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ON  CHARACTERISTIC p ALTERNATING MULTIZETA VALUES 

RYOTARO HARADA 

ABSTRACT. We give positive characteristic analogues of alternating multizeta values which 
are generalizations of Thakur multizeta values. We also introduce their fundamental prop-
erties including non-vanishing, sum-shuffie relations, period interpretation and linear inde-
pendence which is a direct sum result for these values. 

0. INTRODUCTION 

We introduce the alternating multizeta vaues in positive characteristic (AMZVs in short) 
which are defined in [H19] as the following infinite sums. For ,s = (s1, ... ふ） E叶 and
E=(E1, ... , 仔） E (JF;r, 

(1) (A(.5; E) = 
deg a, degar 

L El s1・・・E:r E k00・
al・・・ar a,, …，arEA+ 

deg a,>…>deg a芦,o

For the definitions of lF q, A, A+, k, k00 and亙see§1.We call wt(s) := 2: らSithe weight and 
dep(s) := r the depth of the presentation of (A (s; E). We also study their properties listed in 
below. 

(A). Non-vanishing (Theorem2.1) 
(B). Sum-shuffle relations (Theorem 2.6) 
(C). Period interpretation (Theorem 3.4) 
(D). Linear independence (Theorem 4. 7) 

We also note that (A (s; E) is generalization of Thakur multizeta values, positive characteristic 
analogue of multizeta values. 
In characteristic p case, an analogue of multizeta values were invented by Thakur [T04]. 
First we recall the power sums. For s E Zand d E Z:,.0, power sums are defined by 

1 
ふ(s):=L -Ek. 

a• aeAd+ 

For ,S = (s 1, ... , Sr) E Nr and d E Z叩， wedefine 

ふ(s):=ふ（釘）〗況(s2)…品 (Sr) E k. 
d>d2>…>dr;;,O 

For s E Z;;,0, the Garlitz zeta values are defined by 

1 
心Cs)==z: ー Ek00・
aeA+ a• 
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Thakur generalized this definition to that of multizeta values in positive characteristic (MZVs 
in short). For ,s = (s1, ... , Sr) E罰，

叫）：=rsd(s)= L sd,(s1)…S出(Sr)= L l E k00・
d;:,O d戸・・心0 a,, …，Ur EA+ af'.. -a:r 

dega1>…>dega唸 0

He and Anderson developed the following properties for MZVs: 

(a). Non-vanishing ([T09, Theorem 4]) 
(b). Sum-shuffle relations ([TlO, Theorem 3]) 
(c). Period interpretation ([AT09, Theorem 1]) 

About (b), Thakur showed that the product of two MZVs can be expressed as an lFP-linear 
combination of some MZVs of the same weight and we follow Thakur's terminology to call 
these sum-shuffle relations. Thus the MZVs form an 1Fp-algebra. By lacking of the integral 
expression, we do not know the existence of the integral-shuffle relation in characteristic p. 
By using the transcendence theory developed by Yu [Y97], Anderson-Brownawell-Papanikolas 
[ABP04] and Papanikolas [P08] together with period interpretations of MZVs by Anderson-
Thakur [AT09], some advances on MZVs are established by Chang-Yu [CY07] (for Garlitz zeta 
values), Chang [C14, C16], Chang-Papanikolas-Yu [CPY19] and Mishiba [Mi15, Mi17]. For 
example, in [C14], a characteristic p analogue of Goncharov's Conjecture [Go97] (in stronger 
form) was proved as the following property: 

(d). Linear independence ([C14, Theorem 2.2.1]) 

We emphasize that AMZVs have important and fundamental properties which generalize 
those of MZVs. Indeed, we show them consisting of non-vanishing (Theorem 2.1), sum-shuffle 
relations (Theorem 2.6) and period interpretation (Theorem 3.4) as an alternating analogue 
of (a), (b), and (c). By applying those properties, we will show the alternating analogue of 
(d) (Corollary 4.9) in§4 and thereby obtain the transcendence of each alternating multizeta 
value. These result give us the generalization of main theorems in [C14, T09, TlO]. 
From these results, while we find differences in observing alternating analogue of (b) (cf. 

§2.2), (c) (cf. §3) and Corollary 4.9 (cf. §4) by units IE  lFq and EE lF~, their basic properties 
appeared in this paper are similar to those of MZVs. More precisely, for the property (A), 
it is immediately obtained by an inequality property of the absolute values of power sums 
proved by Thakur [T09]. For the property (B), we use Chen's formula [Chen15] and approach 
the higher depth case by induction method invented by Thakur [TlO]. For the property (C), 
inspired by Anderson-Thakur polynomials ([AT90]) that can interpolate power sums, we use 
those polynomials to create suitable power series that their specialization are AMZVs and 
then we use these series to create suitable pre-t-motives to establish the period interpretation 
of (C). For the linear independence result of AMZVs, we use Chang's method [C14] by 
applying Anderson-Brownawell-Papanikolas criterion [ABP04] to establish the alternating 
analogue of MZ property for AMZVs. By the linear independence result, we have (D), that 
is, an alternating analogue of (d) (for the detail, see Corollary 4.9). 
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1. NOTATIONS AND DEFINITIONS 

We put the following notations. 

q a power of a prime number p. 
恥 afinite field with q elements. 
0, t independent variables. 
A the polynomial ring恥[0]. 
ふ theset of monic polynomials in A. 
Ad+ the set of elements in A+ of degree d. 
k the rational function field lF 0 . 
k00 the completion of k at the i此瓜2iteplace oo, 凡(0)).
k00 a fixed algebraic closure of k00・
c芝 thecompletion of k00 at the infinite place oo. 
k a fixed algebraic closure of k in <C00. 
I・loo a fixed absolute value for the completed field <Coo so that IBloo = q. 
11'the Tate algebra over <C00, the subring of <C00[[t]] consisting of 
power series convergent on the closed unit disc ltl00 :,:; 1. 

Di TT芦(0ず＿府） EA+ where D。:= 1. 
r n+l the Garlitz gamma, 几D↑(n= Lnず EZ;,,0(O:,;ni:,;q-1)). 

We define alternating power sums and alternating multizeta values in positive characteristic 
along the construction of MZVs by Thakur. For s E N, E E lFx and d E Z;,,0, we define the q 

alternating power sums by 

d 

ふ(s;E):=E図 (s)= L―Ek. 
a<Ad+ a• 

The above sums are extended inductively as follows. 
For ,s = (s1, ... , Sr) E評， E= (f 1, ... , fr) E (JF; r and d E恥， wedefine 

如 (s;E):= L sd,(s1;E1)…品(Sr;Er) E k 
d>d1>…>d五メ〇

and 

(2) ふ(.s;E) :=ふ(s1;E1)S<d(s2, ... , sr; E2, ... , Er) 

：＝ふ(s1;E1) L sd2(s2; 臼）…sdr(sr;Er) Ek. 
d>必>・・・>d立0

When r -1 > d, Sd(s; E) = 0 since it is empty sum. By using these alternating power sums, 
AMZVs (cf. (1)) are interpreted as follows: 

(3) (A(s; E) = L Sd(s; E) E koo. 
d;,,O 

Remark 1.1. We remark that (A(s; E) specializes to (A(s) when E = (E1, ... , Er) = (1, ... , 1). 
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In this paper, we write n-fold Frobenius twisting as follows. 

Coo((t))→ Coo((t)) 

J==L叫 i>--+ Laf li =: J(n)_ 

~oreover, we fix a fundamental period示ofthe Carlitz module (see [Goss96, T04]). We 
define the following power series. 

n = n(t) := (-0)―q/(q-1)汀(1-t/0q')E C00[[t]] 
where (-0)1/(q-l) is a fixed (q-l)st root of -0 so that _L  = 7i-([ABP04, AT09]). Here, we 

叩）
also introduce another expression of (A(,s; E) by using the following theorem of Anderson and 
Thakur. 

Theorem 1.2 ([AT90]). For each s E N, there exists a polynomial几＝几(t)E A[t] such 
that 

(4) (Hs一心）(dJ lt=e = rふ (s)/ぞ

for all d E Z;,0 ands EN. Moreover, when we regard H8 as a polynomial of 0 over lF孔t]by 
A[t] =凡[t] [ 0] then 

(5) deg以1s~
sq 
． 

q-1 

This polynomial几 iscalled the Anderson-Thakur polynomial. From (3) and (4), we obtain 
the following expression of (A (s; E); 

(6) 
が1卜 ・・Sr

叫 s;€) = L ゆ(H釘ー1炉）(di) lt=0…E~r(Hsr-l正） (dr)lt=0• 
rs, ... r Br d1>・・・>dr;o,O 

2. FUNDAMENTAL PROPERTIES 

We introduce the non-vanishing and sum-shuffle relation of AMZVs. 

2.1. Non-vanishing property of AMZVs. We show the non-vanishing property as the 
following theorem by using valuation of power sums which evaluated by Thakur [T09]. 

Theorem 2.1 ([H19] Theorem 2.1). For any s = (s1, ... , sr) ENT and E = (E1, ... , Er) E (JF;r, 
(A(s; E) are non-vanishing. 

Proof. From (3), we can write (A(s; E) as follows. 

(A(-S;E) = L ゆ魯…心品（釘）況(sか・品(sr)
d1>必＞…＞出~o

On the other hand, in [T09], Thakur showed that 

deg。ふ(k)> deg。Sい (k).
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Therefore we have 

l(A(s1,••·,sr;E1, ... ,Er)loo=I L ゆ魯・・・£1も伍（釘）況（況）…sdr(sr)loo
d1>必＞…＞出;,,O

= ISr-1(釘）Sr-2(sザ -So(sr)loo

キ0

by using deg。S0(k)= 0 and deg。ふ(k)< 0 (k > 0,d > 0) in [T09, §2.2.3.]. Thus (A(s;E) are 
non-vanishing. ロ

2.2. Sum-shuffle relations for AMZVs. We introduce the sum-shuffle relations for our 
AMZVs. This kind of relations show that products of two AMZVs are expressed by lFP-linear 
combination of AMZVs with preserving their weights. From the relation, い(s;E) form an 
恥—algebra.

p 

For the products of power sumsふ(s),the following formula was shown by Chen [Chen15]. 

ropos1tion 2.2 ([Chen15, Theorem 3.1]). s1, s2 EN, we have 

叫）ふ(s2)ーふ（釘+s2) = z: 叫ぶ(s1+ S2 -j,j) 
O<j<s戸s2
q-llj 

where 

△い＝（ー1)釘ーle口）＋（一1)競ー1(12~lJ
The key idea to prove Proposition 2.2 is the following partial fraction decomposition 

as1lbs2 = O<j互+s2{ a~~::28~j-;~~~;;j + b~~:~ 況］喜；~1j}
for a,b E A¥{O}. By using the above decomposition, she obtained the following formula in 
the proof of [Chen15, Theorem3.1]: 

z: 1 
= Z: Z: 

(-1)いu,~\) c-1)い（；；］）
+ z: 

叫 EA+
dega=degb 

as, が2 O<j<s1 +s2 { a,beA十が1+s2-jbJ a,beA十が1+s2-j叫

By using tho aho= Chcn',':u:ho~ 三ご。::,amthe folio~,: ニニ ｝ 
Lemma 2.3 ([H19, Lemma 2.3]). For s1, s2 EN, E1, E2 E JF; and d E恥， wehave 

(7) Sd(s1; ロ）ふ(s必E2)-Sd(釘＋知叫） = z: △いぶ（釘 +s2-J,j;叩 2,1) 
O<j<s1 +s2 
q-llj 

We remark that the coefficients凶，s2are independent of d. 
Preceding to the next argument, we introduce an expression which is used in the rest 
of this section. For any index 5 = (s1, s2, ... , Sr) E罰， wecan write ,s = (s1,s') where 
s'=(s2, ... , ふ） E Nr (resp. E = (E1, ... , Er) E (JF;Y) and when r = 1, we sets'=の(resp.E'=¢) 
and furtherふ(,s';E1) := 1. 
Next we prepare the following lemma to show sum-shuffle relations for alternating power 
sums in general depth. 
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Lemma 2.4 ([H19, Lemma 2.4]). For a== (a1,a2, ... ,ar) EN八b:=(b1,b2,--・,仇） EN叫
€ ：＝（釘，E2,...'后） E (lF守 and入：＝入入 X S q (1, 2, ・ ・ ・, 入s)E (凡）， wemay express the product 
S<d(a; E)S<d(b; 入） as follows: 

(8) S<d(a;E)知 (b;入） =~f;S<d(c;1, ... , cil,; μ;1, ... , μ;z.) 

for some Cij E飩 μijE JF; so that L;;,=1 am + L~=l 似＝欧=1Ch, n;;,=1 Em n~=l 入n = nt1μ ゎ
li :-:; r + s and Ji E lFP which are independent of d for each i. 

Sketch of the proof. We can prove the lemma by induction on dep(a) + dep(b) (= r + s) > 2 
and the relation (7). ロ

To prove the sum-shuffle result in Theorem 2.6 the following is the key ingredient. 

Theorem 2.5 ([H19], Theorem 2.6). Fora:= (a1,a2, ... ,ar) E閏 b:=(b1,b2,... , 仇）€ 閉
E := (c1,E2, ... ,Er) E (JFxy and入：＝（ふ，入2,...'入8)E (JF;)8, we may express the product q 

ふ(a;t:)ふ(b;入） as follows: 

(9) 品(a;t:)品(b;入） =~ 屈 (cit,... , ciz,; μit, ... , μizJ 

for some C;j E N, μ;j E JF; so that江た1am+塁占 =IにC;h,TI如戸mTI~=l 入n = TIにμih,
l; ~r + s and JJ E lFP for each i. 

Sketch of the proof. The theorem follows from the decomposition which is described in (2) 
and the relation (8). ロ

We remark that the coefficients f; E lFp are independent of d by Lamma 2.4. 
By summing over d in the relation (9), we obtain the following sum-shuffie relations for 
AMZVs: 

Theorem 2.6 ([H19, Theorem 2.7]). For a:= (a1, a2, ... , ar) E賢， b:= (b1,b2, ... ,b8) E N8, 
E := (r: ぃ砂..., Er) E (JF守 and入：＝（入1,ふ，．．．，入s)E (JF;)8, we may express the product q 

(A(a; E)(A(b; 入） as follows: 

(10) (A(a; 心 (b;入）＝苫f['(A(C;1,・ ・ ・, C;1,; μ;1, ・ ・ ・, μ;!;) 

for some C;j E N andμ;j E lF~so that L~=l am+ L~=l 似= Lk=l C;h, fl~=l Em fl~=l 入n = flt1μih1 
l;:,; r + s and ff'E lFp for each i. 

Therefore the lF P―linear span of our AMZVs form an lFp-algebra by Theorem 2.6. 

3. PERIOD INTERPRETATION OF AMZVS 

In this section, we show that each〈A(,s;E) appears as a period of certain pre-t-motive 
basing on the idea in [さT09].
We denote the ring k(t)[u, い]the non-commutative Laurent polynomial ring in u with 
coefficients in k(t) subject to the following relations, 

叶=jHlu, f E k(t). 
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We denote lE to be the ring consisting of formal power series 
00 

区anザ五[[t]]
n~O 

such that 

皿）占工=0, [ koo (a。,a1, ...) : koo] < oo. 
We note that 

(11) 

and thus rl E'lr. 

n EE 

3.1. Review of pre-t-motive. First we recall the notions of pre-t-motives. For more detail, 

see [P08]. 

Definition 3.1 ([P08, §3.2.1]). A pre-l-motive Mis a left k(l)[叩， 6―1]-module that is finite 

dimensional over k (t). 

Let M be a pre-t-motive dimension rover k(t) and i[> be representing matrix of multipli-
cation by c, on M with respect to a given basis of m of M, then M is rigid analytically trivial 
if and only if there is a matrix 1}! E GLr(lL) (lL is a quotient field of 11') satisfying 

屯(-1)=峠．

Here we define 1}!(-l) by (叩1)わ：＝（此）（ー1).Such matrix屯 iscalled rigid analytic trivial-
ization of i[> and if all the entries of 1}! are convergent at t = 0, and entries of Wit=。arecalled 
periods of M. 
Anderson and Thakur obtained the period interpretation of MZVs with certain pre t-motive 
in [AT09]. 

3.2. AMZVs related to pre-t-motive. Next we give a period interpretation of AMZVs. 

Defimt10n 3.2 ([H19, Definition 3.2]). Given 1; E凡 (i= 1, ... , r), a fixed (q-l)st root of 
E; E JF;, we let M be the pre-t-motive such that dim瓦(t)M = r + 1 and for the fixed k(t)-basis 
m of M which satisfy 

c,m=如m

where i[> is the following matirix: 

‘,／
1
 

1
-
-

1

 

(

s

 

H
 
r
 

T
 

s
 

s
 

＋

＋

 ＋
 

＋
 
ー

0
…

O
 

ーs
 

s
 
釘
、
釘
，
―
―
 

t

t

 

‘、,̀`

（
 ）
 
ー(

1

 
ー

（

＼

 ゜(t-0)s2+…十Sr吟―l)(t-0)s2+…+srHし］

0

0

 

゜
(t-0)む
情―l)(t-0)8rHi悶

0

0

 
••• 

0

1

 

ヽ

）

Here Hs,-l EA[ t] is the Anderson-Thakur polynomial. 

For the above pre-t-motive, we can give a matrix ¥JI which has a relation with cf:, as the 
following proposition. 
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Proposition 3.3 ([H19, Proposition 3.3]). For the pre-t-motive M defined in Definition 3.2, 

there exists WE GLr+i(k[t]) so that it satisfies W(-l) =鰻

Sketch of the proof. For the matrix <I> in Definition 3.2, we show that the matrix W E GLr+l (万[t])
satisfies屯(-1)=屯:[/and which is given as follows: 

ns,+…+Sr 

,1£(si)f1s2+…+Sr Q⇔ + .. ・+Sr 

(12) W := 
"(2 L (S2) nsa +・. +sr 

,1・・・,r-lL(s1, ・ ・ ・, Sr-1)かr 咋 ・・1rー1L(s2,.... Sr-1)!:28r・.. Qsr 
,1・・・ 砂 (s1,---,sr) 秒..砂 (S2,... , Sr)・・・ ・・・ 砂 (sr) 1 

Here we define the following: 

L(s1, ... , Sr):= L(s1, ... ,sr; E1, ... , Er) 

•一区年(Hs,-1伍）（山）…心 (Hsr-1炉）(dr). 
d,> .. ・>dr2'0 

We also note that the following equations hold by their definitions. 

Ii 
(-1) 

=€ ・t冗

研 l)=(t -0)0, 

L(s1,---,sr)(-l) =(打En)L(sい・・・,Sr)
n=O 

＋（廿En)仰叫）（ーl)L(s1, ... , Sr-1). 
n=O 

By using these three equations, we obtain the following desired formula. 

w<-1l = <I>w 

ロ

As we will see in Lemma 4.3, the matrix W in (12) belongs to Matr+1 (11') then we obtain 
that w E GLr+i(lL) from (11) and detw = r2江=1d, キ0where di =Si+…+ Sr. Therefore W is a 
rigid analytic trivialization of <I> and we call each entry of'¥1t=0 a period of M. Thus we have 
the following result by the above proposition. 

Theorem 3.4 ([H19, Theorem 3.4]). Fors= (s1, ... ,sr) E賢 andE = (c1,--・,Er) E (JF;)r, 
(A(s; E) are periods of the pre-t-motive M in Definition 3.2. 

Proof. By using r2lt=0 = if―1 and (4), we obtain 

(13) L(s)lt=e =~:~~ ・・ピ > ゆ…€｛忍 (sサ・ •Sdr(ふ）
d戸 ・・>dr:2:〇

r s1 .. -r 
＝針(A(S"E
if-s1 +…+Sr ,) . 

Therefore by the matrix ¥JI in (12), (A(,s; E) are periods of the pre-t-motive Min Definition 
3.2. ロ
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4. LINEAR INDEPENDENCE PROPERTY OF AMZVs 

We show that AMZVs form an weight-graded algebra as an application of their period 
interpretation in the former section. The proof is shown along the method which was invented 
by Chang [C14]. 

4.1. Anderson-Brownawell-Papanikolas's criterion. In our proof, we need to use the 
following ABP criterion (ABP stands for Anderson-Brownawell-Papanikolas) which was in-
traduced in [ABP04]. 

Theorem 4.1 ([ABP04, Theorem 3.1.1]). Fix <I> E Mat厄[t]) so that det<I> = c(t -0)8 for 
some c E万xand some s E Z;,o. Suppose that there exists a vector心EMatdxl (lE) satisfies 

心(-1)=仰．

For ever: リpE Mat1xd(k) such that p心(0)= 0, there is a P E Mat1xd(k[ t]) so that P(0) = p 
and Pゆ=0. 

From Proposition 3.3, it is enough to verify that the matrices <I> in Definition 3.2 satisfy 
the conditions. We thus only need to show that IJ.! E Matr+i(lE). This is necessary in applying 
Theorem 4.1 to our AMZVs. We use the following proposition which was given in [ABP04]. 

Proposition 4.2 ([ABP04, Proposition 3.1.3]). Suppose 

<I> E Mat心[t]), 心EMat□ (11') 

such that 

det<I>lt~o キ 0, 心（一1)=峠

Then 

ゆEMatい (lE).

By using this proposition, we obtain the following lemma. 

Lemma 4.3 ([H19, Lemma 4.3]). Let IJ.! E GLr+i(万[t]) be as in Proposition 3. 3. Then the 
following holds: 

IJ.! E Matr+1(1E). 

4.2. MZ  property for AMZVs. First we verify that AMZVs satisfy the following lemma 
which is alternating analogue of MZ property in [C14]. 

Lemma4.4 ([H19, Lemma4.4]). ForagivenAMZV(A(,s;E) withwt(,s) =w anddep(,s) =r, 

there exists <I> E Mat口 (k[t])and心EMat(r+l)xl (lE) with r 2 1 such that: 

(i)ゆ(-1)=仰 and<I> satisfies the condition of Theorem 4 .1; 
(ii) the last column of <I> is of the form (0, ... , 0, 1)tr; 

(iii) for some a E冗andb E炉，ゆ(0)is of the form with specific first and last entries 

ゆ(0)= (¾,···,abく心;E)r;
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(iv) for any NE N and some c E JF;, 心（吋） is of the form 

ゆ（炉）= (0, ... ,0, aび(b伍~:;E)rNr
Proof. See the proof of Lemma 4.4 in [H19]. 口

Next we show that monomials of AMZVs also satisfy Lemma 4.4 by using the same method 
in proof of [C14, Proposition 3.4.4]. 

Proposition 4.5 ([H19, Proposition 4.5]). Let (A(,s1; E1), ... , ふ(,s面En)be AMZVs with 
weights w1, ... , Wn respectively and let m1, ... , mn E Z;;,0. Then there exist matrices <I> E 

Matd(k[t]) andゆEMatdxl (JE) with d 2 2 so that the triple (屯心心（釘；E1)m1. 心 (,s叫En)叫）
satisfies (i)-(iv) in Lemma 4.4. 

Proof. We take triple (屯畠ふ(,s年）） which satisfies Lemma 4.4 for each i. Then we con-
sider the Kronecker productR(See [805, Chapter 8]) of屯 and閏respectivelyas followings: 

<I>:=呼m1R…R 呼mn, ゆ：＝ゅ戸R…R ゆ閉叫

By our assumption, (屯，ゅ;,(A(-&;; E;)) satisfy Lemma 4.4 and thus by using the property of 
Kronecker product which involves matrix multiplication (cf. [805, Theorem 7.7]), the triple 

（屯1/;,〈A(-51;E1)加…(A(-&n;En)叫） does so. ロ

Definition 4.6 ([H19, Definition 4.6]). Letふ(,s戸 1),・ ・ ・, (A(,s叫和） be AMZVs of wt(ふ）＝叫
(i = 1, ... , n). For m1, ... , mn E Z;;,0 not all zero, we define the total weight of the monomial 
叫 1;E1)m1. 心 (,sn;En)mn as 

言加叫・
For w EN, we denote AZw the set of monomials of AMZVs with total weight w. 

We note that AZw is finite set. 
Now we prove the linear independence of monomials of AMZVs. 

Theorem 4.7 ([H19, Theorem 4.7]). Let w1, ... , 皿 EN be distinct. We suppose that v; is a 
k-linearly independent subset of AZw, for i = 1, ... , l. Then the following union 

{l}uLJv; 
i=l 

is a linearly independent set over k, that is, there are no nontrivial k-linear relation among 

elements of { 1} u ui=lり

Proof. We may assume that叫＞…＞叫 withoutloss of generality. For each i = 1, ... , l, AZ叫
is a finite set by definition and thus its subset v; is also finite. Let v; consist of { Zi1, ... , Z;m,} 
where Z;j E AZwi (j = 1, ... , m;) are the same total weight叫.The proof is by induction on 
weight叫
We require on the contrary that { 1} u Uいv;is和inearlydependent set. Then we may 
also assume that there are nontrivial五-linearrelations 

a。・l+a11Z11+…+a1m,Zlm1十…＋叩Zn+... + alm,Zlm, = 0, 
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we may take a。,an, ... , a1m1 Ek with ali中0for some i = 1, ... , 四
We proceed our proof by assuming the existence of nontrivial k-linear relations between Vi 
and {1} u U昌Vi-
For 1 sis l and 1 s j s m1, by combining Proposition 3.3 with Proposition 4.5, there exist 
the matrices 

(14) 屯jE Matd,, (k[ t]) and 的 EMatぃ (JE)

so that d;j~2 and each (il>;j, 的，尻） satisfy Lemma 4.4. 
For the matrix il>;j and the column vector 1Pij, we define the following block diagonal matrix 
and the column vector 

む＝會（會(t-0)研一w,<I>ij) and 炒＝魚（厨叫—w,1/Jij)

In this proof, we define the direct sum of any column vectors v1, ... , Vm whose entries belong 

to C00((t)) by④応Vi:=(vfr, ...'v~)tr_ 
By the requirement, {l}uUいv;is a linearly dependent over k. Thus there exists a nonzero 
vector 

p = (v11, ・ ・ ・, V1mu・ ・ ・, Y[l, ・ ・ ・, Vzm,) 

such that 

~ l m, tr 

p・(喜0)= p・ 會叩（六，...,a~) 
l l m, tr 

＝戸(vn,・ ・ ・, V1mu・ ・ ・, Vn, ・ ・ ・, Vzm1)④ 〶(1,... , abZ;j) = 0, 
i=l j=l 

where vij E Mat1xdij (k) for 1 :<,; i :<,; l and 1 :<,; j :<,; mi. Then we have nontrivial厄linearrelation 

l mi tr 

(v11, ・ ・ ・, V1mu・ ・ ・, Vn, ・ ・ ・, Vzm,) 〶④(1, ... ,abZii) = 0. 
i=l J=l 

In the beginning of this proof, we assumed that there exists nontrivial k-linear relations 

between Vi and {1 }uU昌 ¼andthen for some 1 s s s mz, the last entry of Vzs is nonzero. Since 
the last entry in vli is coefficient of abZli for 1 s i s mz in the above relation. By using Theorem 
4.1, we have F := (f11, ... , f1m,, ... , fn, ... ,fzmi) where f;j = (!;1, ... , f;d,i) E Mat1xd,j (万[t]) for 
1 sis l, 1 s j s mi and it satisfies 

F炒=0 and Flt=0 = p. 

The last entry of fzs is a nontrivial polynomial because the last entry of Vzs is not zero. We 

choose a sufficiently large NEZ so that fzslt=OSN * 0. We rewrite the equation (F炒）lt=OSN = 0 
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by using Olt=e•N = 0, Lemma 4.4 (iv) and the definition of炒asfollows: 

面） lt=0•N 

= (r11, ... , r1m,, ... , rn, ... , rzm1)lt=e詑魚邑位i-w,lt=0•N (0, ...'0, ajcf (号）qNr 
tr 

四

= (f11, ...'f1m1'...'fn, ...'fzm1)1t=0詑會(0,, 0, ajcf ( 鱈 j qN 

~(fu, ---,f,.,., ---Ju, ---Jw,.,,,)l,_,,N會(0,... ,O,a炉f示;.. :~;}r 

四

= L Uzd1, lt=0•N)ajcf (~rN = 0. 
j=l 示叫

Thus we obtain the following nontrivial元linearrelation with some fldi, キ0:

ml qN 
LUldi, lt=0qN)aバ(bj肱） = 0. 
j=l 

Therefore by taking qN th root of the above元-linearrelation, we get a nontrivial relation for 
{ Za, ... , Z1m,} as follows. 

m, 
L { U1d,1 lt=0qN)aバ｝汰もzlj=O. 
j=l 

This shows that Vi is a和inearlydependent set. Then by using Lemma 4.8 in [H19], we can 
show that Vi is a k-linearly dependent subset. However, it contradicts the condition saying 
that Vi is the k-linearly independent set. Therefore we obtain the claim. ロ

The above theorem provides an alternating analogue of Theorem 2.2.1 in [C14]. Finally, 
we define the following notations and state the results. 

Notation 4.8. We denote AZw (resp. AZ』bethe k-vector space (resp. k-vector space) 
spanned by weight w AMZVs. By Theorem 2.6, we derive AZw・AZ研 s;AZw+w'・We also 
note the k-algebra立 (resp.k-algebra AZ) generated by AMZVs. 

Corollary 4.9 ([H19, Theorem 4.10]). We have the following: 

(i)立 formsan weight-graded algebra, that is, 刀互=k①wENAZw, 
(ii) AZ is defined over k, that is, we have the canonical map万釦AZ→AZ which is 
bijective. 

As a direct consequence of Corollary 4.9, we have the following transcendence result. 

Corollary 4.10. Each AMZV (A(a; E) is transcendental over厄
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