasi-bootstrap distribution because G is 

projection symmetric and has a finite variance-covariance matrix. The columns of MC-EL 

and QB-EL are shown in bold for highlighting our methods. 

Throughout these tables, B-EL and QB-EL stand out conspicuously than the others. 

What is most interesting is that QB-EL remains accurate when B-EL overestimates the 

coverage level. Another interesting thing is that MC-EL dominates Bart-EL in every case. 

However, MC-EL obtains high accuracy only in low-dimensional settings, whereas QB-EL 
does in almost every case. One apparent reason for this is the vulnerability of Bart-EL to 

multidimensional applications. By and large, QB-EL may be the best for real applications of 

empirical likelihood inference. 
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6 Proofs 

We require the following lemma for the proof of Proposition 4.1. 

Lemma 6.1. (Van der Vaart (1998), Lemma 21.2) For any sequence of distribution functions, 
F;;1 ""'p-l if and only if Fn ""'F, in which p-l and肛 1are left-continuous inverses defined 
by F-1(p) = inf{x I F(x)ミp}and F;;1(p) = inf{x I Fn(x)~p}. 

Proof. See [7]. ロ

Proof of Proposition 4-1. We can assume throughout that 

P(£*(ふ） :S: "YI Tn)→ P(X(q) :S: 1) a.s., 

without loss of generality since every subsequence of P(£*(ふ） :S: "'(I Tn) has a further 
subsequence which converges almost surely. 

Let H be the distribution of x『~) and let Hn be the distribution of£*(ふ）• Denote the 
1 -a quantile of x2 by "Y Note that H-1・ 

(q) 1-a・1s  contmuous at every pomt on (0, 1). Usmg 
Lemma 6.1 and Glivenko-Cantelli's theorem, we have 

fI;;1(1 -a)→ H-1(1-a) a.s .. 

Moreover, by Slutsky's lemma 

仰 o)-fI;; パ1-a) -v-+ X(q) -H-1(1 -a). 

Thus 

P(£(μo) :S iI;;1(1 -a))→ P(x『q)さH-1(1-a)) = 1 -a, 

from which the consistency of the quasi-bootstrap calibration follows. 口

Before getting down to the proof of Theorem 4.2, three necessary lemmas are introduced. 

Lemma 6.2 below is a quasi-bootstrap version of Theorem 23.4 in [7], establishing, given the 
original observations, the asymptotic normality of the sequence ,/n(X~ —ふ） in which X~is 
the conditional mean under Tn-

Lemma 6.2. Let X1,X2, … be i. i. d. random variables having meanμand finite variance-

covariance matrix I: and let Xi, …, X~be i. i. d. random variables with the quasi-bootstrap 
distribution Tn = (1 -c:)lFn + c:G conditionally on X1, …，Xn, Defineふ＝江;=1ふ/nand 
also 立＝江~1 心/n. Then, given X1, X2, ... , for almost every sequence X1, X2, … 

vn(X~- ふ) ""N(O, I:). 

Proof. Let Y be a random variable drawn from G. Given X1, X2, …， the mean and the 
variance-covariance matrix of X* are i 

n 

E[Xt IT, 叶＝
1-s I:xi + sE[Y] = (1 -s)ふ＋ふ＝ふ
n 
i=l 
n 

Var(Xt I Tn) = 
1-s 

I:(ふ—ふ）（ふ—ふ）丁十 sE[(Y —ふ）2IX1,X2, …］． 
n 
i=l 
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By the strong law of large numbers and Slutsky's Lemma, 

Var(X!ITn)→ I: a.s., 

remembering that E→ 0. 
Next, we will show that triangular arrays of X;* satisfy the Lindeberg condition: for every 

T/ > 0, 
1 
n 

E [11Xtl12:0.{IIX;II>疇}I Tn] =:;;: L 11xi112:o.{IIX,II>亨｝→ O a.s .. 
i=l 

ForMさ疇， bythe strong law of large numbers, 

E [IIX*ll2:o. ] 
1 
n 

2 
, {II均 II>硫}:s; -L IIXill ]_{IIX,ll>M} n 

i=l 

→ E [IIXill2:0.{IIX平>M}] a.s .. 

This implies that the Lindeberg condition holds for almost every sequence X1,X2, …because 

the last term is arbitrarily small for arbitrarily large M. 

Applying the Lindeberg central limit theorem to the quasi-bootstrap replications yields 

the lemma. ロ

The next lemma guarantees that the existence probability has its limit 1: 

P(C(μ) < oo) = P(μE Conv(X1, …, Xn))→ 1. 

Lemma 6.3. Let X1, …, Xn E配 bei. i. d. random variables having meanμand let 8 be the 
set of unit vectors in配.Define 

Pm=悶杞P(が(X;―μ) > 0)-

Then O < Pmく land

P (μ(j Conv(X1, …，Xn)):::; 2(d: 1)此―d+l_

Proof. By definition of hyperplane, Conv(X1, …，Xn) does not containμif, for some split of 
Xい…，ふ intosome d -l points X(i), …，X(d-1) and n -d + l points left X(d), …，X(n) are 
on one side of the hyperplane through X(l), …, x(d-1) andμo・
For p E (0,1),k = 2,3, …， pk + (l -p)k is minimized by p = 1/2 and monotomcally 
increasing asp grows on [1/2, 1). 

From these results, we have 

P (μ(j Conv(X1, …，X砂）さ (n)(n-d+l n-d+ 1 
d-l 
Pm + (1 -Pm)). 

Then the desired inequality follows. 口

From now, we use the notation II・II be Euclidean norm. The following lemma is that 

Lemma 3 in [5] is adjusted for the quasi-bootstrap, providing some order bounds of quasi-
bootstrap replicants. 
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Lemma 6.4. Let X1,X2, …E配 bei.i.d. random variables with E[IIX附]< oo. Denote 
i.i.d. quasi-bootstrap replicants by Xi, X2, ... ~ Tn, given X1, X2, …. Then, for almost every 
sequence X1, X2, …, 

and 

max IIXtll =on 
1/2 

l<i<n ()' 

n 
1 
-I:11Xtll3 = o(n1;2). 
n 
i=l 

Proof. First, we show max区さnIIXill = o(n112) in the same way as the proof of Lemma 3 

in [5]. By Markov's inequality, 区~=lP(IIXill > fo)~E[IIXill2] < oo. Then, by Borel— 

Cantelli's lemma, 

P (1im ;~t { 11ふ II> n112}) = 0 
Likewise, for any A > 0, 

p (lim !~t {i雲 IIXilln―1;2:s; A}) = 1. 
It implies that maxピi:C:nIIX;II = o(n1l2). 
What is more, an analogous result holds for quasi-bootstrap replicants in the same time. 

Let Y; be i.i.d. random variables drawn from G. From the above result, 

max 11x;11 :::; max IIXill + max IIY;II = o(n112) 
l<,<n l<,<n l<,<n 

(13) 

Finally, by the strong law of large numbers and (13), for almost every sequence X1, X2, ... , 

1 1 
n 

m邸 Xtll-LIIXt杞=o(n1;2). 
n 
-LIIXtll3 <::: 

1:Si:Sn n 
i=l i=l 

口

We will establish Theorem 4.2 below following the flow of Proof of Theorem 3.2. in [6]. 

Proof of Theorem 4.2. Without loss of generality, we may assume d = q; otherwise consider 
q-dimensional linear transformation. It is also assumed that, for a sufficiently large n and 

almost every sequence X1, X2, …， Var(X;* I Tn) is full rank. 
By Lemma 6.2, for almost every sequence X1, X2, .. , the probability thatふ isinside the 
convex hull of X;* has the limit 1. Therefore it suffices to show that, for X;* the convex hull 

of which contains Xn and almost every sequence X 1, X公…，£*(ふ） 2 
,,,,.. X(d)・

Whenふ isinside of the convex hull of X;*, there e泣stsa unique set of weights Wi > 0 
maximizing rr: ョ叫 underthe constraints区;=凸=1 and 区;=凸(Xt —ふ） = 0. Through 
use of the method of Lagrange multipliers, we can write 

1 1 
叫＝一

nl 十入T(X;* —ふ）＇

where the multiplier入＝入（ふ） E配 satisfies

1 
n 

g(入）三ーと
n、
i=l 

X主＿
i 
X n 

｀千,__ , ---、 =0.

(14) 
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In the second place, we will derive the bounds of II入II-For simplicity, we may use the 

abbreviations "a.e.s." to denote "given X1, X2, …， for almost every sequence" in the_following. 
Write入=II入110in which 0 E JR汽Yぃ＝入丁(Xt-ふ）， andZn= maxi年i'.:'.'.nIIXt -Xn II-Then 

x~ —ふ＝ーと1 n (Xt —ふ）(1 + Yn,i) 
n l+Y・ 
i=l n,, 

1 
n 

＝ーと
Xt —ふ 1 n (Xt —ふ）Yn,i 

i=l 
n 1 + Yn,i +心

i=l 1 + Yn,i 

＝ざ： (Xtーふ）(Xt —ふ）＼．
n 1 + Yn,i i=l 

Thus 

が(X~- ふ) =II入ll0T-
1 n (Xt —ふ）(Xt —ふ）T

nL  l+Y ・゚i=l n,i 

Denote the bootstrap sample variance-covariance matrix by S: 

1 
n 

S= — L(Xt- ふ）(Xt-ふ）丁・
n 
i=l 

Remember芍 >Osol+恥>0. According to 0T g(入） = 0 and (15), 

II入110Ts0s I入IIが-I:l n (X;*ぷ）(X;*ぷ）T
n 
i=l 

l + Yn,i 0 (1 + mfxYn,i) 

SI入110公こT 1 n (X;* -ふ)(X;* —ふ）T

i=l l+Yn,i 
0(1 + 11入IIZn)

= 0T(立—ふ）(1 + II A II Zn), 

indicating 

II入II(0丁S0-Znが(X~- Xn)):::; 0丁 (X~- Xn)-

By Lemma 6.2 and 6.4, 

II入11(0T S0 + op(l)) = Op(n―112) a.e.s .. 

Here, let咋四 be,respectively, the largest and smallest eigenvalues of V0: 

び1= sup0TVo0, 四=inf 0 
0E8 0吟

Vo0. 

(15) 

(16) 

To avoid confusion, component of vectors is expressed as Xi = (Xii, …, Xid), and entries of 
the matrices are denoted by S = (skih<k,l<d, Vo= (vkih<k,l<d・ Let xt = (X{, …，XJ) be a 
random variable drawn from G. By the strong law of large numbers, we have 

E[skl I Tn] =E[(X;'k―Xnk)(X;*z -ぬ)I Tn] 

1 
n 

-E: 
L(X,k -= . -X叫 (Xil-X叫
n、
i=l 

+cE[(xt —心）(xt-x』 IX1,X2, ... ] 
→ Vkl a.s., 
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and thus 
1 
n 

区(X.*k -叩＝ー --X叫 (X:Z-X叫→Vkz a.e.s., 
n、
i=l 

from which we obtain bounds about CT1 and四.Let 0。=argmax0E8がS0.Then 
d d 

supがS0-sup0TVo0 :S L 知伽Skz―区伽伽Vk!
0E8 0E8 k,l=l k l=l 

d d 

= Le認Ol叩— Le。心（叩＋叫1)) a.e.s. 
k,l=l k l=l 

= op(l) a.e.s., 

and likewise 
inf祈S0-inf 0Tv00 2: op(l) a.e.s .. 
0E8 0E8 

Therefore we have 

CT1 + op(l) 2: eT se 2: 四＋叫1) a.e.s .. 

Combining (16) and (17), we establish the bounds of II入II=

II入II=Op(n―112) a.e.s .. 

Now by Lemma 6.4, we have 

and hence 

It is implied that 

max IYn,il = Op(n―1!2)o(n112) = op(l) a.e.s., 
1'.':i'.':n 

l n (Xt —ふ）兄 1 n 
ーこ <-区 IIXt-ふ11311入11211+ Yn,il-l 
n l+Yn,i ―n 
i=l i=l 

= o(n112)0p(n―1)Op(l) 

= Op(n―112) a.e.s .. 

入=s-1(x~ —ふ） + /3 a.e.s., 
-1/2・ where (3 = o P (n)  , smce we can expand 

0 = g(入）

1 
n 

=— L(x; ―) 
y2_ 

n i=l . -Xn (1 —恥+ 1 /;n,i) 
l n (X;* —ふ）Y;,i 

=X~-Xn-S入十一心= l+Y・. 
i=l n,i 

What is more, by (18) and use of the Taylor expansion, 

1 
log(l +恥） = Yn,i -2兄＋雇

(17) 

(18) 

(19) 

(20) 
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where, for some O < B < oo, 

P(IT/il :S BIYn, 氾，1:S i :S n I Tn)→ 1 a.s .. 

Substituting (19) and (20) into (14), we can write 

n 

『（ふ）＝ー2Llog(nwi) 
i=l 
n 

= 2 Llog(l + Yn,i) 
i=l 
n n n 

=2LY, 叩―こ兄+2L7/i 
i=l i=l i=l 

n 

= 2n>. T (X~-Xn) -nぶS入+21五
i=l 

n 

=n心—ふ）T3-l心—ふ）ー n/JTS/3 + 2区T/i・(21)
i=l 

The quasi-bootstrap precision matrix 5-1 can be eigendecomposed as 5-1 = UTEU such 

that E is a diago叫 matrixhaving a decomposition of the form E =四l2E112.Using Lemma 
6.2, we have 

yri:Elf2U(X~_ ふ) "" N(O, I) a.e.s., 

from which, by the continuous mapping theorem, 

n(立—ふ）T3-l心— Xn) ""'X贔 a.e.s.. 

Furthermore, we have 

頑国＝四(n―1i2)0p(l)op(n―112)= op(l) a.e.s., 

and also 

n n 

L7/iさBIi入|心IIXt-ふ113= Op(n―3/2四（古） = op(l) a.e.s .. 
i=l i=l 

Hence, the final conclusion follows from (21) by taking n→ 00. ロ

Lastly, Theorem 4.3 is proved. 

Proof of Theorem 4.3. By Lemma 6.3, for some Pm E [0.5, 1), 

P(『（ふ） < oo I Tn) = l + 0 (nd-lp~-d+l) a.s .. (22) 

Then the first part of the theorem immediately follows from (22) under Condition 2.1, the 

continuity of x2 distribution function and Theorem 1 in [5]. (q) 
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The second part essentially follows from [1, 2]; they showed that, under Condition 2.2, for 

a fixed constant a, 

P ((R(μo) + Op(n―3/2)) (1-~+0p(n-3/り） S 11-a) = 1 -a+ 0(戸）• (23) 

Denote f(μo)(l -a/n) by R,~(µ0) and O(nd-lp~ ―d+l) by En > 0 for simplicity. Combining and 
(22) and (23), we have 

IP (R~(µo) S r(l-a)/p) -1 + al SIP (R~(µo) さ： r(l-a)/f!) -P (Xnさ;,1-a) I 

+ IP (R~(µo) S 11-a) -1 + al 
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