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Re-examining discrete-choice model through 
the lens of Aitchison geometry 

Yuichiro KANAZAWA[4 

International Christian University 

1 Introduction 

This article examines if statements such as "only differences in utility matter" and "the 

scale of utility is arbitrary"still hold water when we re-examine the discrete choice models 

widely employed in industrial organization and marketing science through the lens of 

Aitchison geometry. The implications of these statements are at times subtle and complex, 

and thus difficult. As a preparation, we review briefly three developments in this area in 

this section: First we review briefly how the author has been involved in the research in 

this area; We then briefly review the mainstream understanding of how discrete choice 

models can be derived from utility theory; Finally we briefly review the implications 
placed on the utility in order to justify the derivations of discrete choice models. 

1.1 New Empirical industrial organization: A strand of history 

the author has been involved 

Industrial organization and marketing science literature is concerned with the structure 

of industries in the economy and the behavior of firms and individuals in these industries. 

A dramatic shift in the 1980s toward what Bresnahan (1989) coined the "New Empirical 

Industrial Organization (NEIO),"which tries to takes advantage of the fact that individual 

industries are sufficiently distinct, and industry details are sufficiently important. 

In NEIO, products are regarded as bundles of characteristics, and preferences are 

defined on those characteristics, so each consumer chooses a bundle that maximizes its 

utility. Consumers have different preferences for different characteristics, and hence make 

different choices, however. In other words, consumers are heterogeneous. 

Simulation is used to obtain aggregate demand from the heterogeneous consumers' 

choices in the following manner: first we draw vectors of consumer characteristics from 

the distribution of those characteristics; second we determine the choice probability that 
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each of the drawn consumers would make for a given value of the parameter; now we 

aggregate those choice probabilities into a prediction for aggregate demand conditional 

on the parameter vector; finally we employ a search routine that finds the value of that 

parameter which makes these aggregate probabilities as close as possible to the observed 

market shares. 
The theoretical and econometric groundwork for product characteristic based de-

mand systems dates back to the work of Lancaster (1971) [15] and McFadden (1974, 

1981) [17], [18]. Applications of the Lancaster /McFadden framework, however, increased 

significantly after Berry, Levinsohn, and Pakes (1995, henceforth BLP(1995) [4]) showed 

how to circumvent a problem that had made it difficult to apply the early generation of 

characteristic-based models in LO. contexts. 
The early generation of models did not allow for unobserved product characteris-

tics. Consumer goods typically are differentiated in many ways. As a result even if the 

econometricians measured all the relevant characteristics, they could not expect to obtain 

precise estimates of their impacts. One solution proposed in Berry (1994) [3] is to put in 

the " important " differentiating characteristics and an unobservable, say C which picks 
up the aggregate effect of the multitude of characteristics that are being omitted. 

Often the econometricians find that there is not enough information in product level 

demand data to estimate the entire distribution of preferences with sufficient precision. 

This should not be surprising given that they are trying to estimate a whole distribution of 
preferences from just aggregate choice probabilities. The literature has added information 

in two ways: One is to add an equilibrium assumption and work out its implications for 
the estimation of demand parameters, the other is to add more data. 

It is not surprising that when the pricing system is added to the demand system, the 

precision of the demand parameters estimates tends to improve (see, BLP (1995) [4]). 

Almost all of it has assumed static or myopic profit maximization, and that one side of 

the transaction has the power to set prices while the other can only decide whether and 

what to buy conditional on those prices. However, models in marketing science started 

looking one period ahead (see, Che, et al. (2007) [8], Kamai and Kanazawa (2016) [13]) 

with interactions between manufacturers and a retailer factored in. 

On adding more data, there are a number of types of micro data that might be avail-

able: Surveys that match individual characteristics to a product chosen by the individual 

(point-of-sales data); Surveys providing information on the proprietary consumer's sec-

ond choice (Berry, Levinsohn, and Pakes (2004) [5]); Alternatively, the econometricians 

or market scientists may have access to summary statistics that provide information on 

the joint distribution of consumer and product characteristics (Petrin 2002 [25]). Petrin 

(2002) proposes a technique for obtaining more precise estimates of demand and sup-

ply curves when the econometricians or market scientists are constrained to market-level 

data. The technique allows them to augment market share data with information re-
lating the average demographics of consumers to the observable characteristics-Myojo 

and Kanazawa (2012) called "discriminating attributes"-of products they purchase that 

determines a subset of products in the market. Petrin (2002) states that "[t]his extra 

information plays the same role as consumer-level data ... "(p.705, [25]). 

Berry, Linton, and Pakes (2004) [6] provides asymptotic theory of the estimate of the 
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demand system objective function as the number of products increases in one (national) 

market. The paper shows that, provided one accounts for simulation and sampling error 

in the estimate of the objective function, standard approximations to the limit distribu-

tion work (see, for e.g. Pakes and Pollard, 1989 [23]). Myojo and Kanazawa (2012) [19] 
provides a sharper asymptotic variance-covariance of the estimate of the demand than 

Berry, Linton, and Pakes (2004) by adding the pricing equation and micro moment ob-

jective functions as the number of products increases in one (national) market. 

For durable goods like automobiles, the number of models increased from somewhere 

in the 150's in 1980s to in the 260's in 2018. Asymptotic theories of Berry, Linton, and 

Pakes (2004) and Myojo and Kanazawa (2012) presuppose such a market. On the other 

hand, for many non-durable consumer good products, the number of product offering is 

limited because of the limited shelf space at the retail outlets. In Nevo (2001), for example, 
there are 1124 markets and 24 products.1l Therefore a different type of asymptotics, the 

one in the number of markets, is needed. 

Freyberger (2015) [12] provides asymptotically normal biased parameter estimate (that 

depends on the number m of markets, the fixed number R of simulation draws from the 

distribution of consumers to calculate the observed market share of the demand system 

objective function) for a fixed number of products as the number of markets increases. 
It also provides how the leading asymptotic bias terms can be eliminated by using an 

analytic bias correction method. 
Asymptotic bias is generated because, for each market, its participating households 

are self-selected and unique in its own way. As a result simply increasing the number 

of such markets will not do. One general estimation idea when you have estimates in 

many comparable but heterogeneous subgroups within a population is to combine the 

individual estimates, each unbiased, to manufacture an overall unbiased estimate, using 

the local variances and overall variance between subgroup means to select the best linear 

estimator. An approach for the current problem along this idea is to alter the number 

of simulation draws from the fixed R in Freyberger (2015) to market-dependent凡nto 

reflect the population. This approach should work in theory, but a proper choice of凡n

presupposes we know the market-by-market variation of the consumer preferences, the 

exact knowledge we are trying to estimate. In reality, different portions of the population 
may still be over-or under-represented as we increase the number m of markets. 

If we wish to have a data-driven method as an alternative to analytic (asymptotic) bias 

correction proposed by Freyberger (2015), however, there is another idea we can employ 

(for non-durable product markets with a limited number of product offering), however. 

That is, for these markets, information that encompasses many regions are available, and 

we can take advantage of such information to adjust the bias. In Kanazawa (2018) [14], 

we show that we can pursue the second idea, namely, we can achieve the data-driven 

asymptotic bias correction by incorporating 1) the pricing (profit maximizing) equation 

for national suppliers and 2) the national micro moment regarding consumers as the 

llWe study non-durable goods such as ready-to-eat cereals because serious policy implications abound 
for markets of such non-durable goods: For instance, Nevo(2001) [21] claims that "Previous researchers 
have concluded that the ready-to-eat cereal industry is a classic example of an industry with nearly 
collusive pricing behavior and intense non-price competition" (p.307). 
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number m of markets increases. 

1.2 Discrete Choice Models: A review 

All the works in NEIO explained in section 1.1 assumes the so-called "discrete choice 
models." We now review "discrete choice models"in more detail. 

A person, a household, a firm, or a decision maker faces a choice, or a series of 
choices over time, among a set of options. For instance, a consumer chooses one product 
among several competing products; a household purchases a vehicle from the many models 
offered by a variety of manufacturers; a firm decides which technology to invest and to 
use in production; a student chooses one (hopefully correct) answer on a multiple-choice 

test; a respondent to a survey chooses a response ranging from 1 to 7 on a Likert-scale 
question. Our purpose is to understand the behavioral process that leads to the person's, 

the household's, the firm's or the decision maker's choice. 
For the sake of brevity, we henceforth use the term'agent'for these decision makers, 

be it a person, a household, a firm, or a student, or a respondent to a survey. The agent 
himself/herself knows exactly all the factors that collectively determine his or her choice. 
Some of these factors are observed by the researcher but the others are not. We label 
the factors observed by all the agents as well as the researcher as X, and those observed 
by the agents but unobserved by the researcher as E. These factors jointly lead the agent 
i to choose one alternative k. Therefore agent i's behavioral process is expressed by a 
function 

h (X, E) = choosing alternative k. 

In this sense, we look at this choice situation from a causal perspective and assume that 
there are factors that collectively determine, or cause, the agent's choice. In other words, 
it is deterministic in the sense that given X and E, the choice of the agent i is fully 

determined. 
However the researcher does not observe Eij, where in this article i indexes the agent 

i = 1, ... , I and j indexes the alternative j = l, ... , J, and thus cannot predict the agent's 
behavior precisely. As a result, the researcher is forced to assume Eij to be random due to 

the lack of evidence shown to be otherwise, and to have density j(Eij)- The probability 
that the agent i chooses a particular alternative k from the set of all possible outcomes 
indexed by j is simply the probability that the unobserved factors are such that the 

behavioral process results in that outcome 

Pr { e s.t. h (X, e) = choosing alternative k}. 

The set of alternatives, named the choice set, needs to have three ch紅 acteristics:
first, the alternatives must be mutually exclusive from the agent's perspective; second, 
the choice set must be exhaustive, in that all possible alternatives are included; third, the 
number of alternatives must be finite. 
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1.3 Random utility models 

We now rephrase what we described in section 1.2 in terms of random utility models used 
extensively in NEIO and marketing science. The agent i would assign a certain level of 
utility Uりtoeach alternative j. The agent then chooses the alternative that provides the 
highest utility. The behavioral model is therefore: choose alternative k if and only if 

U心>U;j for Vj c/ k. 

The reseacher does not observe the agent i's utility, however. Instead, the researcher 
only observes some attributes of the alternatives presumed to be in the mind of the agent 
when he/she makes decision among alternatives and at the same time observable by the 
reseacher, labeled aり， andsome attributes such as demographics of the agent observable 
by the researcher, labeled d;. We assume that the researcher can specify a function that 
relates these observed factors to the agent i's utility towards alternative j. This function 

¼j of Xj and d; expressed as 

¼j = V (xj, d;) 

is called representative utility. 
There are some part of utility that the researcher does not or cannot observe, and this 

fact makes 

uijヂv;j.

Under such circumstances, the researcher assumes that the utility U;j can be decomposed 

as 

仇=V;j + E,1, (1) 

where E;j captures all the factors that jointly affect utility as perceived by agent i for alter-
native j, but are not included in v;j, It is sometimes referred as the agent's idiosyncratic 
utility. it is defined according to the researcher's representation of the choice situation 
the agents are facing in a setting. 

The joint density of the random vector E;. = (fil, ... , E;J) is denoted by f E, (•). With 
this density, the researcher can make probabilistic statements about the agent's choice. 
Specifically, the probability that agent i chooses alternative k is 

肛=Pr{囚 >uij VJ =Ji} 

= Pr {V; 心＋偉＞此 +Eij'v'j=Ji}

= Pr{隣一 Eij< ¥l;j -¥l;k ¥/j =Ji}, (2) 

where we use the notation {statement} as the indicator function taking 1 if the statement 
is true and O otherwise as Bruno de Finetti did. This probability is cumulative in the 
sense that the probability that each random term E;k -E;j is below the observed quantity 
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v;j — ¼k- Using the density fE,.(・), this cumulative probability in (2) can be rewritten as 

応=Pr{偉ー fij< v;j―v;k't:/jヂk}.

J い—％く v;j-v;心 'vjヂk}!E, (・)df, 

l:ikー匂<¼,-V,北臼/E,(・)dfi.・ (3) 

Note that this is a J -I-dimensional integral of the differences of random variables Eik —f,1 
for all j, j = 1, ... , J but j =J k over the regions the differences are taking less than¼1 ―V心

for all j, j = 1, ... , J but jヂk.
Different discrete choice models are obtained from different specifications of this den-

sity. Logit model and nested logit model are known to have closed-form choice probabilities 

for this integral. These models are derived under the assumption that the unobserved por-

tion Ei. = (Eii, ... , EiJ) of utility is distributed i.i.d Gumbel (extreme value) and a type 

of generalized Gumbel (extreme value), respectively. Probit model is derived under the 

assumption that f E,. (•) is a multivariate normal, and mixed logit model is based on the 
assumption that the unobserved portion of utility consists of a part that follows any dis-

tribution specified by the researcher plus a part that is i.i.d. Gumbel (extreme value). 

With probit and mixed logit, the resulting integral does not have a closed form and is 
evaluated numerically through simulation. 

1.4 Model-based Market shares 

Model-based market shares as aggregate outcome variables can be obtained consistently 

from discrete choice models either by sample enumeration or segmentation. For the cur-

rent purpose, we only briefly discuss how the the probability of agent i choosing alternative 

j be P;j as in (3) can be utilized. 

In sample enumeration, the choice probabilities of each agent in a sample are averaged 

over the agents under consideration. Suppose that we draw a sample of N agents, from 
the population of i = 1, ... , I agents for which the model-based aggregate market share 
is to be compared with the estimated market share. Depending on the sampling scheme, 

we associate some weight w; for each agent. This weight represents the number of agents 

in a population similar to the agent. When the sample is randomly drawn, then w;'s 

are the same and if it is stratified, then w;'s are the same within a stratum. We obtain 

a consistent estimate of t~e average number of agents in the population who choose 
alternative i, denoted by P.j, by the weighted sum of the individual choice probabilities 

凡＝区幻w心 dividedby the number N of the sample. This average probability is the 
model-based simulated market share and written as 

p NJ と似WiPij
・= = N N . (4) 

1.5 Multinomial logit model 

The most widely employed discrete choice model is logit. Its popularity is due to the 

fact that the formula for the choice probabilities takes a closed form and is readily inter-
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prctablc. It was first derived by Luce (1959) [16] with the assumption on the character-

istics called the independence from i汀 elevantalternatives (IIA) of choice probabilities. 

The logit model is obtained by assuming that each E;j in (1) is independently, identi-

cally distributed as a random variable from Gumbel or type I extreme value distribution. 

The key assumption is that the errors are independent of each other, meaning that the 

unobserved portion of utility for one alternative is unrelated to the unobserved portion 

of utility for another alternative. In other words, employing this assumption implies that 

the error for one alternative provides no information to the researcher about the error for 

another alternative. One can go one step further and claim employing this assumption is 

tantamount to the researcher is able to specify the representative utility杓 sowell that 

the remaining, unobserved portion of utility can be treated essentially as "random."Some 

authors think this assumption is fairly restrictive and many models have been derived to 

allow for correlated errors between these two unobserved portions of utilities for different 

alternatives. 

The cumulative distribution function of Gumbel or type I extreme value is 

FEij灼） =exp(-exp(―叫）． (5) 

The difference between two independent extreme value variables is known to be distributed 

as logistic distribution with its cumulative distribution function as 

FEikJ (国）＝
exp (Eikj) 

1 + exp (Eikj)' 
(6) 

where Eikj =隣一 Eij・

With some algebraic manipulation of the integral in (3), we arrive at the closed form 

expression of logit choice probabilities for agent i towards alternative k as 

P;k = 
exp (屈）

区f=1 exp (¼j). 

Limitations of logit model is summarized on pages 42-43 in Train (2009) [28]: 

The value or importance that agent places on each attribute of the alterna— 

tives varies, in general, over agents. For example, the size of a car is probably 

more important to households with many members than to smaller households. 

Low-income households are probably more concerned about the purchase price of 

a good, relative to its other characteristics, than higher-income households. In 

choosing which neighborhood to live in, households with young children will be 

more concerned about the quality of schools than those without children, and so 

on. Decision makers'tastes also vary for reasons that are not linked to observed de-

mographic characteristics, just because different people are different. Two people 

who have the same income, education, etc., will make different choices, reflecting 

their individual preferences and concerns. 

The same author also states on page 43 of Train (2009) [28]: 

(7) 
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Logit models can capture taste variations, but only within limits. In particular, 
tastes that vary systematically with respect to observed variables can be incorpo-
rated in logit models, while tastes that vary with unobserved variables or purely 
randomly cannot be handled. 

1.6 Implications on the utility for justifying the derivations of 

discrete choice models 

On the aspects of behavioral decision process that affect the specification and estimation 
of any discrete choice model, Train (2009, p.19) [28] claims that "Only differences in utility 
matter" and "The scale of utility is arbitrary." He also claims that "[t]he implications of 

these statements are far-reaching, subtle, and, in many cases, quite complex." Specifically, 
he states in Train (2009, p.19) with n (instead of i in our case) indexes the agent and i 

and j (instead of j and k in our case) index the alternative that 

The absolute level of utility is irrelevant to both the decision maker's behavior 
and the researcher's model. If a constant is added to the utility of all alternatives, 
the alternative with the highest utility doesn't change. The decision maker chooses 
the same alternative with Unj 1::/j as with Unj+k 1::/j for any constant k. A colloquial 
way to express this fact is, "A rising tide raises all boats." 

The level of utility doesn't matter from the researcher's perspective either. The 

choice probability is Pni = Prob(Uni > UnjVjヂi)= Prob(Uni -Uni > 01::/jヂi)'
which depends only on the difference in utility, not its absolute level. 

Similarly, he states in Train (2009, p.23) again with n (instead of i in our case) indexes 
the agent and i and j (instead of j and k in our case) index the alternative that 

Just as adding a constant to the utility of all alternatives does not change 
the decision maker's choice, neither does multiplying each alternative's utility by 
a constant. The alternative with the highest utility is the same no matter how 

utility is scaled. The model U此=Vnj + Enj 1::/j is equivalent to Uん＝入％＋入匂

Vj for any入>0. To take account of this fact, the researcher must normalize the 
scale of utility. 

We will examine if these statements still hold water when we see the discrete choice models 

through the lens of Aitchison geometry. 

2 Aitchison Geometry 

In the following, we mainly use the logit choice probability as a concrete example to 
reexamine the derivation described in sections 1.3 and 1.5. The reexamination is necessary 
because we feel that the derivation is heavily influenced by its unconscious choice of 
Euclidean metric. The nature of the argument does not alter fundamentally, however, if 
we employ probit, nested logit, probit, or mixed logit models instead of logit model. 
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2.1 Compositional data 

Certain types of multivariate data were constrained like proportions or percentages and 

their sum must be a fixed constant such as 1 or 100, respectively. Obviously the agent 

i's probability of choosing alternative k in (7) is a proportion with a fixed constant sum 

constraint I:f =l凡=1. In such case, the researcher needs to ask if relative rather than 

absolute information is relevant for the analysis. Here relative information refers to a 

representation of quantitatively described contributions on a whole. Information about 

the total amount itself is irrelevant. For instance, in case of household expenditure on 

food, housing, transportation, and communications, the researcher may not necessarily be 
interested in the wealth of the household expressed by the actual amounts on each of those 

expenditure items expressed in terms of JPY, USD, or Euro, but rather interested in the 
proportion of the income spent on those categories. In those cases, it is more natural to 

consider them as observations carrying relative information. One could argue, therefore, 
that all relevant information in this type of data is contained in unit-less ratios (of course, 

taking ratios cancel out the unit) between components using one of the categories as a 

baseline. 

Such constrained data for which the researcher is mainly interested in unit-less ratios 

between components are called compositional data. We quote from Filzmoser et al. (2018, 

p.11) [11] below 

…a compositional vector, or simply a composition, x = (x1, ... , x砂 withD 
parts (arranged into a column vector) is by definition a positive real vector with D 
components, describing quantitatively the parts of some whole, which carry relative 

information between the parts. 

Egozcue (2009) [9] states that compositional data analysis should respect the following 

principles: 

Scale invariance: The information in a composition does not depend on the particular 

units in which the composition is expressed. Proportional positive vectors represent 

the same composition. Any sensible characteristic of a composition should be invariant 
under a change of scale. This principle thus corresponds to the fact that a multipli-

cation of a compositional vector by an arbitrary positive number does not alter the 

ratios between compositional parts. 

Permutation invariance: Permutation of parts of a composition does not alter the in-

formation conveyed by the compositional vector, similarly as in standard multivariate 

statistics. 

Subcompositional coherence: Information conveyed by a composition of D parts should 
not be in contradiction with that coming from a subcomposition (i.e., a subvector of 

the original compositional vector) containing d parts, d < D. This principle can be 
formulated more precisely as 

．． 
Subcompos1tional dommance: If△ p (工，y)1s any distance between compositions 

of p parts, then 

△瓜ェ， y)~ △ d(叩，如），



126

where x, y are compositions with D parts and叩， Ydare subcompositions of the 
previous ones with d parts, d < D. 

Ratio preserving: Any relevant characteristic expressed as a function of the parts of 

a composition is exclusively a function of the ratios of its parts. In a subcomposition, 

these characteristics depend only on the ratios of the selected parts and not on 

the discarded parts of the parent composition. Scale invariance applies to the 

subcomposition. 

2.2 Should the choice probabilities or market shares treated as 

compositional data? 

In the following, we examine if it is reasonable to require those three characteristics 

scale invariance, permutation invariance, and subcompositional coherence for the choice 

probabilities based on the discrete choice models we introduced in section 1.5. If so, 
we can treat the choice probabilities or market shares in NEIO and marketing science as 

compositional. Furthermore, we need to examine the appropriateness of Euclidean metric. 
First, we recognize that the choice probabilities of agent i over all alternatives j, 

j = 1, ... , J must add up to 1. Therefore P;,j, j = 1, ... , J in (7) have to exist in 
the so-called (J -1)-standard simplex a generalization of the notion of a triMgle or a 

tetrahedron to higher dimensions— that is a subset of the ]-dimensional real space溌J:

｛ P; = (P;1, ... ん） E 副P;j~o,J;凡=1}・ 
Similarly, we recognize the simulated estimate of the market share凡foralternative 

j = 1, ... , Jin (4) mus} also exist in the (J -1)-standard simplex because all the compo-

nents凡 fromwhich F_j is computed are in the (J -1)-standard simplex as well and the 

weights in (4) are so set that the resulting凡doesnot go beyond the area of this simplex. 

In addition, it is obvious that the corresponding observed market shares S = (s1, ... , SJ), 
where sj, j = 1, ... , J is the market share of alternative j, must also exist in the (J -1) 

simplex as well. 

Second, on scale invariance. In Table 1, we present the observed sales of passenger 

vehicles in March 2020 in Japan in terms of units sold as well as in terms of maket share. 
As discussed in case of household expenditure on food, housing, transportation, and 

communications in section 2.1, the researcher is not likely to be interested in the actual 

units sold or the absolute level of the market share. Rather the researcher is interested 

in which models were sold among these models listed in Table 1 during March 2020 and 

why so, given the researcher's assumption that the agents were to buy one vehicle in 

March, 2020, and given their product characteristics including their prices. Or including 
not choosing any alternative often referred as "outside good"or "outside alternative,"the 

researcher may be interested why certain models were bought at all if the agent was 

allowed to have an option of not purchasing any vehicle during March, 2020. Either way, 

we need to ensure that the analyses based on the market share be the consistent with the 

analysis based on the sales volume. 
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Model Name Manufacturer Sales in Units Market share 

Carolla Toyota 16,327 0.05072624 
Fit Honda 14,845 0.04612182 
Yaris Toyota 13,164 0.04089913 
Raize Toyota 12,009 〇.03731067
Note Nissan 10,999 0.03417271 
Sienta Toyota 10,456 0.03248567 
Prius Toyota 9,717 0.03018968 
Roomy Toyota 9,700 0.03013686 
Freed Honda 9,528 0.02960247 
Selena Nissan 9,130 〇.02836593
Voxy Toyota 8,963 0.02784708 
Aqua Toyota 8,488 0.02637130 
Tank Toyota 8,261 0.02566604 
Alphard Toyota 7,885 0.02449785 
RAV4 Toyota 6,286 0.01952993 
Solio Suzuki 5,702 0.01771550 
Noah Toyota 5,649 0.01755084 
CX-30 Mazda 5,647 0.01754462 
MAZDA2 Mazda 5,616 0.01744831 
lmprezza SUBARU 5,459 0.01696053 

Total 321,865 1.0 

Table 1: Japanese Automobile Sales in March 2020 
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Relative information between the parts as described in the block quotation from Filz-
moser et al. (2018, p.11) [11] above can also be applied to the ratios between the units sold 
or the market shares in an example in Table table:JapaneseAutomobileSalesinMarch2020. 
For example, using the best selling Toyota Carolla as baseline, we obtain the ratios of 
the popularity for Fit relative to Carolla by 14845/16327, for Yaris relative to Carolla by 
13164/16327, and so on if we employ the units sold. Obviously, computing these ratios 
from the corresponding market share data gives exactly the same value. Overall, there 
are (22°) = 190 ratios, up to their reciprocals, which form this representation of relative 
information, if we are only interested in the Top 20 selling vehicles in Table 1. If, on the 
other hand, we include outside alternative, but are limiting our interest to the Top 20 
selling vehicles in Table 1, this ratios will be increase to (摩） = 210 ratios, again up to 
their reciprocals. Filzmoser et al. (2018, p.p.3-4) [11] claim: 

One can see that ratios contain much more detailed information than just per-
centages to the total, and they remain the same if the data are rescaled. Ratios 
will thus form the representation of relative information that is considered in com-

positional data analysis. 

Third, on permutation invariance. In the example in Table 1, it is obvious that 
permutation of parts of a composition does not alter the information conveyed by the 
compositional vector. In other words, if those models are presented in the increasing order 
of units sold or market share, or in any random order, the researcher is still interested in 
either which models are popular, or why certain model is bought at all. 

Fourth, on subcompositional coherence. In the example in Table 1, it is also obvious 
that information conveyed by a composition of 20 21 if outside alternative is included 
models should not be in contradiction with that coming from a subcomposition containing 
d parts, d < 20 in the sense that the ratios are preserved. It is not clear, however, 
subcompositional dominance is guaranteed or not and we need to question applicability of 
Euclidean metric for compositional data. 

2.3 Is Euclidean metric appropriate for choice probabilities or 

market shares? 

Subcompositional dominance asserts that the distance computed between two composi-
tions cannot be less than the distance between the corresponding subcompositions. How-

ever, there are many distance measure we can employ. The very insightful counterexample 
in Filzmoser et al. (2018, p.13) [11] shows us that, for compositional data, the Euclidean 

metric is not appropriate: 

Consider two compositions x = (0.55, 0.40, 0.05)'and y = (0.10, 0.80, 0.10)', 
expressed in proportional representation. Their Euclidean distance is d(x, y) = 
✓(0.55 -0.10)2 + (0.40 -0.80)2 + (0.05 -0.10)2 = 0.604. When computing the 
Euclidean distance between the vectors consisting of the first two components, 

✓(0.55 -0.10)2 + (0.40 -0.80)2 = 0.602, everything seems to work well. But 
the point is that such a property should be fulfilled for any representation of 
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these subcompositions. If the subcompositions are expressed as proportions, i.e. 

〇.55/(0.55+ 0.40), etc., resulting in叫=(0.579, 0.421)'and Ys = (0.111, 0.889)', 
their Euclidean distance is 0.661, what clearly contradicts the assumption of sub-
compositional dominance. 

2.4 What metric is appropriate for choice probabilities or mar-

ket shares? 

In NEIO or marketing science papers discussed in section 1.1, the researcher is rarely 
interested in agent i's probability P,k of choosing alternative k in (7) per se, but usually 
interested in the尺krelative to his/her choice probability of either alternative other than 

k or to "outside alternative."For outside alternative, which we index j = 0, it is natural 
to set their representative utility as½o = 0 because outside alternative has no attributes 

and the attributes of the agent facing the alternative k = 0 is hardly observable by the 
researcher. The logit probability of agent i choosing outside alternative k = 0 is thus Pi。=
exp (0) / Ef=1 exp (¼j) = 1/区f=1exp (¼j)- The ratio of agent i choosing alternative k 
relative to him/her choosing the outside alternative k = 0, sometimes referred as odds 
ratio in statistics, is thus 

肛 exp(狐）
＝ p；。exp(¼o) 

= exp (¼k -¼o) =exp(¼ 心． (8) 

Expression in (8) reveals that the representative utility屈 ofagent i choosing alternative 

k when first presented in section 1.3 is actually relative to the outside alternative¼o = 0. 
More importantly, if employ the natural logarithm to (8), we can recover the difference 

in the representative probabilities as 

log (化）＝屈ー ¼o- (9) 

This fact that log odds ratio applied to the choice probabilities obtains the difference in 
representative utilities of agent i choosing alternative k and outside alternative k = 0 

explicitly and strongly points to the logratio transformation of the following type 

log (見）， log(鷹），， log(応）， (10) 

if we employ outside alternative j = 0. From this derivation, it becomes apparent that 
statement "only differences in utility matter"in Train (2009, p.19) [28] needs modified to 
"only differences in representative utility matter."We also learn from this derivation that 
differences in representative utility can be measured through this logratio transformation. 
Furthermore, it also becomes apparent that the statement "the overall scale of utility is 
irrelevant"must be questioned because the logratio transformed choice probabilities give 
the actual numerical value of the differences in representative utility. The expression in 
(10) is called additive logratio coordinates. 
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2.5 Aitchison Geometry on the Simplex 

In sections 2.3 and 2.4, we learned neither the choice probabilities or the market shares 
does not follow the us叫 Eucledeangeometry. We also see that the sample space of 

compositions is the simplex in section 2.2. Therefore an appropriate geometrical concept 
needs to be developed. Although the work of Aitchison (1986) [1] is pioneering, it did 
not include the geometrical perspective of compositional data analysis. The geometri-

cal structure of compositions is examined and referred to as the Aitchison geometry in 

Pawlowsky-Glahn and Egozcue (2001) [24] and Egozcue et al. (2003) [10]. Their work is 
designed to define a vector space structure of the simplex. 

They first introduced basic operations— perturbation and powerin忙 correspondingto 

the addition of two vectors, i.e. the shifting operation, and multiplication of a vector by 
a real number in the Euclidean geometry. 

For two compositions x and y from the simplex sample space炉， theperturbation of 
x and y is a composition defined as 

”〶 Y = (x1Y1, ... ,XJYJ汀． (11) 

The power transformation of a composition尤 E炉 bya constant c E沢isdefined as 

c 0 x = (x~, ... , x~f. (12) 

These two operations are sufficient to obtain a vector space, and the usual commuta— 
tive, associative, distributive properties are maintained. For instance, the perturbation 

difference is obtained as 

x8y=尤① [ (一1)0 y] = (xi/y1, ... ,xJ/YJ汀， (13) 

and 

X8X=X 〶 [(-1) 0 x] = (xi/x1, ... ,xJ/xJf = (1, ... , 1) = n, (14) 

has all pairwise logratios equal to zero and corresponds to the zero vector in the Euclidean 

geometry. 
A Euclidean vector space structure is obtained when we define norm, inner product, 

and distance in the Aitchison sense. Let x = (xい...,XJ戸E 炉、 Y= (Y1, ・.. , YJ) E 

炉 betwo compositions. Then Aitchison inner product, Aitchison norm, and Aitchison 

distance is respectively defined in the following: 

l J J 叩＜尤，Y>A=面竺lnい）-ln (塁）， (15) 

1 J J 2 

llxllA =喜五戸 =.I 面苔〗い（り）， (16) 
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心 (x,y)= 喜鯰 (1n げ）— ln(塁））2, 
(17) 

which is equivalent to 

ぬ(x,y)= 喜立 (1n い）— ln(~)r, (18) 

where the expression in (18) shows that a component of⑦ is compared with the corre-

sponding component of y. 

These definitions lead to a Euclidean linear vector space structure, and in the literature 

this is simply denoted by the Aitchison geomet内 onthe simplex. As can be clearly seen in 

those definitions, the definitions in (15), (16), (17), and (18) are all based on logarithms 

of ratios (logratios) between the compositional parts. It is critically important also to 

note that in computing the distance between two compositions either by (17) or by (18), 

all the possible permutations of the logratios are employed. 

3 Conclusion and Discussion 

We learned that the choice probabilities individual or aggregated and the market shares 

need to be regarded as compositional because, in NEIO and marketing science, the major 

interest is to uncover the behavioral processes of all the agents i, i = 1, ... , I choosing 
their respective alternative j, j = 1, ... , J. Therefore, when we manipulate the choice 

probabilities or the market shares, we need to transform it to the logratios to caluculate 

inner product, norm, and distance. For instance, any attempt including those papers in 

subsection 1.1 utilizing the generalized method of moment and simulations BLP(1995) 

[4], Petrin (2002) [25], Berry, Levinsohn, and Pakes (2004) [5], Berry, Linton, and Pakes 

(2004) [6], and Myojo and Kanazawa (2012) [19] to estimate the parameter associated 

with凡 bymatching the observed market share S = (sビ..., SJ) with the model-based 

simulated estimate of the market share P = (凡，．．．，凡） should be "staying-in-the-
simplex approach" and should be based on the logratios. 

Furthermore, we learned that the logratio transformed choice probabilities at least for 

logit models are the difference in representative utilities. As such, logratio transformed 

choice probabilities are intuitive and highly interpretable because its direct and straight-

forward connection to the utility theory. In the process, we learned that we needed to 

modify the prevalent wisdom "only differences in utility matter"to "only differences in rep-

resentative utility matter" at least for logit model because its logratio transformed choice 

probabilities are differences in representative utility. Similarly, we found the statement 

"the overall scale of utility is irrelevant"to be highly questionable because the logratio 
transformed choice probabilities give the actual numerical value of the differences in rep-

resentative utility. 

To the best of the author's knowledge, this principle of Aitchison geometry has never 

been applied systematically to these fields of research. 
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Some significant amount of work needs to be done in the areas of statistics/econometrics 

and microeconomics to fully understand the potential of compositional analysis if it has to 

become a toolbox of choice. First it is often reasonable and is widely practiced to specify 

the representative utility to be linear in parameters possibly with an alternative-specific 

constant: 

¼j = Cj +X氾，

where the Xij is a J x p matrix of variables that relate to alternative j, j = l, ... , J as 
faced by agent i, /3 is the parameter vector consisting of p coefficients corresponding to 

these p column vectors in Xijvariables. In section 2.4 and especially from (9), we learned, 

with the representative utility¼。 for outside alternative set to 0, that 

log (信） =½k -½o = cj + X氾・

Maximum likelihood is usually employed to estimate the parameter /3 for the model. If 
you look at the methods carefully, however, we find it is basically iteratively-reweighted 
least-square methods. We ceヰainlyneed to examine the validity and applicability of these 

methods now that we know the appropriate distance measure is not Euclidean, but rather 

心 in(17) or in (18). 
Second, and obviously, we need to investigate to what extent the intuitive andしighly

interpretable nature of logratio transformed choice probabilities will be compromised if 

we employ discrete choice models other than logit such as the nested logit, probit, or 
mixed logit models. For this, we need to theoretically investigate what happens to the 

differences in representative utility when nested logit, probit, or mixed logit models are 
estimated on the same data. 

Third, we need to propose new, intuitive, and highly interpretable methods of market 

segmentation based on Aitchison Geometry. 

Lastly, we need to address the problem of structural zeros or essential zero in Aitchison 

Geometry. Aitchison and Kay (2003) [2] states the definition of essential zero as 

by an essential zero we mean a component which is truly zero, not something 
recorded as zero simply because the experimental design or the measuring instru-

ment has not been sufficiently sensitive to detect a trace of the component. 
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