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LEVEL TWO GENERALIZATION OF ARAKAWA-KANEKO ZETA 

FUNCTION AND POLY-COSECANT NUMBERS 

MANEKA OSHADI PALLEWATTA 
GRADUATE SCHOOL OF MATHEMATICS, KYUSHU UNIVERSITY 

ABSTRACT. We present a level two generalization of Arakawa-Kaneko zeta function introduced 
by T. Arakawa and M. Kaneko. We prove certain formulas for Arakawa-Kaneko zeta function 
of level two. Also, we study the level two generalization of poly-Bernoulli numbers, which is 
referred to as the poly-cosecant numbers. We obtain a recurrence and two explicit formulas for 
poly-cosecant numbers. Moreover, we extend those formulas for multiple versions in a similar 
manner. This is in part a joint work with M. Kaneko and H. Tsumura. 

1. INTRODUCTION 

Poly-Bernoulli numbers (Kaneko 1997; Arakawa-Kaneko 1999) have two versions, namely B炉
(k) 

and Cn , which were defined by Kaneko in [5] and in Arakawa-K皿 eko[2] by using generating 

series. For any integer k E Z, the sequences of rational numbers { B炉}and {C炉}are defined 
by 

恥 (1-e―t) 
(X) 

1-e-t =LB炉ー
tn 

n! 
n=O 

and 

恥 (1-e-t) 00 

= Lc~k) 
tn 

et -1 n! 
n=O 

where Lik(z) is the poly-logarithm fU11ction (or rational function when k S 0) defined by 

恥 (z)=文三 lzl< 1). mk ( 
m=l 

Since Li1 (z) = -log(l -z), the generating functions on the left-hand sides respectively become 

te t 
et -1 and et -1 

(1) (1) 
when k = 1, and hence En and Cn becomes the usual Bernoulli numbers. There are various 
properties of poly-Bernoulli numbers (e.g.: explicit formulas, duality relations, etc.). 

In this paper, we study the level two version of poly-Bernoulli numbers, which we also call 
(k) 

the poly-cosecant numbers (Sasaki 2012 [9]; Kaneko-M.-Tsumura 2019 [6]) Dn defined by 

ふ(tanht/2)
00 

=LD炉ー
tn 

sinht n! 
n=O 

for k E Z, where A以z)is the poly-logarithm function of level 2 defined by 

00 z2n+l 
ふ(z)= 2 L (z EC; lzl < 1), 

n=O 
(2n + l)k 
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which was first studied by Sasaki (see [9, Definition 5]). In particular, for k = 1, we have 

ふ(z)= 2tanh―1(z). In this case, ni1l becomes the ordinary cosecant number広 definedby 

t 
00 

= LDn-・ 
tn 

sinht n! 
n=O 

Note that D似~+1 = 0 for (n E Z叫・
(k1, ... , 柘）

We may define the multi-poly-cosecant numbers Dn by 

where the function 

A(k1, k・tanh(t/2)) 
00 tn 

... , r, = LDik1, …，ん）＿
sinht n! 

A(k1, ... , kr; z) = 2r 

n=O 

ど k1zmr kr 
m 0く叫く・・・く叫 1 ・・・mr 

m, ニimod2 

for k1, ... , kr E Z is 2r times Ath(k1, ... , kr; z) which was introduced in [8, §5]. (Our Ak(z) 

is A(k; z)). We can regard D侶..,kr) l 邸 aevel 2-version of the multi-poly-Bernoulli numbers 
（柘，．．．ふ）

En 
(k1, ... ,kr) 

皿 dCn 
Now we recall the following lemma. 

Lemma 1.1. [8, Lemma 5.1] 

{1) For k1, ... , kr E Z::,1 

d 
-A(k1, ... , kr; z) = 

¼A(k1, ... , kr-1, kr -l; z) (kr 2: 2) 
dt {五A(k1,... , kr-li z) (kr = 1) 

{2) A(l, ... , 1; z) =責 (A1(z)r
ヽ

r 

In their research, Arakawa and Kaneko [2] studied the single variable function 

1 
((k1,---,kr-1;s)= L 

m k1 
〇＜加<…<m口＜叫 1 ・・・m 

kr-l ms 
n 

for the purpose of establishing the connection between MZVs and poly-Bernoulli numbers. This 
is absolutely convergent for Re(s) > 1. They have shown that the poly-Bernoulli numbers can 
be expressed as special values at negative arguments of certain combinations of these functions. 
Corresponding to these functions, Arakawa and Kaneko [2] defined the following zeta function 
which is known as Arakawa-Kaneko zeta function as 

f;,(k1, ... ,kr;s)= l f00 ts-l Lik1, ... ,kr(l-e―t)dt 
r(s)。et-1 

where r, k1, ... , kr E Z::,:1, s EC with Re(s) > 0. 
For r = 1 we denote 1;,(k; s) by (k(s). Note thatふ(s)= sく(s+ 1). 
In [8] Kaneko and Tsumura defined the single variable multiple zeta function of level-2 as 

follows. 
1 

To(k1, ... , kr-1, s) =区
m k1 kr-1 8 ・・・m m r O<m1く・・・く叫 1 r-1 

m,=imod2 

for k1, ... , kr-1 E尾1and Re(s) > 1. 
Furthermore, as its normalized version, 

T(k1, ... , kr-1, s) = 2rTo(k1, ... , kr-1, s). 

The values T(k1, ... , kr-1, kr)(kj EN, kr 2 2: addmisible) are called the multiple T-values. 
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When kr > 1, we see that 

A(k1, ...'kr; 1) = T(k1, ...'kr)-

Now according to these functions, Kaneko and Tsumura (see [8, Sction 5]) defined a level 
2-version of~(k1, ... , kr; s) 

鴫，...,kr;s)= 1 1=ts-1A(k1, ... ,kr;tanht/2)dt 
r(s) 。 sinh(t)

for k1, ... , kr E互1and Re(s) > 0. 

2. FORMULAS ON THE LEVEL 2 VERSION OF ARAKAWA-KANEKO ZETA FUNCTIONS 

In this section, we prove certain formulas for Arakawa-Kaneko zeta functions of level two. We 
obtain a level two version of [2, Proposition 2] as follows. 

p ropos1t10n 2.1. {1) For Re(s) > 1 

1 = t•-1 
T(ki, ... , kn-1, s) = r(s) 1 sinh(t/(k1, ... , kn-lie―t)dt. 

{2) For Re(s) > 1,n 2 2,j 2 0 

= J t•+i-1A(k1, ... ,kn-1;e―t)dt = r(s + j)T(k1, ... , kn-2, s + j + kn-1). 

゜Proof. To prove (1), we use the definition 

T(k1, ... , kn-1, s) = 2n L k1 kn-1 m O<m1<…く叫 1 ··•m, n-1 m• 
mi三imod2

，
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and use the standard expression 

1 1 00 

戸 =r(s) 1 e―ntts-ldt 

to convert the inner sum into the integral. Then we can get the desired results. 
To obtain (2), we only need to use the definition 

A(k1, ... , kn-1; e-t) = 2n-l L e-mn-it 

k1 kn-1 
O<m1<…＜叫— 1 m ... m n-1 
m,=i mod2 

(2.1) 

and use equation (2.1) to obtain 

Joo e―mn-ltts+jー idt=r(s+j)
s+j 

o m n-1 

ロ

Now we obtain the following lemma associated with the multi-poly-logarithm functions of 
level two, corresponding to [7, Lemma 3.5]. 

Lemma 2.2. Let k be any index. Then we have 

A(k;:~:)~, 苔。ら(k';j)A(¥': 二） A(k'; z) 
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where the sum on the呻htruns over indices k'and integers j 2 0 that satisfy lk'I + j ::; lkl, 
and Ck(k';j) is a Q-linear combination ofT-values of weight lkl -lk'I -j. 

Proof. We prove this by induction on the weight k. When k = (1), we have the trivial identity 

A1 C二） =A1 C二）
Suppose the weight lkl > 1 and assume the statement holds for any index of weight less than 

lkl. 
Fork=柘，..., kr, set k_ = (k1, ... , kn-1, kn -l). 
First, assume that k is admissible. Then by the differential relation and the induction hy-

pothesis, we get, 

羞A(k; ~ ~:) = ―l ーい(k_; ~ ~:) 
~-,!z, 区CL(l;j)A (1, ... , 1; : ―z) A(l;z) 

1,j::':0 
、 +z

j 

(2.2) 

Let the depth of 1 be s. Again by the differential relation we see that 

lーい（三口） A(l;,)~ 羞位 (y;:+}(い+l;z)) 

Now substitute this in (2.2). Then we get 

+;: 二）~.~。Gk(l;j)A (三二） A(l,i+l;z)+C 

where C is a constant. Since, 

四A(½二） A(I,;+I;z)~O, 

we have C = T(k). Now we can obtain the desired result. 
When k is not necessarily admissible, we write k = (k。,1, ... , 1) with admissible k。and

ヽ
q 

q 2: 0. Now we prove the formula by induction on q. Since, k。isadmissible the case q = 0 is 
already done. 

Suppose q 2: 1 and assume the claim is true for smaller q. Then by the assumption we get 

A(バニ）~~苔。公(m;j)A(三二） A(m;z) 

where k'= (k。,1, ... , 1). Now multiply both sides by A1 (昌）• Then by the shuffie product, 
qヽ-1 

the left-hand side becomes of the form 

qA (k; 三） +~'""~''°'" A (協，y三）
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By using the induction hypothesis, each term in the sum can be written in the claimed form. 
Since, 

A,(: ニい（三口） ~(j+l)A(三二）
the right-h皿 dside also becomes the claimed form. Hence we get the desired form. ロ

The following theorem shows that the functionゆ(k;s) can be written in terms of T-functions. 

Theorem 2.3. Let k be any index set. 

ゆ(k;s)= L 仕 (k';j) s+~-l T(k';s+j) 
k',j・::,:o

（） 
Here, the sum is over indices k'and integers j 2: 0 that satisfy lk'I + j :S kl, and Ck(k';j) is a 
Q-linear combination of T-values of weight lkl -lk'I -j. 

Proof. Let r, l be the depths of k and k'respectively. Put z = e-t in the above lemma. 

A(k; し：=:)~-~。 Goc(k';j)A (½ 二：□：)A(k';eり

By using Lemma 1.1 we can write the above equation as 

tj 
A(k;tanht/2) = L 仇 (k';j)--:--A(k';e―t).

K八j2'.0
J! 

We know the definition, 

ゆ(k;s) = 1 Jooザ―1A(k; tanh t/2) 
r(s) 。 sinh(t) dt. 

(2.3) 

Finally, we substitute equation (2.3) and in the above equation and apply Proposition 2.1 to 
obtain the desired formula for心(k;s). 

ロ

3. RECURRENCE AND EXPLICIT FORMULAS FOR POLY-COSECANT NUMBERS 

In this section, we will obtain recurrence and explicit formulas for poly-cosecant numbers. 
Furthermore, we discuss about their multi-indexed versions. 

The following proposition gives a recurrence formula for D詠） which can be derived in two 
ways by using definition and the iterated integral expression of the generating function. Herc 
we only consider the proof by definition. 

Note that since A0(tanh(t/2)) = sinh(t), D炉=1 and D~o) = 0 for all n 2". 1. 

p ropos1tion 3.1. For any integers k and n 2". 0, 

冴」

D~k-1) = l; (2: 二）仇り2m

Proof. By the definition of poly-cosecant numbers we have that, 

00 

A妖tanh(t/2))=sinhtLD~k) 竺·
n! 

n=O 
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Differentiate with respect to t, 

Aい (tanht/2) 
00 tn 00 

sinht 
= cosht L叩—+sinht 

n! 
LD~k) 

tn-l 

n=O n=l 
(n -1)! 

By using the definitions we can write the above equation as, 

00 ザ oo t2m oo ザ 00 t2m+l 00 tn-l 

亨ー1)-:;:J=互 (2m)と尻~)ごと (2m + I)! 苫叫n-I)! 

00 00 

＝区区 D(k)
tn 

n-2m (2m)!(n -2m)! 
m=On=2m 

＋文文心2m/c,_, 1 ヽ 1/~n "- 1 ，ヽ； (n = n + 2m) 
m=On=2m 

oo 邊」
心 L(n) (k) tn 

oo 邊」

n=Dm=O 2m Dn-2m;J +ど互 (2mn+1)応~2mS·
tn 

By equating the coefficients of -we can get the desired result. n! 

口

When k > 0, we may want to write this as 

冴J
(n + I)D炉=D~k-I) _ L (n + 1 n(k) 

m=l 
2m + 1) n-2m (n > 0). 

(k) 
Note that D = I for all k E Z. 

゜Let X(n) = x(x -1)・・ ・(x -n + 1) and x(n) = x(x + 1)・ ・ ・(x + n -1). Then the Stirling 
numbers of the first kind is defined by 

n 

x(n) = L [~]砂
k=O 

and the Stirling numbers of the second kind is defined by 

砂＝旦{~} X(k) 

In the following theorem we obtain two explicit formulas for Dn . 
(k) 

Theorem 3.2. For any k E Z and n 2: 0, we have 

{1) 

l~ 」
1 

2m+l n 

D炉=4;  (2m+ l)k+lことー1戸(2p+q+l-1) G) tご}[2m/ 1] /;~q:>
and 

{2) 

噂」

D炉＝ど (2m:I)k+l P―苫~1 (-~ 戸!(p2~/) t;l}  

To prove the first formula of Theorem 3.2, we prepare the following lemma. 
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Lemma 3.3. For n 2: 1 we have, 

xn (~r =名（一1r-m[:] (x~) m 

Proof. We can prove this by induction on n. For n = l both sides equal to x羞．
Suppose the formula is true for n. Then, 

xn+l (喜）n+l = xn+l (羞）(fxr 
= xn+I羞［名 (-1;:-m[月（玉）］

=立-1r-m[:] [-nげ）m+し羞）m+l] 

=旦-1r-m+l(n [月+[m~1]) (x喜）m

=旦-l) n-m+ 1 [ n ! 1] (X羞）m

Here we have used [~] = 0 and [ n: 1] = 0. 

This shows the formula is true for n + l. Therefore the formula holds. 

ロ
Now we give the proof for the first formula of Theorem 3.2. 

Proof of Theorem 3.2(First Formula). We write 

文D~k)竺＝ふ(tanh(t/2))
n! sinht 

n=O 

=2L 00 (tanh(t/2))2m+l 1 

(2m+l)k sinht 
m=O 
00 

=4L 
1 が(et_1)2m 

(2m + l)k似+1)2m+2・ 
m=O 

Since 

1 (-lr d n l 

(x + l)n+l = n! に） x+ l' 

we see by setting x = et and using Lemma 3.3 that 

臼 l n 

但+l)n+l =心（一l)Pド］（羞）Pet~1· 

From 

t 
00 tq 

et-1 = LBq, 
q=O 

q. 

and 

(3.1) 

(3.2) 

(3.3) 

ー ー 2
 et + 1 et -1 e2t -1' 
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we have 

1 00 tq-1 

et+ 1 =区(1-2りBq I . 
q=O 

q. 

By taking the p-th derivative of both sides, we get (~r ct~1) =文 (1-2り色 tq-p-1 =文 (1-2p+q+l)恥+q+l伊

q=p+l 
q (q-p-1)! 

q=p+l p+q+l頑

and we substitute this in (3.3) to obtain 

但 :n:)n+l=嘉昇—l)P[;]喜1-2p+q+l) P巳疇
=~ 江-りp「](1-2p+q+l)恥+q+lピ

n! 
q=Op=l 

p p+ q+ I q! 

From this, we have 

e e -(2m+l)t 

(et+ I)2m+2 = (e-t + I)2m+2 

= (2m~I)! 戸胃（一I)P+q[2m/ 1] (l _ 2p+q+l) /;_~q:1 l~ 

s 
Together with the well-known generating series ([I, Proposition 2.6 (7)], note that { } = 0 if 

2m 
sく 2m)

00 

(et -1)2m = (2m)! 区{s 
t• 

s=O 2m}訂'

we obtain 

が(et_1)2m 

似+1)2m+2 

1 
oo oo 2m+l 

= 2m+l~~~(-I)パl -2p+q+l) [2m/ 1]に}/;~q:\ :,:; 

1 
oo n 2m+l 

= 2m+l~~ と(-1)パ1-2p+q十り(;)[2m/ 1] tご}/;~q:\S 

Substituting this into (3.1), we have 

00 

LD~k)_ 
tn 

叫
n=O 

00 
1 

oo n 2m+l 

= 4; (2m+ l)k+l江芦（一l)P十q(l_ 2p+q+l) (;) [2m/ 1] {~ ご}/;:q:¥且
oo 遵」 2m+ln-2m

心~(2m: l)k+l~ ~(2p+q+l -l) G) [2m/ 1] {~ ご}/;~q:\S 
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(We have used the facts that Bp+q+l = 0 if p + q 2'. 1 is even and { n -q} = 0 if n -qく 2m.)
2m 

By equating the coefficients of tn /n! on both sides, we obtain the desired result. ロ

We can easily prove the second formula of Theorem 3.2 by using the definition of the n-th 
tangent numbers of order k, Tn,m for the non negative integers n and k, by the generating 
relation (see [3, P. 259]). 

k oo tan t 
k! =LT  

tn 
nm , n! ， 

n=k 

(3.4) 

and the formula in [4, Proposition 9] 

Tn,m = (-1州 (-1rt(-1匹2n-mに}(7ー］）悶．
m=k 

Proof of Theorem 3.2(Second Formula). From the definition we have 

ミ闊~)竺＝ふ(tanh(t/2)) d 
n! smht 

= -Ak+i(tanh(t/2)) 
dt 

n=O 

d oo (血h(t/2))2m+l

=2五L (2m+ l)k+l ・

m=O 

(3.5) 

(3.6) 

By using tanh t = -i tan(it) and equations (3.4) and (3.5), we can write 

00 in tn 
(tanh(t/2)匹＝（一irm!L Tn,m--

2n n! 
n=m 

= (-i)叫―1)デ tt(-2r-Pp! (; ~11) {;}芦

= (-1r区芦—w~(;□ 11) {;} s 
We therefore have 

oo tn oo oo n 

区D炉ー＝
n=O 

n! 区
I (p + I)! p n + I tn 

m=O (2m + I)k+l n呈~m(一l)P 2P い） {p+ 1}訂

oo 冴」

心こ
I n (-I)P(p+I)! p n+l tn 

n=Om=O (2m + I)k+l P苫~2P い） {p+1}~-

By equating the coefficients of tn /n!, we complete the proof of the theorem. 

Remark 3.4. In very similar manners, by using the definition of multi-poly cosecant numbers 

口

A(k1, ... , kr; tanh t/2) 
00 

＝区D岳L…,k,) 
tn 

sinht n!' 
n=O 

we obtain the recurrence and explicit formulas for multi-poly-cosecant numbers as follows. 

Notations: For any index set k = (k1, ... , kr) E ::Zぃ， put

k_ = (k1, ...'kr-1, kr -1). 
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Proposition 3.5. For any admissible index k and nミ0,

冴J

D~L)=互じ二）心2m
Theorem 3.6. {1) For-any index set k and n~0, 

叫 n-mr+l

D炉=2r+l L 1 
k1 r-1 kr+l L L (一1r(2p+q+l-1) n 

m 
〇＜加<・・・<mr-1<mr<n+2 1 ・・ ・mr-1叫 p=l q=O し）

m; 三imod2 

x{ご一ql}[~r] /;~q:\ 
{2) For any index set k and n 2 0, 

D炉= L 1 n+l (-l)P+mrp! p-1 n+l 

O<~占~~;くは芦•+'砕 ---mが I~. ,,_, (叫 ,) { p } 
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