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1. Introduction 

Risk-sensitive expectation is given by 

f―l(E(f(・))), (1) 

where f and f―1 are decision maker's utility function and its inverse function and E(・) 
is an expectation (Howard and Matheson [3]). Eq. (1) estimates risky events through 

utility functions. Coherent risk measures have been studied to improve the criterion of 

risks with worst scenarios (Artzner et al. [2]): For example, conditional value-at-risks, 

expected shortfall (Rockafellar and Uryasev [5], Tasche [6]). Kusuoka [4] gave a spectral 

representation for coherent risk measures. Further Yoshida [7] has introduced a spectral 

weighted average value-at-risk as the best coherent risk measure derived from decision 

maker's utility functions. This paper discusses risk-sensitive decision making, which will 

be useful for artificial intelligence's quick and responsible reasoning, based on the concepts 

of Yoshida [7, 10] and presentation documents in RIMS 2019. 

2. Coherent risk measure derived from risk averse utility 

• Let P be a non-atomic probability on a sample space [2_ 

• We deal with the following random variables: 
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Va凡(X)= sup{x E JI Fx(x)~p} = Fi1(p) 

for p E (0, 1) and VaR1(X) = sup!, where Fi1 is the inverse function of Fx. 

(2) 
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• Average value-at-risk at a probability p(E (0, 1]) is given by 

1 p 
AVa恥(X)= -J Va凡(X)dq. 

p 0 
(3) 

．． 
Defimt1on 1 (Artzner at al. [2]). A map p : X→ (-oo, oo) is called a coherent risk 
measure if it satisfies the following (i) -(iv): 

(i) p(X) 2: p(Y) for X, Y E X satisfying X :::; Y. 仇叩叫加叫

(ii) p(cX) = cp(X) for XE  X and c E (O,oo). (positive homogeneity) 

(iii) p(X + c) = p(X) -c for X E X and c E (-oo, oo). (translation invariance) 

(iv) p(X + Y):::; p(X) + p(Y) for X, YE X. (sub-additivity) 

• In this paper we use a law invariant, comonotonically additive, continuous coherent 
risk measure p. 

• For a probability p(E (0, 1]) and a non-increasing right-continuous function入：
[O, 1]→ [O, oo) satisfying Ji。1入(q)dq = 1, we define a weighted average value-at-risk 
with weighting入on(O,p) by 

p p 

AVaR以X)= 1 Va凡(X)入(q)dq/1入(q)dq (4) 

Then入iscalled a risk spectrum. 

Lemma 1 (Kusuoka [4], Yoshida [7]). Let p : X→ (-oo, oo) be a law invariant, 
comonotonically additive, continuous coherent risk measure. Then there exists a risk 

spectrum入suchthat 

p(X) = -AVaR↑ (X) (5) 

for XE  X. Further, -AVaR; is a coherent疇 measureon X for p E (0, 1). 

• For the family X, we assume the following (i) and (ii): 

(i) There exists a strictly increasing function 11, : (0, 1)→ (-oo, oo) such that 

Va恥(X)=μ+ K,(p)び， pE (0, 1] (6) 

for the meansμand the standard deviations r, of random variables X E X. 

(ii) There exists a probability density function 

ゆ： (μ,r,)(E (-00,00) x [0,oo))← + [O, oo) 

for the meansμand the standard deviations a of random variables X E X. 
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• From (4) and (6) we have 

AVa硲(X)=μ 十心(p)CJ, (7) 

where 

心(p)= 1P r;,(q)入(q)dq I 1P入(q)dq. 
• Let f : J t-t (-oo, oo) be a C2-class risk averse utility function satisfying f'> 0 and 
f" :::; 0 on I, where I is an open interval. 

Lemma 2 (Yoshida [7]). A risk spectrum入whichminimizes the distance between the 

non-linear risk-sensitive form and weighted average value-at-risk (4): 

区(1『JPXEX -l p。f(Va凡(X))dq) -AVaR以x))
2 

for p E (0, 1] is given by 

入(p)= e―f;C(q)dqC(p), pE (0,1] 

with a component function C in /7, Theorem 2} if入isnon-increasing, 

Risk-sensitive estimation 
Risk averse utility f ＆ 

Coherent risk measure 

AVaRれX)

Fig. 1. Risk-sensitive estimation and coherent risk measures 

derived from risk averse utility f. 

(8) 

(9) 
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Remark. Regarding Eq, (8), 

• f―1 (.! 『f(Va凡(X))dq 
p 0 

) is the risk-sensitive estimation of X through utility f. 

• -AVaR;(-) is a coherent risk measure with risk spectrum入．

• AVaR以X)is the weighted average value-at-risk such that 

* AVa硲(X)can inherit decision maker's risk averse sense of utility f, using 
risk spectrum入asa weight on (O,p). 

* AVa硲(X)has a kind of linear properties like positively homogeneity and trans-
lation invariance in Definition l(ii)(iii). 

Example 1. Let a domain I = (-oo, oo) and let f be a risk neutral function 

f(x)=ax+b 

for x E (-00,00) with constants a(> 0) and b(E (-00,00)). 

• Its optimal risk spectrum in Lemma 2 is入(p)= 1 with C(p) =¾· 

• The corresponding weighted average value-at-risk (4) is reduced to the average value-
at-risk (3): 

1 p 
AVa硲(X)= AVa恥(X)= -J VaRq(X) dq and AVaR1(X) = E(X) 

p 0 

for XE  X and p E (0, 1]. 

Example 2. Let a domain I = (-oo, oo) and let a risk averse exponential utility function 

f(x) = 
1-e―TX 

for x E (-oo, oo) with a const皿 tT(> 0). 

J" • —ァ =Tis Arrow's absolute risk averse index (Aroow [1]). 

• Its optimal risk spectrum in Lemma 2 is given by 

入(p)= e―はC(q)dqC(p), pE (0,1], 

where the component function C is given by 

1 100 1- 1 

C(p)=-・oo 

( ¾fc悶 em(t<(p)-,;,(q))dq) une―岱如
P J log .! Pび,;(ん(p)一氏(q))dq) 炉e-~du . 

゜
(p fc。
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Let X be a family of random variables X which have a normal distribution with a density 

function 
w(x) = 1 e-亨
亭 a

for x E (-oo, oo), whereμand a are the mean and standard deviation of random variables 

XEX  

• Define an increasing function Ii : (0, 1)→ (-oo, oo) by an inverse function 

K(p) = G-1(p) 

for p E (0, 1), where G is the cumulative distribution function of the standard normal 

distribution 

G(x) = 1「バdz
亭 -oo

(x E (-oo, oo)). 

• Then we have value-at-risk 

Va馬(X)=μ 十叫(p)び

for XEぶ

Suppose X has a distribution functionゆ：

21-n/2 
心(μ,a) =¢(μ). an-le―す

I'(n/2) 

21-n/2 "2 
for(μ, a) E (-oo, oo)x[O, oo), whereの(μ)is some probability distribution and an-1e―万―

I'(n/2) 

is a chi distribution with degree of freedom n. Then we have Figs. 2-4. 

1.0 

0.5 

-] 3
 

X 

5
 

Example 2 
-r= 1 -r =2 

. Risk averse utility function 

-1.0卜 Example1 

Risk neutral utility function 

Fig. 2. Utility functions f(x). 
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Weighted average value-at-risks 
~-----• 一r、

Average value-at-risk 
Example 1 

／ 

0.0 0.2 0.4 0.6 0.8 I.Op 

Fig. 3. Risk spectra入(p).

0.2 0.4 0.6 

-1 

-2 

-3 

-4 

=;; ~e 2~、 ':"!"2 
Weighted average value-at-risks 

Fig. 4. Functions r;, 入(p).

3. Risk-sensitive decision making with risk constraints 

Let p be a coherent risk measure in Lemma 1 and let f be a C2-class risk averse utility 
functions in the previous section. Let 8 be a positive constant. Then we investigate the 

following problem. 

Problem 1. Maximize the risk-sensitive expected reward 

f―1(E(f(X門）） (10) 

with respect to strategies 1r under a risk constraint 

p(X門こふ (11) 

Hence we estimate the downside risks on (O,p). From Lemmas 1 and 2, there exist 
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risk spectra入andv such that 

f―1(E(f(・))) = f―1 (1 Va凡(!(・))dq) = f―1 (1 f(VaRq(・))dq)::::; AVaRi(・), 
p(・) = -AVaR訊・).

Thus we discuss the following optimization instead of Problem 1. 

Problem 2 Maximize weighted average value-at-risks 

AVaRi(X門=E(X門十氏入(1)・CJ(X門

with respect to strategies 1r under risk constraints 

AVa間(X門=E(X門＋足(p)・CY(X門こー8.

(12) 

(13) 

• Problem 2 is easier to solve in actual cases than Problem 1 because we calculate 

only E(X門anda(X門whenwe have prepared constants砂(1)and炉(p).

Risk averse index 
て

Decsion Maker 

Distribution 
I 

G=霊Le―j'dz

Risk averse utility 

f<x)~ 1-e―u 

' 

Risk-sensitive expectation 

AVaR; ~ μ+パI)CY 

バ1)=1訊q)入(q)dq

IC= G―1 

Risk-sensitive expactation 

バE(f(X))
=f―'UバVaRq(x)) dq) 
゜::c AVaR~(X) 

Weighted average value-at-risk 

Risk specrum 

入

We can calculate risk-sensitive 

expectation immediately when 

we prepare contants K'(1) 

Fig. 5. Risk-sensitive estimation under utility function f. 
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Risk averse index 
'f 

Decsion Maker 

Risk probability 
p 

Distribution 

G=喜Le―fdz 

Risk averse utility 
1-e―u 

g(X) = 
r 

Coherent risk measure 
p~-AVaR~ 

~-(µ+Kv(p)c;) 

K"(p) = 

f,c(q)v(q)d~ 小(q)dq

IC= G―1 

Risk estimation under g 

-I I p 
g (社g(VaR.(X))dq)
"'AVaR;(x) 

Weighted average value-at-risk 

Risk specrum 

V 

We can incorporate decision 

makers risk averse utility g 

into coherent risk measure p 

Fig. 6. Coherent risk measure under utility function f. 

Using Lemma 2, we can incorporate the decision maker's risk averse attitude into 

coherent risk measures as weighting for average value-at-risks. As we have seen in Example 

2, risk-sensitive estimations are approximated by weighted average risks with the best 

spectrum入forwith utility f, and the coherent risk measures pis also given by weighted 
average risks with the best spectrum v for with utility g in the same manner. If we prepare 

constants足(1)and炉(p)once from K, 入andv like Figs. 5 and 6, we can calculate risk-

sensitive estimation cp and coherent risk values p immediately respectively. This kind 

of quick risk-sensitive decision making will be applicable to reasonable and high-speed 

computing with artificial intelligence reasoning, for example, stock trading, auto driving 

and so on. 

4. Application to decision making 

Yoshida [7] has introduced a spectral weighted average value-at-risk as the best coherent 

risk measure derived from decision maker's utility functions. Using this derived coherent 

risk measure, In dynamic Markov decision models, Yoshida [9] has discussed risk-sensitive 

running rewards by dynamic programming, and Yoshida [10] has investigated risk-sensitive 

terminal rewards by multi-parameter optimization, Yoshida [8] has developed their avail-

ability in high-speed computing. Yoshida [11, 12] has also applied it to portfolio selection 

in finance. 
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