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1 Introduction 

Recently, quantum information technology, such as quantum communication and quantum com-

putation, has been researched rapidly. In the quantum information technology, we use quantum 

devices to obtain information from quantum particles. This process is referred to as a quantum 

measurement, or a measurement simply. However, we cannot obtain the complete information from 

the quantum particles because of the law of quantum mechanics. For example, the Heisenberg 
uncertainty relation states that we cannot obtain the complete information of the position and 

momentum simultaneously. Therefore, in quantum information science, designing optimal quantum 

measurements is a really fundamental problem. 

Quantum parameter estimation, one of the well established fields in quantum information sci-

ence, is a study about estimating the properties of a quantum particle as precise as possible. More 

formally speaking, in quantum parameter estimation, we consider a parametric quantum state fam-
ily M and we try to estimate the parameter 0 of a given state P0 E M. This subject is useful 

when you want to design optimal quantum devices for quantum computation and quantum com-

munication. In quantum parameter estimation, our goal is to construct accurate and appropriate 

estimators for a given parametric state model. More general discussion about quantum statistical 

inference is found in [1, 2]. 

For the design of quantum devices, eliminating the effect of noises is a crucial problem. You 

have to obtain the information of quantum particles as much as possible, while eliminating the 

effect of noise. In quantum parameter estimation, many problems of noises are formulated as 

nuisance parameter problems. For a given model M and a given state po E M, the nuisance 
parameter problem aims at estimating some elements (01, ... , 0い(d1 < d) of the entire parameters 
0=(01, ... ,0心.For eliminating the effect of noise, We us叫 lyregard the noises as the rest of 
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parameters (0d,+1 ... , 0d) and just focus on the estimation of some elements (01, ... , 0d,) of the 

parameters. More details about the nuisance parameter problem are found in [3, 4], for example. 

When the quantum particles are spatially different, quantum operations over the entire particles 

are usually difficult to perform. One of the reasons is simply that we have to prepare bigger devices. 

For example, if one particle is in America and the other particle is in Japan, quantum devices over 

the two different countries are difficult to implement in practice. To overcome this difficulty, we 

consider LOCC(Local Operations and Classical Communication) operations, a restricted class of 

quantum operations. In any LOCC operation, operations over two or more particles are prohibited. 

Only local operations and classical communications to other particles are allowed in the LOCC 

operations. Since we do not need to use the bigger operations over the entire particles, the LOCC 

operation is much easier to realize physically. 

We show the existence of an optimal estimator for the estimation with nuisance parameters 

even if the operations of the estimator is restricted to LOCC operations. Also, we give the explicit 

construction of the optimal LOCC estimator. 

The contents of this paper is as follows. In Section 2, we introduce quantum state and quantum 

measurement, which is needed for later sections. In Section 3, we explain the basics of quantum 

parameter estimation. In Section 4, we show our main result in Proposition 1 and Proposition 2. 

Section 5 and Section 6 devotes for an application and an example of our result. 

2 Basics of quantum information theory 

Quantum theory has many curious properties such as non-locality. Most of these properties can 

be described by the definitions of quantum state and measurement. In this section, we briefly 

summarize the definitions of quantum state and measurement. To describe any of the definitions, 

a finite-dimensional Hilbert space is used and is called a quantum system. 

First, we define the quantum state as follows. 

Quantum state 

Definition 1. Let 1-l be a finite-dimensional Hilbert space. A linear operator p on 1-l is a 

quantum state if 

1. Trp=l, 

2. p 2': 0 

holds. 

A set of all quantum states on Hilbert space 1-l is denoted by S(1-l). 
A quantum state p is pure if there exists a unit vector v E 1-l such that 

P = Iv〉〈vi

holds {The Bra-ket notation is used.). Otherwise, the state p is called a mixed state. 

(1) 

Next, we introduce the quantum measurement. Mathematically, quantum measurement is de-

scribed as POVM (Positive Operator Valued Measure) which is defined as follows. 
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゜state P01 EM  

。^W ←→ 0(w) E 8 

measurement outcome estimated value for 01 

{Mw}wEO w 0(w) 

Figure 1: Estimation Process 

POVM(Positive Operator Valued Measure) 

Definition 2. An indexed set {Mw}wEO of positive linear operators Mw on Hilbe仕 space社 is

a POVMif 

LMw=f (2) 
wEfl 

holds where I denotes the identity operator on Hilbert space甘

When a measurement { Mw }wE~is performed on a state p, the outcome is w with probability 

沢(wp) := TrpMw・ (3) 

Next, we define Adaptive measurement which is a LOCC operation. Suppose a quantum system 

1i is a composite system 1i = (8)臼払 ofquantum systems凡，．．．，叫. A measurement 

{ Mw }wEfl is said to be adaptive if there exist measurements { M; 幻1,-・・,W,-1)}w,On凡 suchthat 

Mw=(w,, ... ,wn) = Mw, ⑧ M炉 iSJ... iSJ MS~l,···,wn-1) (4) 

holds. 

For more properties of quantum information theory, see the textbooks[5, 6] for example. 

3 Q uantum parameter estimation 

For a given parametric state model 

M = {Pe E S(H) 0 E 8}, 8 c酎 (5) 

and a given state pg, EM, quantum parameter estimation is a subject to estimate the true param-

eter 01 of the state pgハ

A general procedure of the estimation process is as follows, as illustrated in Fig 1. First, we perform 

a measurement {Mw}wE!1 to the given state pg, and get an outcome w witp probability TrMwP0'・ 

Based on this outcome, we estimate the true parameter using the map 0 : !1→ 8. Since the 

measurement M = {Mw}wE!1 and the map 0 determine the whole process of estimation, our goal is 

to select the measurement and the map appropriately so that we can estimate the true parameter 

as precise as possible. The pair (M, 0) is called an estimator. 
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In this section, we summarize the quantum parameter estimation for one-parameter case and for 
nuisance parameters. 

3.1 Quantum estimation for one-parameter model 

Here, we consider a parametric state model 

M = {Pe E S(1-l) I 0 E 0} 

whose open set 8 is a subset of one-dimensional real space凪

In quantum one-parameter estimation, the locally unbiased condition is defined as follows. 

locally unbiased estimator 

Definition 3. For a given parametric model 

M = {Pe E S(1i) I 0 E e c JR.}, 

an estimator (M = { Mw }wE旦） is locally unbiased at 0。E8 if 

E0。(M,0) = 0。,
d 

d0 
10=0。E0(M,0)= l 

where 

Ee(M,0) := L応）Tr(MwPe), 
wE!1 

(6) 

(7) 

(8) 

(9) 

(10) 

An estimator is said to be an unbiased estimator if the estimator is locally unbiased at all points 

in e. 

One of the most important problem in quantum parameter estimation is to find an estimator 

which is most precise among all locally unbiased estimators. The MSE (Minimum Squared Error) 

is usually used to characterize the accuracy of estimators, and is defined as follows. 

Minimum Squared Error 

Definition 4. For a given parametric model M = {pe E S(1i) I 0 E 0 CR} and an estimator 

(M = {Mw}wE立）， theMSE at 0 = 0o is defined as 

Ve。(M,0):= L (飢w)-0。)2 Tr(MwPe。)． (11) 
wEfl 

If the MSE of an estimator at 0 is smaller, the estimator is regarded as more precise at the point 0. 

By definition, the MSE is non-negative. Therefore, an estimator is the most precise estimator at 0 

if its MSE at 0 is zero. However, according to the following proposition which is firstly proven in 

[7], there exists a lower bound of MSEs if we assume that estimators are locally unbiased. 
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SLD Cramer-Rao Bound 

Theorem 1. For a given parametric model M = {po I 0 E 8 c配}and a locally unbiased 

estimator (M, 0) at 0。,the following inequality holds: 

Vo。(M,0) 2". (~ 嘉）―1.

Note that Jf is called SLD fisher information which is defined as 

噂）
1 S 2 : = -Trpe(L0) 
2 

where the SLD operator Li is defined implicitly to satisfy 

dp0 I s 
= -

d0 2 
(p0L。+Lipe). 

(12) 

(13) 

(14) 

This bound (12} can be attained by the estimator constructed as the spectral decomposition of 
(~ 尻）ーILぶ

According to Theorem 1, the spectral decomposition of (.J, ⑰) -IL⑰ is an optimal estimator. However, 

this estimator is not usually a LOCC operation. Therefore, the realization of this estimator is 

difficult when the quantum system is multi-partite. As a current result, The recent paper [9] states 

the existence of the optimal LOCC estimator if the parametric model is composed of pure states. 

3.2 Quantum parameter estimation with nuisance parameters 

Next, we consider the quantum parameter estimation with nuisance parameters. For a parametric 

model with nuisance parameters 

M = {po E S(1i) 10 = (01,0N) E e,01 E酎1} (0 C酎， d1< d), (15) 

consider the case when we want to estimate some elements 01 E配 1 of 0 = (01, 0N), not the entire 
elements (01, ... , 0心.This is called nuisance parameter problem. In nuisance parameter problem, we 

say the elements 01, which we want to estimate, as parameters of interest and say other parameters 

0N as nuisance parameters. In the nuisance parameter problem, the locally unbiasedness condition 

for estimators is defined as follows. 
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locally unbiased estimator (nuisance) 

．． 
Defimt10n 5. An estimator (M = {Mw}wE!1, 0r : n→応） is locally unbiased at 0 = (0 I, 0 N) 

for 0r if 

Vi E {1, ... , dr }, Vj E {1, ... , d}, 

E0(M,0) 
a 

= 0i and -
80 

E~(M,0) =妬
J 

holds. Note that E0(M, 0) is defined as 

Ei,(M,0) := Lか(w)TrMwP0
wEfl 

whereがdenotesthe i-th element of the map 0 : 0→ 記

(16) 

(17) 

(18) 

As mentioned in Theorem 1, the SLD Cramer-Rao bound characterize the precision bound of locally 

unbiased estimators in quantum one-parameter estimation. In quantum parameter estimation with 

nuisance parameters, there also exists a Cramer-Rao type bound. Here, we introduce the bound for 

the case when d1 = 1. 

MSE Bound (nuisance parameter) 

Theorem 2. For a given parametric model 

M = {Pe E S(H) I 0 = (01,0N) E 8,01 E民} (8 C 酎），

we define the MSE at 0 for 01 as 

2 

V0;1(M,0り：＝区（町(w)-01) Tr(MwP0)-
wEfl 

In this case, 

V0;1(M, 釘） 2:: [(Ji)―1]11 

(19) 

(20) 

(21) 

holds for any locally unbiased estimator-(M, 01) at 0 for 01. Note that Ji is the SLD matrix 

which is defined as 

[J伽：=~Trp0(L象:i応 +Lむ瓜） (l~i,j~d) (22) 

where Li,i (1~i~d) are defined implicitly to satisfy 

8p0 1 
= -

80i 2 
(p0Lぶ+L尻，Po), (23) 

This bound (21) is attained by the estimator constructed as the spectral decomposition of 

~i叫(J⑰)-1]砂象；j' 

For the proof of Theorem 2, see [4, Theorem 5.3]. 
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In quantum parameter estimation with nuisance parameters, the most important problem is to 

construct the locally unbiased estimator satisfying the equality in (21). If you need more about 
nuisance parameter problem, see [3, 4] for example. Also, the constructions of asymptotically 

optimal estimators are found in [3, 8], which are based on the method called a two-step method. 

4 Construction of LOCC estimator for pure state model 

In this section, we consider the following model 

Mn,p := {lue〉〈uelE S(1-l) 10 = (01, 0N) Ee, 01 E艮}, 8 C股d_ (24) 

Assume that the Hilbert space 1i =R 曼凡 ofthe model Mn,p consists of the sub-spaces知

In this case, the optimal estimator mentioned in Theorem 2 should be difficult to realize in many 

cases. To overcome this difficulty, we consider adaptive measurements to estimate the parameter 

of interest 01. The following proposition states the existence of an optimal estimator even if we 

assume that the measurement is adaptive. 

existence of LOCC me邸 urement

Proposition 1. There exists a locally unbiased estimator (M, 01) at 0 for 01 E股 satisfying

V。,(M,釘） = [(J象）―1]11 (25) 

and the measurement M is adaptive. 

Proposition 1 is proven by constructing an appropriate estimator. To construct the desired estima-

tor, we use the following proposition. This proposition is inspired by the method in [9, 10]. 
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construction of estimator for pure state model (nuisance) 

Proposition 2. Consider the model Mn,p is defined as {24). Suppose an o廿honormalbasis 

｛料}k<::dim'/-lof社 satisfies

and 

¥:/k, 〈u0lv砂=0⇒(〈'U0V砂=0) 

〈u0lv砂
'ik, 〈u0lvk〉ヂ 0⇒(E政），

〈u0lv砂

where ii0〉isdefined as 

lu0〉:= lu~ 〉十 L [-J尻JN(J尻NN)-lいがり，
1:Sk:Sd-1 

Du0 
閲〉：= 2 (I -lu0〉〈u0)I― aek・

〉

(26) 

(27) 

(28) 

(29) 

Note that J贔；IN E記 1,J⑰;NN E股(d-l)x(d-l)are the block sub-matrices of J靡whichis defined 

as 

J屈＝（
JS 
0;II 

JS 0;IN 
亭 J尻NN)-

Then, defining the estimator Br : 0→ JR as 

and the estimator 

釘(k):= {[(J屈）加攣＋釘 if〈uolvk〉=I=〇

゜
otherwise 

({Iv砂〈叫｝知01)

is a locally unbiased estimator at 0 for釘 andattains the Cramer-Rao type bound. 

(30) 

(31) 

(32) 

You can directly prove that the estimator given in Proposition 2 satisfies the locally unbiasedness 

condition and attains the Cramer-Rao bound. 

Therefore, the measurement of the estimator can be chosen as an adaptive measurement if there 

exists an orthonormal basis { v・= v・ @v.（れ） ・・・ (j,, ... ,jn-1) 
J Jl J2 @ @Vjn }j=(j1, ... ,jn) of 1{ =Ri::;N払 satisfying

and 

where each { v. 
(j,, ... ,j,-1) 
Ji 

Vj, 〈uelvj〉=0⇒(〈iielvj〉=0) 

〈iielvj〉
Vj, 〈uelvj〉f=0⇒ (E艮）

〈uelvj〉

(33) 

(34) 

}j, forms an orthonormal basis of払. Fortunately, the existence of such 

orthonormal basis { Vj} is ensured by the following proposition. 
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construction of adaptive basis 

．． 
Propos1t10n 3. Any traceless operator A on 1-l =Ri:,;n 1-l; has an orthonormal basis {町＝

Vれ Q9V• 
（れ） ®"·®V• 

(j,, .. ,,jn-,l 
]2 ]n }j=(j,, .. ,,jn) on 1-{ satisfying 

Vj, 〈VjlAlvj〉=0 (35) 

where each { v . 
(j,, ... ,j,_,) 
Ji 

｝ぶ formsan orthonormal basis of凡．

For the proof of Proposition 3, see the paper [11]. Using Proposition 3 to the traceless matrix 
1の〉〈の十;Iwhere 1¢ 〉isdefined as 

1f 
l</J〉=sin</Jluo〉+cos </Jlu0〉,</J E恥＼ーz,

2 
(36) 

we obtain the CONS satisfying the conditions given in Proposition 2. Using this adaptive measure-

ment {lvj〉〈v』}and Proposition 2, we obtain the optimal estimator whose measurement is adaptive. 

5 Estimation of f(0) 

One of the most important application of the nuisance parameter problem is the estimation of a 

smooth, real valued function f : M → 政.For example, the Von Neumann entropy is the real valued 

function. Since the model is parameterized, each state in M has a corresponding parameter 0 E 0. 

Therefore, the function f can be understood as a map from 0 to恥 Inthis section, we investigate 

the estimation of the smooth function f : 0→ 艮
For an estimator (M = {Mw}wEn, f : n→艮） of the function f, we impose the locally unbi-

asedness condition at 0。whichis defined as follows. 

Definition 6. An estimator (M = {Mw}wErl, J: n→ 照） of the function f : 0→ 尺 islocally 

unbiased at 0。if

E。。(M,/) = f(0o) 

and 

＾ ¥:/i:<:::d -
a aJ 

'a0i 
E0(M, f) 10=00= -

a0i 
(0o) 

holds. 

For the estimators (M, }) of the function f, The variance V0(M, }) at 0 is defined as 

2 

Ve(M,f) := L (!(0) -f(w) Tr(peU砂） 
wE!1 

Our purpose is to find an estimator (M, ]) satisfying the following two conditions: 

• the locally unbiasedness condition at 0. 

• attaining the minimum variance among all locally unbiased estimators. 

(37) 

(38) 

(39) 
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The following proposition states Cramer-Rao type inequality for estimating a real-valued function 

f. 
bound for estimator of function 

Proposition 4. For any locally unbiased estimator (M, }) at 0。ofa real-valued function f, 

its MSEV0。(M,J) satisfies 

8J 

＾ Ve。(M,f)2:: ( 
at 
-(00), ... — 

at 
試 (0o)

ari, , a,/'。)）(Ja。い（応。））• (40) 

A construction of a locally unbiased estimator attaining the bound {40} is explained in Section 4. 

Proof. Consider the following transformation of the parameter 0 = (01, ... , 0d)← ~=(ふ，．．．，紐）：

L of 6 = J(0o) + -(0o)(0j -0。;j), (41) 
j<::d o0j 

and define other~i (i =/= 1) appropriately so that this transformation becomes invertible. For example, 
for j E { 1, ... , d} satisfying紙(0o)=/= 0 define th e transformation as 

ヽ
~

。゚
(

1

0

 

糾（

＼

 
Ij-1 

紛0o)

゜ Ia-j-1 

＼

）

 

ふ
む
：
・
&
丁
1

/’ 

＝
 

＼

）

 

0102
…

O
d
1
 

（

＼

 

＼

）

 

roo
…

0

1

 

ヽ
~

。゚
(

O

 

紐

(42) 

where ro is defined as 

ro = f(0o)ーと誓0o)0。;,. (43) 

Using this transformation, our problem is reduced to the estimation of 6 because 6 is the Taylor 
approximation of f (0) by the definition (41). This estimation is co四pletelysame as the estimation 

with nuisance parameters. Applying Proposition 2, we obtain the desired inequality (40). Therefore, 

by the same method in Section 4, we obtain the optimal estimator whose measurement is adaptive. 

ロ

6 Example 

Here, we give an example of an estimation for a real-valued function whose basic aspects are de-

scribed in Section 5. Assume that two-dimensional Hilbert spaces叫 and1-lB are given. Also, we 

assume that {IOA〉,11心}and {IDB), llB〉}form CONSs of叫 and1-lB respectively. Define the pure 
state model M as 

M := {lue〉〈ueE S(HARHB) I 0 E 8} (44) 

where 

7f 
e := {0 = (0c,¢c,0砂 A如砂B)E酎 IO<;0s <; 2,o <; <f;s, <; 21r,S,S1 E {A,B,C}} (45) 
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and 

lue〉:= cos0ce―ゆ0luA@UB〉+sin0ceゆclu入@u立〉，

lu心：= cos0心―ゆ外O心+sin0心ゆAll心，

匹〉：= cos0即―砂BOB〉+sin0Bei¢ 門lB〉.

(46) 

(47) 

(48) 

As an example of a real-valued function, we choose the entropy of entanglement which is charac-

terized as H(Tr知 p),the von-Neumann entropy of the reduced density operator Tr知 pfor a state 

p ES(加 R1-l叫.For a state ue〉〈uelEM, this value H(Tr1t.Blu0〉〈uel)is calculated as 

H(Tr囮 (lue〉〈uel))= -cos2 0c logcos2 0c -sin2 0c logsin2 0c. (49) 

Therefore, defining the function f : 0→ 股 as

/(0) = H(Tr11Blu0〉〈ue),

the partial derivatives of this function f are calculated as 

aJ cos0c of 
(0) = 4sin0ccos0clog . 

80c sm0c 80; 
(0) = 0 (1 < i::; 6). 

(50) 

(51) 

Since (1, j)-elements (1 ::::; j ::::; 6) of the SLD fisher information matrix at 0 E 8 are calculated as 

(Ji)11 = 4, (J象）lj = 0 (1 < j <::'. 6), (52) 

the bound (4) is calculated as 

cos 0c 1 cos 0c 2 cos0c 
Ve(M, ]) 2: 4 sin 0c cos 0c log・-・4 sin 0c cos 0c log = 4 sin2 0c cos2 0c log 

sin 0c 4 sin 0c sin 0c 
(53) 

The construction of a locally unbiased estimator attaining this bound (53) is explained in Section 5. 

Next, let us compare this result to the case when operations for only 1-lA is allowed. In this 

case, we consider the model M which is defined as 

M = {Tr1lB lu0〉〈uolES(加）｝． (54) 

Since 

Tr11B lue〉〈uel= cos2 BcluA〉〈uAI+ sin2 0clu1〉〈UえI (55) 

holds, this model Mis three-dimensional and its parameters are 0c,0A and'Pc1・Since the (1,j)-

elements (1 ::C: j ::C: 3) of the SLD fisher information matrix j⑰ for the model M are calculated as 

（籍）11 = 4, (.J象）12 = 0, (蒻）13 = 0, (56) 

the bound is calculated as 

立。

(:Ia (0), ::, (0), ::, (0))(Jい(fi:l)~4=s'ocsll'0clog'::::~(57) 
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This bound is the same as the bound (53). This means that, in this case, the precision bound is 

attained even if operations are restricted to only on 1iA- According to Theorem 1, the spectral 

decomposition of [(胎(0))2(J⑰)11]―lL尻1gives an optimal estimator. Since L応isdecomposed to 

L~;l = -tan 0luA〉〈uAI+ (tan0)―llu点〉〈U内I,

an optimal measurement on叫 isgiven as { UA〉〈uAI,lu! 〉〈u!I}-

7 Conclusion 

(58) 

In quantum technology which has been developed recently, designing optimal and accurate quantum 

devices is a really difficult and important problem. One of the reasons is because we cannot get the 

complete information from quantum particles. It usually varies. Therefore, the estimating process 
for the desired information is a fundamental problem. In this paper, we show the existence and 

the construction of an optimal LOCC estimator for nuisance parameter problem. This estimator is 

significantly important when dealing with the effect of noise and the physical realization. Since the 

quantum technology has been paid much attention to recently, quantum statistical inference will 

become more fundamental and essential in the future. 
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