ON CHARACTERISTIC p ALTERNATING MULTIZETA VALUES
RYOTARO HARADA

ABSTRACT. We give positive characteristic analogues of alternating multizeta values which
are generalizations of Thakur multizeta values. We also introduce their fundamental prop-
erties including non-vanishing, sum-shuffle relations, period interpretation and linear inde-
pendence which is a direct sum result for these values.

0. INTRODUCTION

We introduce the alternating multizeta vaues in positive characteristic (AMZVs in short)
which are defined in [H19] as the following infinite sums. For s = (sq,...,s,) € N" and

€=(e1,...,6) € (F),

Eileg ai 'Efeg ar

1) TGOS € e

aq,...,ar€A+
degay>-->dega,>0

S1 Sy
ayay

For the definitions of F,, A, A, k, ke and k, see §1. We call wt(s) := %./_; s; the weight and
dep(s) :=r the depth of the presentation of (4(s;€). We also study their properties listed in
below.

(A). Non-vanishing (Theorem2.1)

(B). Sum-shuffle relations (Theorem 2.6)

(C). Period interpretation (Theorem 3.4)

(D). Linear independence (Theorem 4.7)

We also note that (4(s; €) is generalization of Thakur multizeta values, positive characteristic
analogue of multizeta values.

In characteristic p case, an analogue of multizeta values were invented by Thakur [T04].
First we recall the power sums. For s € Z and d € Zs, power sums are defined by

Sq(s) =Y. is €k.
acAg,

For s = (s1,...,,) €e N" and d € Zg, we define

Sa(8):=Sa(s1) Y, Sa(s2)--Sa.(s,) € k.

d>do>++>dr20

For s € Zsq, the Carlitz zeta values arc defined by

1
Ca(s) = Z p € koo

acAy
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Thakur generalized this definition to that of multizeta values in positive characteristic (MZVs
in short). For s = (s1,...,5,) € N",

Ca(s) =) Sa(s) = > Sa(s1)-Sa,(s,) = D —— € Foo-
d>0 dy>>dp>0 ay,areA, Q1 Ar
degaj>-->dega,>0

He and Anderson developed the following properties for MZVs:

(a). Non-vanishing (|T09, Theorem 4])
(b). Sum-shuffle relations ([T10, Theorem 3])
(¢). Period interpretation (JAT09, Theorem 1])

About (b), Thakur showed that the product of two MZVs can be expressed as an F,-linear
combination of some MZVs of the same weight and we follow Thakur’s terminology to call
these sum-shuffle relations. Thus the MZVs form an IF,-algebra. By lacking of the integral
expression, we do not know the existence of the integral-shuffle relation in characteristic p.
By using the transcendence theory developed by Yu [Y97], Anderson-Brownawell-Papanikolas
[ABP04] and Papanikolas [P08] together with period interpretations of MZVs by Anderson-
Thakur [AT09], some advances on MZVs are established by Chang-Yu [CYO07] (for Carlitz zeta
values), Chang [C14, C16], Chang-Papanikolas-Yu [CPY19] and Mishiba [Mil5, Mil7]|. For
example, in [C14], a characteristic p analogue of Goncharov’s Conjecture [Go97] (in stronger
form) was proved as the following property:

(d). Linear independence ([C14, Theorem 2.2.1])

We emphasize that AMZVs have important and fundamental properties which generalize
those of MZVs. Indeed, we show them consisting of non-vanishing (Theorem 2.1), sum-shuffle
relations (Theorem 2.6) and period interpretation (Theorem 3.4) as an alternating analogue
of (a), (b), and (c). By applying those properties, we will show the alternating analogue of
(d) (Corollary 4.9) in §4 and thereby obtain the transcendence of each alternating multizeta
value. These result give us the generalization of main theorems in [C14, T09, T10].

From these results, while we find differences in observing alternating analogue of (b) (cf.
§2.2), (c) (cf. §3) and Corollary 4.9 (cf. §4) by units ~ € FZ and ¢ € [y, their basic properties
appeared in this paper are similar to those of MZVs. More precisely, for the property (A),
it is immediately obtained by an inequality property of the absolute values of power sums
proved by Thakur [T09]. For the property (B), we use Chen’s formula [Chenl5| and approach
the higher depth case by induction method invented by Thakur [T10]. For the property (C),
inspired by Anderson-Thakur polynomials (JAT90]) that can interpolate power sums, we use
those polynomials to create suitable power series that their specialization are AMZVs and
then we use these series to create suitable pre-t-motives to establish the period interpretation
of (C). For the linear independence result of AMZVs, we use Chang’s method [C14] by
applying Anderson-Brownawell-Papanikolas criterion [ABP04] to establish the alternating
analogue of MZ property for AMZVs. By the linear independence result, we have (D), that
is, an alternating analogue of (d) (for the detail, see Corollary 4.9).
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1. NOTATIONS AND DEFINITIONS

We put the following notations.

g a power of a prime number p.
F, a finite field with ¢ elements.
0,1 independent variables.
A the polynomial ring F,[0].
A, the set of monic polynomials in A.
Agqe  the set of elements in A, of degree d.
k  the rational [unction field F,(0).
ke  the completion of k at the infinite place oo, Fo((3)).
ke  a fixed algebraic closure of ke.
Co  the completion of ke, at the infinite place oo.
k  a fixed algebraic closure of k in C...
|']c a fixed absolute value for the completed field C, so that 0| = g.
T  the Tate algebra over C,,, the subring of C[[¢]] consisting of
power series convergent on the closed unit disc [t|e < 1.
D;  TIZ0(67 —69) € A, where Dy :=1.
I,o1 the Carlitz gamma, [1; D" (n=Y;nq" € Zso (0<n; <g-1)).
We define alternating power sums and alternating multizeta values in positive characteristic
along the construction of MZVs by Thakur. For s € N, ¢ € Fy and d € Zs, we define the
alternating power sums by

d
Sa(sye) i=elSy(s) = Y. E—s €k.
acAgy

The above sums are extended inductively as follows.
For s = (s1,...,5.) €N, €= (e1,...,6) € (F¥)" and d € Zso, we define

Sca(s;€):= > Su(sier)Sq (sp€) €k

d>dy>>d>0
and
(2) Sa(s;€) = Sa(s1;€1)Sa(s2, .-, Sri €2, ., )
= Sq(s1;€1) Z Sa,(S2;€2)-Sa, (sr;€r) € k.

d>dy>->d>0

When r -1 >d, Sy(s;€) =0 since it is empty sum. By using these alternating power sums,
AMZVs (cf. (1) ) are interpreted as follows:

(3) Ca(si€) = > Su(s;€) € koo

d>0

Remark 1.1. We remark that (4(s; €) specializes to (4(s) when € = (e1,...,¢.) = (1,...,1).
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In this paper, we write n-fold Frobenius twisting as follows.

Cu((1)) = Cul(1))
= Yat' = Yl =,

Moreover, we fix a fundamental period 7 of the Carlitz module (see [Goss96, T04]). We
define the following power series.
Q=Q(t) = (-) YD [T(1-t/67) e Co[[t]]
i=1
where (—0)/(¢=D is a fixed (q - 1)st root of -0 so that ﬁ =7 (JABP04, AT09]). Here, we
also introduce another expression of (4(s; €) by using the following theorem of Anderson and
Thakur.

Theorem 1.2 ([AT90|). For each s € N, there exists a polynomial Hys = Hy(t) € A[t] such
that

(4) (Hsles)(d)|t=9 =T Sa(s)/7*
for all d € Zso and s € N. Moreover, when we regard Hy as a polynomial of 0 over F [(] by

A[L] = F,[t][0] then

5q
5 degy H, < ——.
(5) €8 q-1

This polynomial H; is called the Anderson-Thakur polynomial. From (3) and (4), we obtain
the following expression of (4(s;€);

FS1+sy

(6) Ca(s;€) = S P (M Q) g (H g,y 25) ).

Fsl...FST' dy>-->d>0
2. FUNDAMENTAL PROPERTIES
We introduce the non-vanishing and sum-shuffle relation of AMZVs.

2.1. Non-vanishing property of AMZVs. We show the non-vanishing property as the
following theorem by using valuation of power sums which evaluated by Thakur [T09].

Theorem 2.1 ([H19] Theorem 2.1). For any s = (s1....,s,) €N and € = (¢1,....¢) € (Fy)",
Ca(s; €) are non-vanishing.

Proof. From (3), we can write (4(s;€) as follows.

Ca(sie) = D0 elegtel Sy (51)9u,(52) S, (s0)

dy1>do>->d->0

On the other hand, in [T09], Thakur showed that
degy Su(k) > degy Sar1 (k).



Therefore we have
[Ca(s1, -y Sm €1y s 6)|oo =] Z (‘11](2 %Sy (51)84,(52)Sa, (5)]oo

dy>ds>->dy 20

= [Sp-1(51)Sr-2(82) S0 (8r)]eo

#0
by using degy, So(k) = 0 and deg, Sy(k) <0 (k> 0,d > 0) in [T09, §2.2.3.]. Thus (4(s;€) are
non-vanishing. O
2.2. Sum-shuffle relations for AMZVs. We introduce the sum-shuffle relations for our
AMZVs. This kind of relations show that products of two AMZVs are expressed by IF,-linear
combination of AMZVs with preserving their weights. From the relation, (4(s;€) form an

[F,-algebra.
For the products of power sums Sy(s), the following formula was shown by Chen [Chenl15].

Proposition 2.2 ([Chenld, Theorem 3.1]). s1,52 € N, we have
Sd(Sl)Sd(Sg) - Sd(Sl + 82) = Z Aghst’d(Sl + So —j,j)

0<j<si+s2
q-1|j

(e ().

The key idea to prove Proposition 2.2 is the following partial fraction decomposition

~1 s1—1 ?‘}1 1521é21
1 Z{() (1), o )}

where

as1bs2 - a81+52—j(a,—b)7 bs1ts2- 7(a b)

for a,b € A\{0}. By using the above decomposition, she obtained the following formula in
the proof of [Chenl5, Theorem3.1]:
GO 1)}

bs1ts2 .7(],]

()
I 2 L), 2.
as1bs2 . asits2=Jpi
azbe Ay 0<j<s1+s2 a,be Ay g a,beAy
dega=degb (¢-1)]j dega>degb degb>dega

By using the above Chen’s method, we obtain the following lemma.
Lemma 2.3 ([H19, Lemma 2.3]). For s1,55 €N, €1,¢5 € Ty and d € Zso, we have
(7) Sd(81;€1)5d(82;€2)—Sd(Sl+82;6162) = Z ASI 52Sd(81+32_j,j;616271)

0<j<si+s2
q-1|j

We remark that the coefficients AZ ., are independent of d.

Preceding to the next argument, we introduce an expression which is used in the rest
of this section. For any index s = (s1,82,...,8.) € N, we can write s = (s1,8") where
s’ = (s2,...,5.) €N" (vesp. €= (e1,...,¢,) € (F¥)7) and when r = 1, we set &' = ¢ (resp. € =)
and further Sy(s;€’) = 1.

Next we prepare the following lemma to show sum-shuffle relations for alternating power
sums in general depth.
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Lemma 2.4 ([H19, Lemma 2.4]). For a := (aj,as,...,a,) € N', b := (by,by,...,bs) € N3,
€= (e1,69,...,6) € (F)" and X := (A, A, ..., A) € (F)*, we may express the product
S.a(a;€)S.q(b; N) as follows:

(8) Sca(a;€)Sa(b; X) = ZfiS<d(Ci17 Ce s Cilgs fily s Haly)
fOT S0Me Cij € N: Hij € ]F;; s0 that ZTm:1 Ay + 22:1 bn = Z;”{;l Ch;, H:nzl €m HfL:l >‘n = Hizzl e,
L <r+s and f; € F, which are independent of d for each i.

Sketch of the proof. We can prove the lemma by induction on dep(a) + dep(b)(=r +s) > 2
and the relation (7). O

To prove the sum-shuffle result in Theorem 2.6 the following is the key ingredient.

Theorem 2.5 ([H19], Theorem 2.6). For a := (ay,as,...,a,) € N", b:= (by,b,...,bs) € N3,
€= (e1,60,...,6) € (Fy)" and X := (A, Ag, .., A) € (F)), we may express the product
Sq(a;€)Sq(b; A) as follows:

(9) Sa(a; €)Sa(b; A) = Zf{sd(cih cees Citgs Pty -y M)
for some c;j € N, py; € Fx so that Y7, G + X521 by = Zi{:lcih, et €m Ty A = thf:lpih,
li<r+s and fl €F, for each i.

Sketch of the proof. The theorem follows from the decomposition which is described in (2)
and the relation (8). O

We remark that the cocfficients f; € IF, are independent of d by Lamma 2.4.
By summing over d in the relation (9), we obtain the following sum-shuffle relations for
AMZVs:

Theorem 2.6 ([H19, Theorem 2.7]). For a:= (ai,az,...,a,) € N", b:= (by,b,...,bs) € N3,
€= (c1,60,...,6) € (Fy)" and X = (A, Ag,...,\s) € (Fy)®, we may express the product
Cala;€)Ca(b; X)) as follows:

(10) Ca(a;€)Ca(b;N) = > [ Calcins - Cavgi Bt - - Hhat;)

7
for some c;; € N and ju;; € Fy so that S At Sy by = Zl}jzl City [t €m Loy An = Hﬁ;zl ik,
li<r+s and f' €T, for each i.

Therefore the F)-linear span of our AMZVs form an F,-algebra by Theorem 2.6.

3. PERIOD INTERPRETATION OF AMZVSs
In this section, we show that each (4(s;€) appears as a period of certain pre-t-motive
basing on the idea in [AT09].
We denote the ring k(t)[o,07!] the non-commutative Laurent polynomial ring in o with
coefficients in k(t) subject to the following relations,

of = [, [ k().



We denote E to be the ring consisting of formal power series

> ant™ € k[[t]]

n=0
such that

lim {/|anle =0, [keo(ao,ai,...): ko] < 00.

We note that
(11) QeckE
and thus Q€ T.

3.1. Review of pre-t-motive. First we recall the notions of pre-t-motives. For more detail,
see [P0OS].

Definition 3.1 ([P08, §3.2.1]). A pre-t-motive M is a left k(1)[o, 07 ]-module that is finite
dimensional over k(t).

Let M be a pre-t-motive dimension r over E(t) and ® be representing matrix of multipli-
cation by o on M with respect to a given basis of m of M, then M is rigid analytically trivial
if and only if there is a matrix ¥ € GL, (L) (L is a quotient field of T) satisfying

v = o,

Here we define UC1 by (TCD),; := (T;;)CD. Such matrix VU is called rigid analytic trivial-
ization of ® and if all the entries of ¥ are convergent at ¢ = 6, and entries of W[,y are called
periods of M.

Anderson and Thakur obtained the period interpretation of MZVs with certain pre {-motive

in [AT09].
3.2. AMZVs related to pre-i-motive. Next we give a period interpretation of AMZVs .

Definition 3.2 ([H19, Definition 3.2|). Given ~; € EX (i=1,...,7), afixed (q—1)st root of
¢; € Fy, we let M be the pre-t-motive such that dimg,) M =r+1 and for the fixed k()-basis
m of M which satisfy

om=om
where ® is the following matirix:
(t _ 6»)51+»~+s,,. 0 0 0
,yffl)(t _ g)sl+---+erS(:£ (L—@)s2ttsr 0 0
0 % (= 0y H Y f
: - (t=0) 0
0 0 A (t-0)=H) 1

Here Hj,-y € A[t] is the Anderson-Thakur polynomial.

For the above pre-t-motive, we can give a matrix W which has a relation with ® as the
following proposition.
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Proposition 3.3 ([H19, Proposition 3.3]). For the pre-t-motive M defined in Definition 3.2,
there exists U € GL,,1(k[L]) so that it satisfies U1 = O,

Sketch of the proof. For the matrix ® in Definition 3.2, we show that the matrix U € GL,.,; (k[¢])
satisfies U(-1) = ®W and which is given as follows:

QSI+"'+87-
A/lL(sl)Q32+.“+s,. Qsat-tor
(12) U= ’}/QL(SQ)QS:3+--~+ST
71”'%‘11/(517 ce ST—I)QST 72"'%—1[/(527 L. .Sr_l)QsT Q)sr
f\/l"-/.‘/TL('Sl7‘~'7S7') ’YQ"'VTL(S27"'?S7‘) ,-YTL(ST) 1

Here we define the following:
L(Slt"'vsT) = L(Slv"'757‘;€17"'767‘)
=Y (Haa )Wl (H, 1 ) ).
dy>>dr>0
We also note that the following equations hold by their definitions.

-1 _
72( ) :61' 17i7

QY =(t-0)Q,

L(sy,...,s,)Y :(H en)L(sl, ey Sy)
n=0

r—1
+ (H Gn)(QSTHST_l)(DL(Sl, R 5r—1)~
n=0
By using these three equations, we obtain the following desired formula.
(AR 3
0

As we will see in Lemma 4.3, the matrix ¥ in (12) belongs to Mat,.;(T) then we obtain
that U € GL,,;(IL) from (11) and det¥ = QXi-14 % 0 where d; = s; + - + 5,. Therefore ¥ is a
rigid analytic trivialization of ® and we call each entry of W],y a period of M. Thus we have
the following result by the above proposition.

Theorem 3.4 ([H19, Theorem 3.4]). For s = (s1,...,s,) € N" and € = (ey,...,¢.) € (Fy)",
Ca(s; €) are periods of the pre-t-motive M in Definition 3.2.

Proof. By using Q|;—g = 77! and (4), we obtain

Fs "'Fs, ¥ o
(13) L(8)imo = ==—= % el Sy, (s1)-+5, (s0)
e " dy > >dy20
T, T,
= ﬁg/;(,ﬁ, E).
Therefore by the matrix W in (12), (4(s;€) are periods of the pre-t-motive M in Definition
3.2. O
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4. LINEAR INDEPENDENCE PROPERTY OF AMZVs

We show that AMZVs form an weight-graded algebra as an application of their period
interpretation in the former section. The proof is shown along the method which was invented
by Chang [C14].

4.1. Anderson-Brownawell-Papanikolas’s criterion. In our proof, we need to use the
following ABP criterion (ABP stands for Anderson-Brownawell-Papanikolas) which was in-
troduced in [ABP04].

Theorem 4.1 ([ABP04, Theorem 3.1.1]). Fiz ® € Maty(k[t]) so that det® = c(t — 0)* for
some cek and some s € Zso. Suppose that there exists a vector 1) € Matgy () satisfies

D = 0y
For every p € Maty,q(k) such that pi(0) = 0, there is a P € Maty.q(k[t]) so that P(#) = p
and P =0.

From Proposition 3.3, it is enough to verify that the matrices ® in Definition 3.2 satisfy
the conditions. We thus only need to show that ¥ € Mat,,;(IE). This is necessary in applying
Theorem 4.1 to our AMZVs. We use the following proposition which was given in [ABP04].

Proposition 4.2 (JABP04, Proposition 3.1.3|). Suppose
® e Maty(k[t]), € Maty,(T)
such that
det®|o 20, Y =dy.
Then
1 € Maty, ().
By using this proposition, we obtain the following lemma.

Lemma 4.3 ([H19, Lemma 4.3]). Let U € GL,.,;(k[t]) be as in Proposition 3.3. Then the
following holds:

U € Mat,, (E).

4.2. MZ property for AMZVs. First we verify that AMZVs satisfy the following lemma
which is alternating analogue of MZ property in [C14].

Lemma 4.4 ([H19, Lemma 4.4]). For a given AMZV (4(s;€) with wt(s) = w and dep(s) =1,
there exists ® € Mat,1 (k[t]) and ¢ € Mat(,.1yx1 (E) with r > 1 such that:
(i) wD = Dy and @ satisfies the condition of Theorem 4.1,
(ii) the last column of ® is of the form (0,...,0,1);
(iil) for some a € FZ and b e k>, (0) is of the form with specific first and last entries
tr

w<e>-( ! m) ,
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(iv) for any N €N and some c € Fy, V(09" is of the form

(07 = (07...707acN(b<A’/§%€))qN)

Proof. See the proof of Lemma 4.4 in [H19]. O

tr

Next we show that monomials of AMZVs also satisfy Lemma 4.4 by using the same method
in proof of [C14, Proposition 3.4.4].
Proposition 4.5 ([H19, Proposition 4.5]). Let Ca(s1;€1),-..,Ca(8n;€,) be AMZVs with
weightﬁ wy, ..., w, respectively and let my,...,m, € Zso. Then there exist matrices P €
Maty(k[t]) and ¢ € Matgy1 (E) with d > 2 so that the triple (®,1),(a(s1; €1)™ - Ca(50; €,)™)
satisfies (i)-(iv) in Lemma 4.4.
Proof. We take triple (®;,1;,Ca(s;;€;)) which satisfies Lemma 4.4 for each i. Then we con-
sider the Kronecker product ® (See [S05, Chapter 8|) of ®; and 1); respectively as followings:

P = (Dllgml ®...®¢);®;mn7 ¢ = ¢i§m1®...®w;nn_

By our assumption, (®;,1;,(a(s;;€;)) satisfy Lemma 4.4 and thus by using the property of
Kronecker product which involves matrix multiplication (cf. [S05, Theorem 7.7]), the triple

(P, 0, Ca(s1;€1)™-Ca(8n; €,)™) does so. 0
Definition 4.6 ([H19, Definition 4.6]). Let (a(s1;€1),...,Ca(5n; €,) be AMZVs of wt(s;) = w;
(i=1,...,n). For mq,...,m, € Zsy not all zero, we define the total weight of the monomial

Casi; €)™ Calsni €,)™ as
Z m;ws.
i=1
For w € N, we denote AZ,, the set of monomials of AMZVs with total weight w.

We note that AZ,, is finite set.
Now we prove the linear independence of monomials of AMZVs.

Theorem 4.7 ([H19, Theorem 4.7]). Let wy, ..., w; € N be distinct. We suppose that V; is a
k-linearly independent subset of AZ,, fori=1,...,1. Then the following union

{1}uLlev1~,

is a linearly independent set over k, that is, there are no nontrivial k-linear relation among
elements of {1} ulUl_, V.

Proof. We may assume that w; > --- > w; without loss of generality. Foreachi=1,...,[, AZ,,
is a finite set by definition and thus its subset V; is also finite. Let V; consist of {Z;1, ..., Zi, }
where Z;; € AZy,(j =1,...,m;) are the same total weight w;. The proof is by induction on
weight w;.

We require on the contrary that {1} uUL, V; is k-linearly dependent set. Then we may
also assume that there are nontrivial k-linear relations

ag-1+anZin+ -+ Qupy Zimy + -+ @iy + o + Qg Zimy = 0,



we may take ag, a1, ..., 0y, € k with ay; # 0 for some i = 1,...,my.

We proceed our proof by assuming the existence of nontrivial k-linear relations between V,
and {1} uUZV;

For 1 <4<l and 1< j <my, by combining Proposition 3.3 with Proposition 4.5, there exist
the matrices

(14) ®,; € Maty, (k[t]) and vy € Maty, «1 (E)

so that d;; > 2 and each (®;;, 45, Z;;) satisfy Lemma 4.4.
For the matrix ®;; and the column vector v;, we define the following block diagonal matrix
and the column vector

L [ m - L [fm
P := EBI(EB(t )= “’”I)”) and 1) := G?(EB le“’iwij).
1= 1= j=1

In this proof, we define the direct sum of any column vectors vy, ..., vy, whose entries belong
to Coo (1)) by @iy vii= (V... VD)™

By the requirement, {I}UUF1 V; is a linearly dependent over k. Thus there exists a nonzero
vector

= (vlla"'vvlm17"'7vllv'~~7Vlml)

such that

o () =0 @é( ’f)

i=1 j=1

tr

1 I m;

:~wl(V117"’7V1m17"'7Vllv"'7vlml)@ 177abZ’L] :07
™ i=1 j=1

where v;; € Matyq,; (E) for 1 <i<land 1<7<m; Then we have nontrivial %-linear relation

tr
( 7(J/bZ»L]) =0.

In the beginning of this proof, we assumed that there exists nontrivial k-linear relations
between V; and {I}UUH V; and then for some 1 < s < my, the last entry of v, is nonzero. Since
the last entry in vy; is coefficient of abZ;; for 1 < i < m; in the above relation. By using Theorem
4.1, we have F := (f117 R 7f1m17 N 7f11, RN aflml) where fij = (fib ey fidzj) € Matlxd”(k[t]) for
1<i<l, 1<j<m,; and it satisfies

3

l
(V117"'7V1m1a"'7v Vlrm)@
i=1j

i
=

FiY=0 and Flip=p

The last entry of fi; is a nontrivial polynomial because the last entry of vy, is not zero. We
choose a sufficiently large N € Z so that f, v =0

‘t=9q
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by using Q,_,,~ =0, Lemma 4.4 (iv) and the definition of ¥ as follows:

(FQ/;)|t:9qN

tr
I m; bZl (IN
= (f117. . -7f1m17 .. -7fl17~ .. 7flml)|t:0qN @ D Qui—wi =g (O7 .. .,07CL]‘CN( ;Wij) )
i=1 j=
tr
my bZl qN
= (fn, .. ->f1m1~, . -7fl17 e 7flml)|t=€q1\" ;.i((), . .,0,(1,.7'6;\[( ;U’lj) )

ﬁ-w[

my b7 v tr
_(f117'"7f1d117"~7fll7"'afldlml)|t()qN@(()?"':Oaach( . l]) )
j=1

my b: Zpina™
= Z(ﬁdl]\t:gw)%c;v( - lj) =0.
j=1

W

Thus we obtain the following nontrivial k-linear relation with some Jia,, # 0
my N qN
> ity g Vs (bi25) = 0.
j=1

Therefore by taking ¢Vth root of the above k-linear relation, we get a nontrivial relation for
{Zn,..., 2, } as follows.

my

Z{(.fzdu le-go )ajcﬁy}q_ijle =0.

j=1

This shows that V; is a k-linearly dependent set. Then by using Lemma 4.8 in [H19], we can
show that V; is a k-linearly dependent subset. However, it contradicts the condition saying
that V} is the k-linearly independent set. Therefore we obtain the claim. O

The above theorem provides an alternating analogue of Theorem 2.2.1 in [C14]. Finally,
we define the following notations and state the results.

Notation 4.8. We denote AZ,, (resp. AZ,) be the k-vector space (resp. k-vector space)
spanned by weight w AMZVs. By Theorem 2.6, we derive AZ,, - AZ,y € AZ,. We also
note the k-algebra AZ (resp. k-algebra AZ) generated by AMZVs.

Corollary 4.9 ([H19, Theorem 4.10]). We have the following:

(1) E forms an weight-graded algebra, that is, AZ = k ®pen A—gw, L
(il) AZ is defined over k, that is, we have the canonical map k ®y AZ — AZ which is
bijective.

As a direct consequence of Corollary 4.9, we have the following transcendence result.

Corollary 4.10. Each AMZV (4(a;€) is transcendental over k.
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