Some generalizations of harmonic numbers and their applications

Takao Komatsu School of Science, Zhejiang Sci-Tech University

1 Introduction

Harmonic numbers

$$H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

have direct generalizations. One is the higher-order harmonic number,

$$\mathfrak{H}_n^{(r)} = \sum_{j=1}^n \frac{1}{j^r} \,.$$

When r = 1, $H_n = \mathfrak{H}_n^{(1)}$ is the original harmonic number. The third type is related to this generalized harmonic number. Another is the *hyperharmonic* number,

$$H_n^{(r)} := \sum_{i=1}^n H_j^{(r-1)} \quad (r \ge 1)$$

with $H_n^{(1)} = H_n$ and $H_n^{(0)} = 1/n$. The second type is related to this generalized harmonic number.

Harmonic numbers also have several different q-generalizations. Some keep good relations in extensive ways, and some do not. Any generalization has each advantages and disadvantages. We consider three different kinds of q-generalizations with their applications.

One type of q-harmonic numbers [9] are defined by

$$\mathcal{H}_n = \mathcal{H}_n(q) := \sum_{k=1}^n \frac{q^k}{1 - q^k}.$$

Another type of q-harmonic numbers [4] are defined by

$$H_n(q) = \sum_{k=1}^n \frac{q^{k-1}}{[k]_q},$$

where $[k]_q = \frac{1-q^k}{1-q}$. Still other q-harmonic numbers [2] are given by

$$h_n^{(s)}(x) = \sum_{k=1}^n \frac{1}{[k-1+x]_{q^r}^s}.$$

2 First type of q-harmonic numbers

The first type of q-harmonic numbers are related to the generating function of the sum of the jth powers of the divisors of n. If $\sigma_j(n) = \sum_{d|n} d^j$, then for $q \in \mathbb{C}$ and |q| < 1,

$$\sum_{n=1}^{\infty} \sigma_j(n) q^n = \sum_{n=1}^{\infty} \frac{n^j q^n}{1 - q^n}.$$

Van Hamme [7] gave the following identity.

$$\sum_{k=1}^{n} (-1)^{k-1} \binom{n}{k}_{q} \frac{q^{\binom{k+1}{2}}}{1-q^{k}} = \sum_{k=1}^{n} \frac{q^{k}}{1-q^{k}} = \mathcal{H}_{n}, \tag{1}$$

where the q-binomial is defined as

$$\binom{n}{k}_q := \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}} \quad \text{with} \quad (a;q)_n := \prod_{j=0}^{n-1} (1 - aq^j).$$

There exist several generalizations of identity (1).

The generalized q-harmonic numbers $\mathcal{H}_n^{(m)}$ are defined by

$$\mathcal{H}_n^{(m)} := \sum_{k=1}^n \frac{q^k}{(1-q^k)^m} \quad (n=1,2,\dots),$$

When m = 1, $\mathcal{H}_n^{(1)} = \mathcal{H}_n$ is the q-harmonic number.

We give a continued fraction expansion of the generaling function of generalized q-harmonic numbers, given by

$$H_m(x) := \sum_{n=1}^{\infty} \mathcal{H}_n^{(m)} x^n. \tag{2}$$

Theorem 1.

$$\sum_{n=0}^{\infty} \mathcal{H}_n^{(m)} x^n$$

$$=\frac{qx}{(1-q)^m(1-x)-\frac{(1-q^2)^mqx(1-x)}{(1-q^2)^m+(1-q)^mqx-\frac{(1-q^2)^2mqx}{(1-q^3)^m+(1-q^2)^mqx-\frac{(1-q^3)^2mqx}{(1-q^4)^m+(1-q^3)^mqx-\dots}}$$

We study the summations

$$\sum_{k=1}^{n} q^{pk} \mathcal{H}_{k}^{(m_{1},\dots,m_{\ell})}, \quad \sum_{k=1}^{n} q^{p(n-k)} \mathcal{H}_{k}^{(m_{1},\dots,m_{\ell})},$$
$$\sum_{k=1}^{n} q^{pk} \mathcal{H}_{s+k}^{(m_{1},\dots,m_{\ell})}, \quad \sum_{k=1}^{n} q^{p(n-k)} \mathcal{H}_{s+k}^{(m_{1},\dots,m_{\ell})},$$

where $\mathcal{H}_k^{(m_1,\ldots,m_\ell)}$ are the multiple generalized q-harmonic numbers defined by

$$\mathcal{H}_n^{(m_1,\dots,m_\ell)} := \sum_{1 \le k_1 \le \dots \le k_\ell \le n} \frac{q^{k_1} + \dots + q^{k_\ell}}{(1 - q^{k_1})^{m_1} \dots (1 - q^{k_\ell})^{m_\ell}}, \quad (n = 1, 2, \dots).$$

If $m_1 = m_2 = \cdots = m_\ell = m$ and $\ell = 1$, the generalized q-harmonic numbers $\mathcal{H}_n^{(m)}$ are studied in [8]. Note that $\mathcal{H}_n^{(m_1,\ldots,m_\ell)}$ can be considered as a q-analogue of the multiple generalized harmonic numbers of order m

$$H_n^{(m_1,\dots,m_\ell)} = \sum_{1 \le k_1 \le \dots \le k_\ell \le n} \frac{1}{k_1^{m_1} k_2^{m_2} \cdots k_\ell^{m_\ell}} \quad (n = 1, 2, \dots).$$

We give some finite summation identities of generalized q-harmonic numbers

Theorem 2. If p and n are positive integers and m_1, m_2, \ldots, m_ℓ are complex numbers, the

$$\sum_{k=1}^{n} q^{pk} \mathcal{H}_{k}^{(m_{1},\dots,m_{\ell})} = \frac{1}{1-q^{p}} \left\{ \sum_{s=1}^{m_{\ell}} (-1)^{m_{\ell}-s} \binom{p}{m_{\ell}-s} \mathcal{H}_{n}^{(m_{1},\dots,m_{\ell-1},s)} + (-1)^{m_{\ell}} \sum_{t=1}^{n} \sum_{j=1}^{p-m_{\ell}+1} \binom{p-j}{m_{\ell}-1} q^{jt} \mathcal{H}_{t}^{(m_{1},\dots,m_{\ell-1})} - q^{p(n+1)} \mathcal{H}_{n}^{(m_{1},\dots,m_{\ell})} \right\}.$$
(3)

Some particular cases of Theorem 2 can be seen in simple forms. For example,

• When $m_1 = \cdots = m_\ell = 1$ and p = 1:

$$\sum_{k=1}^{n} q^{k} \mathcal{H}_{k}^{(1,\ell)} = \frac{1 - q^{n+1}}{1 - q} \mathcal{H}_{n}^{(1,\ell)} - \frac{1}{1 - q} \sum_{t=1}^{n} q^{t} \mathcal{H}_{t}^{(1,\ell-1)}$$
$$= \sum_{i=0}^{\ell-1} (-1)^{i} \frac{1 - q^{n+1}}{(1 - q)^{i+1}} \mathcal{H}_{n}^{(1,\ell-i)} + (-1)^{\ell} \frac{q(1 - q^{n})}{(1 - q)^{2}}.$$

Corollary 1. If p, n and s are positive integers, then

$$\sum_{k=1}^{n} q^{pk} \mathcal{H}_{k+s}^{(m_1, \dots, m_\ell)} = q^{-ps} \left(F(n+s, p, \overrightarrow{m_\ell}) - F(s, p, \overrightarrow{m_\ell}) \right) ,$$

where

$$F(n, p, \overrightarrow{m_{\ell}}) := \sum_{k=1}^{n} q^{pk} \mathcal{H}_{k}^{(m_{1}, \dots, m_{\ell})}$$

with $\overrightarrow{m_{\ell}} = (m_1, \ldots, m_{\ell})$.

Some particular cases of Corollary 1 can be seen in simple forms. For example,

• When s = n, $m_1 = \cdots = m_\ell = 1$ and p = 1:

$$\sum_{k=1}^{n} q^{k} \mathcal{H}_{n+k}^{(1,\ell)} = q^{-n} \left(\sum_{i=0}^{\ell-1} \frac{(-1)^{i}}{(1-q)^{i+1}} \right) \times \left((1-q^{2n+1}) \mathcal{H}_{2n}^{(1,\ell-i)} - (1-q^{n+1}) \mathcal{H}_{n}^{(1,\ell-i)} \right) + (-1)^{\ell} \frac{q^{n+1}(1-q^{n})}{(1-q)^{2}} \right).$$

Theorem 3. If p and n are positive integers and m_1, m_2, \ldots, m_ℓ are complex numbers, then

$$\sum_{k=1}^{n} q^{p(n-k)} \mathcal{H}_{k}^{(m_{1},\dots,m_{\ell})} = \frac{1 - q^{p(n+1)}}{1 - q^{p}} \mathcal{H}_{n}^{(m_{1},\dots,m_{\ell})} - \frac{q^{p(n+1)}}{1 - q^{p}} \times \left\{ \sum_{s=1}^{m_{\ell}-1} \binom{p+s-1}{s} \mathcal{H}_{n}^{(m_{1},\dots,m_{\ell-1},m_{\ell}-s)} + \sum_{\ell=1}^{n} \sum_{j=1}^{p} \binom{m_{\ell}+j-2}{j-1} q^{\ell(j-p)} \mathcal{H}_{\ell}^{(m_{1},\dots,m_{\ell-1})} \right\}.$$

Corollary 2. If p, n and s are positive integers then

$$\sum_{k=1}^{n} q^{p(n-k)} \mathcal{H}_{k+s}^{(m_1, \dots, m_{\ell})} = G(n+s, p, \overrightarrow{m_{\ell}}) - q^{pn} G(s, p, \overrightarrow{m_{\ell}}),$$

where

$$G(n, p, \overrightarrow{m_{\ell}}) := \sum_{k=1}^{n} q^{p(n-k)} \mathcal{H}_{k}^{(m_1, \dots, m_{\ell})}$$

with $\overrightarrow{m_{\ell}} = (m_1, \ldots, m_{\ell}).$

3 Second type of q-harmonic numbers

In [4], a q-hyperharmonic number $H_n^{(r)}(q)$ is defined by

$$H_n^{(r)}(q) = \sum_{j=1}^n q^j H_j^{(r-1)}(q) \quad (r, n \ge 1)$$
 (4)

with

$$H_n^{(0)}(q) = \frac{1}{q[n]_q}.$$

In this q-generalization,

$$H_n(q) = H_n^{(1)}(q) = \sum_{j=1}^n \frac{q^{j-1}}{[j]_q}$$
 (5)

is a q-harmonic number. When $q \to 1$, $H_n^{(r)} = \lim_{q \to 1} H_n^{(r)}(q)$ is the hyper-harmonic number and $H_n = \lim_{q \to 1} H_n(q)$ is the original harmonic number.

Weighted sums of this kind of q-hyperharmonic numbers can be expressed in terms of several types of q-analogue of the sum of consecutive integers.

Theorem 4. For positive integers n and r,

$$\sum_{l=1}^{n} q^{l-1}[l]_q H_l^{(r)}(q) = \frac{[n]_q [n+r]_q}{[r+1]_q} H_n^{(r)}(q) - \frac{q^r [n-1]_q [n]_q}{([r+1]_q)^2} \binom{n+r-1}{r-1}_q$$
$$= \frac{[n]_q [r]_q}{[r+1]_q} H_n^{(r+1)}(q) + \frac{q^{r-1}}{[r+1]_q} \binom{n+r}{r+1}_q.$$

Remark. When $q \to 1$, we have for $n, r \ge 1$,

$$\sum_{l=1}^{n} l H_l^{(r)} = \frac{n(n+r)}{r+1} H_n^{(r)} - \frac{(n-1)^{(r+1)}}{(r-1)!(r+1)^2}$$
$$= \frac{nr}{r+1} H_n^{(r+1)} + \frac{1}{r+1} \binom{n+r}{r+1},$$

where $(x)^{(n)} = x(x+1)\cdots(x+n-1)$ $(n \ge 1)$ denotes the rising factorial with $(x)^{(0)} = 1$.

Next, we show a square weighted summation formula, which is yielded from the following identity.

Theorem 5. For positive integers n and r,

$$\begin{split} &\sum_{\ell=1}^{n} q^{\ell-1}[\ell]_{q}[\ell+1]_{q}H_{\ell}^{(r)}(q) \\ &= \frac{[n]_{q}[n+r]_{q}([2]_{q}[n+2]_{q}+q^{3}[r-1]_{q}[n+1]_{q})}{[r+1]_{q}[r+2]_{q}}H_{n}^{(r)}(q) \\ &- q^{r}[n-1]_{q}\binom{n+r-1}{r-1}_{q}\frac{[2]_{q}[r+2]_{q}^{2}+q^{4}[r+1]_{q}^{2}[n-2]_{q}}{[r+1]_{q}^{2}[r+2]_{q}^{2}} \,. \end{split}$$

Remark. When $q \to 1$, we have

$$\sum_{\ell=1}^{n} \ell(\ell+1) H_{\ell}^{(r)} = \frac{n(n+r)((r+1)n+(r+3))}{(r+1)(r+2)} H_{n}^{(r)} - (n-1)n \binom{n+r-1}{r-1} \frac{(r+1)^{2}n+2(2r+3)}{(r+1)^{2}(r+2)^{2}}.$$
 (6)

Combining Theorem 4 and Theorem 5, we can obtain the square weighted summation formula.

Corollary 3. For positive integers n and r,

$$\begin{split} &\sum_{\ell=1}^n q^{\ell-1}([\ell]_q)^2 H_\ell^{(r)}(q) \\ &= \frac{[n]_q [n+r]_q (1+q[r+1]_q [n]_q)}{[r+1]_q [r+2]_q} H_n^{(r)}(q) \\ &- q^r [n-1]_q [n]_q \binom{n+r-1}{r-1}_q \frac{q[r+1]_q^2 [n]_q - q^3 [r]_q^2 + [2]_q}{[r+1]_q^2 [r+2]_q^2} \,. \end{split}$$

Remark. When $q \to 1$, we have for $n, r \ge 1$,

$$\sum_{l=1}^{n} l^{2} H_{l}^{(r)}$$

$$= \frac{n(n+r)((r+1)n+1)}{(r+1)(r+2)} H_{n}^{(r)} - \frac{(n-1)^{(r+1)}((r+1)^{2}n - (r^{2}-2))}{(r-1)!(r+1)^{2}(r+2)^{2}}.$$

We can obtain the following summation of the cubic powers, but no q-generalization has been found yet. For $n, r \geq 1$,

$$\begin{split} &\sum_{l=1}^{n} l^{3} H_{l}^{(r)} \\ &= \frac{n(n+r) \left((r+1)(r+2)n^{2} + 3(r+1)n - r + 1 \right)}{(r+1)(r+2)(r+3)} H_{n}^{(r)} \\ &- \frac{(n-1)^{(r+1)} \left((r+1)^{2}(r+2)^{2}n^{2} - (r+1)^{2}(2r^{2} + 2r - 7)n + (r^{4} - 2r^{3} - 17r^{2} - 12r + 6) \right)}{(r-1)!(r+1)^{2}(r+2)^{2}(r+3)^{2}} \end{split}$$

Nevertheless, when r=1, we can get more general summation formulas. Fpr example,

Theorem 6. For $n, N \ge 1$, we have

$$\sum_{\ell=1}^{n} q^{\ell-1} [\ell]_q [\ell+1]_q \dots [\ell+N-1]_q H_\ell(q)$$

$$= \frac{[n]_q [n+1]_q \dots [n+N]_q}{[N+1]_q} H_n(q) - \frac{[N-1]_q!}{[N+1]_q} \sum_{l=1}^{N} q^l [l]_q \binom{n+l-1}{l+1}_q.$$

Remark. When $q \to 1$, we have the ordinary relation

$$\sum_{\ell=1}^{n} \ell(\ell+1) \dots (\ell+N-1) H_{\ell}$$

$$= \frac{n(n+1) \dots (n+N)}{N+1} H_{n} - \frac{(N-1)!}{N+1} \sum_{l=1}^{N} l \binom{n+l-1}{l+1}.$$

4 Third type of q-harmonic numbers

The results for the third type of q-harmonic numbers are yielded from Abel's Lemma on summation by parts [1], for two sequences $\{f_k\}$ and $\{g_k\}$:

$$\sum_{k=m}^{n} f_k \Delta g_k = f_n g_{n+1} - f_m g_m - \sum_{k=m}^{n-1} g_{k+1} \Delta f_k \,,$$

where $\Delta \tau_k = \tau_{k+1} - \tau_k$ is a forward difference of an arbitrary complex sequence $\{\tau_k\}$.

There are many definitions for q-zeta functions. For $0 < x \le 1$, $s \in \mathbb{C}$, and $\Re e(s) > 1$, define the Hurwitz q-zeta function ([5]) as

$$\zeta_q(s,x) = \sum_{n=0}^{\infty} \frac{q^{(n+x)r}}{[n+x]_{q^r}^s}.$$

When x = 1, $\zeta_q(s) = \zeta_q(s, 1)$ is the q-zeta function. Following [2], define a generalized q-harmonic number $h_n^{(s)}(x)$ by

$$h_n^{(s)}(x) = \sum_{k=1}^n \frac{1}{[k-1+x]_{q^r}^s}.$$

The main result can be stated as follows.

Theorem 7. For $r \in \mathbb{N}$, $0 < x \le 1$ and $s \in \mathbb{C}$ with $\Re e(s) > 1$, we have

$$\sum_{n=1}^{\infty} \frac{q^{(n-1+x)r} h_n^{(s)}(x)}{[n+x]_{q^r} [n-1+x]_{q^r}} = \zeta_q(s+1,x) .$$

When x = 1 in Theorem 7, we have the following corollary.

Corollary 4.

$$\sum_{n=1}^{\infty} \frac{q^{nr} h_n^{(s)}(1)}{[n]_{q^r} [n+1]_{q^r}} = \zeta_q(s+1).$$

Remark. When $q \to 1$, Corollary 4 is reduced to

$$\sum_{n=1}^{\infty} \frac{\mathfrak{H}_n^{(s)}}{n(n+1)} = \zeta(s+1)$$

([6]).

In order to get more q-generalization results, we introduce different two q-binomial coefficients. We define the shifted q-binomial coefficients by

$$\binom{n+x}{k}_{q} = \frac{[n+x]_{q}[n+x-1]_{q}\cdots[n+x-k+1]_{q}}{[k]_{q}!}.$$

We define the (q_1, q_2) -binomial coefficients $\binom{n}{k}_{q_1, q_2}$ by

$$\binom{n}{k}_{(q_1,q_2)} = \frac{[n]_{q_2}!}{[k]_{q_1}![n-k]_{q_2}!}.$$

We define more generalized Hurwitz q-zeta functions $\zeta_{t,q}(s,x)$ by

$$\zeta_{t,q}(s,x) = \sum_{n=0}^{\infty} \frac{q^{rt(n+x)}}{[n+x]_{q^r}^s},$$
(7)

where $r, t \in \mathbb{N}$, $0 < x \le 1$ and $s \in \mathbb{C}$, $\Re e(s) > 1$. We define the generalized q-harmonic numbers $h_{t,n}^{(s)}(x)$ by

$$h_{t,n}^{(s)}(x) = h_{t,n,q}^{(s)}(x) := \sum_{k=1}^{n} \frac{q^{rt(k-1+x)}}{[k-1+x]_{q^r}^s}.$$

It is clear that the right hand side of (7) is absolutely convergent as $0 < q \le 1$. When s = 1 and 0 < q < 1, the right hand side of (7) is also absolutely convergent. We have $h_{t,n}^{(s)}(x) \to \zeta_{t,q}(s,x)$ $(n \to \infty)$.

With the help of Abel's Lemma on summation by parts, we show that infinite sums involving the generalized q-harmonic numbers $h_{t,n}^{(s)}(x)$ in terms of linear combinations of the generalized Hurwitz q-zeta values $\zeta_{t,q}(s,x)$.

Theorem 8. For $r, s, t, a \in \mathbb{N}$ with $t \geq s$, a > 1 and $0 < x \leq 1$, we have

$$\sum_{n=1}^{\infty} \frac{h_{t,n}^{(s)}(x)q^{r(n+x)}[a-1]q^r}{[n+a-1+x]q^r[n+x]q^r}$$

$$= \sum_{b=1}^{a-1} \frac{(-1)^{s-1}q^{rb}}{[b]_{q^r}^s} (\zeta_{t-s+1,q}(1,x) - q^{-rb(t-s+1)}\zeta_{t-s+1,q}(1,x+b))$$

$$+ \sum_{m=2}^{s} (-1)^{s-m}\zeta_{t-s+m,q}(m,x)h_{1,a-1}^{(s-m+1)}(1).$$

$$\begin{split} &\sum_{n=1}^{\infty} \frac{h_{t,n}^{(s)}(x)q^{r(n-1+x)}[a]_{q^r}}{[n+a-1+x]_{q^r}[n-1+x]_{q^r}} \\ &= \zeta_{t+1,q}(s+1,x) + \sum_{m=2}^{s} (-1)^{s-m}\zeta_{t-s+m,q}(m,x)h_{1,a-1}^{(s-m+1)}(1) \\ &+ \sum_{b=1}^{a-1} \frac{(-1)^{s-1}q^{rb}}{[b]_{q^r}^s} (\zeta_{t-s+1,q}(1,x) - q^{-rb(t-s+1)}\zeta_{t-s+1,q}(1,x+b)) \,. \\ &\sum_{n=1}^{\infty} \frac{h_{t,n}^{(s)}(x)q^{r(n+x)}}{\binom{n-1+x+k}{k}q^r} = \sum_{a=2}^{k} \frac{[-1]_{q^{-r}}^{a-2}[a]_{q^{-r}}[a-1]_{q^{-r}}}{[a-1]_{q^r}} \binom{k}{a}_{(q^{-r},q^r)} A_a \,, \end{split}$$

$$\begin{split} \sum_{n=1}^{\infty} \frac{h_{t,n}^{(s)}(x)q^{r(n+x)}}{[n+x-1]_{q^r} \binom{n-1+x+k}{k}_{q^r}} \\ &= \sum_{a=2}^{k} \frac{[-1]_{q^{-r}}^{a-1}[a]_{q^{-r}}}{[a]_{q^r}} \binom{k}{a}_{(q^{-r},q^r)} (\zeta_{t+1,q}(s+1,x) + A_a) \,, \end{split}$$

where

$$A_{a} = \sum_{m=2}^{s} (-1)^{s-m} \zeta_{t-s+m,q}(m,x) h_{1,a-1}^{(s-m+1)}(1)$$

$$+ \sum_{h=1}^{a-1} \frac{(-1)^{s-1} q^{rb}}{[b]_{q^{r}}^{s}} (\zeta_{t-s+1,q}(1,x) - q^{-rb(t-s+1)} \zeta_{t-s+1,q}(1,x+b)).$$

When $q \to 1$, $\zeta_{t-s+1,1}(1,x) - \zeta_{t-s+1,1}(1,x+b)$ is interpreted as

$$h_b^{<1>}(1,b) = \sum_{k=1}^b \frac{1}{k-1+x}$$
 (8)

When $q \to 1$ and x = 1 in Theorem 8, we get the following formulas, which are given in [6].

Corollary 5.

$$\sum_{n=1}^{\infty} \frac{(a-1)\mathfrak{H}_n^{(s)}}{(n+1)(n+a)} = \sum_{j=1}^{a-1} \frac{(-1)^{s+1}\mathfrak{H}_j}{j^s} + \sum_{i=2}^{s} (-1)^{s-i}\mathfrak{H}_{a-1}^{(s-i+1)}\zeta(i).$$

$$\begin{split} &\sum_{n=1}^{\infty} \frac{a\mathfrak{H}_n^{(s)}}{n(n+a)} \\ &= \zeta(s+1) + \sum_{j=1}^{a-1} \frac{(-1)^{s+1}\mathfrak{H}_j}{j^s} + \sum_{i=2}^{s} (-1)^{s-i} \mathfrak{H}_{a-1}^{(s-i+1)} \zeta(i) \,. \end{split}$$

$$\begin{split} &\sum_{n=1}^{\infty} \frac{\mathfrak{H}_{n}^{(s)}}{\binom{n+k}{k}} \\ &= \sum_{r=2}^{k} (-1)^{r} r \binom{k}{r} \left(\sum_{j=1}^{r-1} \frac{(-1)^{s+1} \mathfrak{H}_{j}}{j^{s}} + \sum_{i=2}^{s} (-1)^{s-i} \mathfrak{H}_{r-1}^{(s-i+1)} \zeta(i) \right) \,. \end{split}$$

$$\begin{split} &\sum_{n=1}^{\infty} \frac{\mathfrak{H}_n^{(s)}}{n\binom{n+k}{k}} = \zeta(s+1) \\ &+ \sum_{r=1}^{k} (-1)^{r+1} \binom{k}{r} \left(\sum_{j=1}^{r-1} \frac{(-1)^{s+1} \mathfrak{H}_j}{j^s} + \sum_{i=2}^{s} (-1)^{s-i} \mathfrak{H}_{r-1}^{(s-i+1)} \zeta(i) \right) \,. \end{split}$$

Acknowledgement

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] N. H. Abel, Untersuchungen über die Reihe $1 + \frac{m}{1}x + \frac{m(m-1)}{1 \cdot 2}x^2 + \cdots$, J. Reine Angew Math. 1 (1826), 311–339.
- [2] J. Choi and H. M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Modelling **54** (2011), no. 9-10, 2220–2234.
- [3] W. Chu, Abel's lemma on summation by parts and basic hypergeometric series, Adv. in Appl. Math. **39** (2007), 490–514.
- [4] T. Mansour and M. Shattuck, A q-analog of the hyperharmonic numbers, Afr. Mat. **160** (2014), 147–160.

- [5] C. S. Ryoo, A note on q-Bernoulli numbers and polynomials, Appl. Math. Lett. **20** (2007), 524–531.
- [6] A. Sofo, Harmonic number sums in higher powers, J. Math. Appl. **2**(2) (2011), 15–22.
- [7] L. Van Hamme, Advanced problem 6407, Am. Math. Mon. 40 (1982), 703–704.
- [8] X. Wang and Y. Qu, Some generalized q-harmonic number identities, Integral Transforms Spec. Funct. **26**(12), 2015.
- [9] C. Wei and Q. Gu, q-Generalizations of a family of harmonic number identities, Adv. in Appl. Math. 45 (2010), 24–27.

Department of Mathematical Sciences, School of Science Zhejiang Sci-Tech University Hangzhou 310018 CHINA

E-mail address: komatsu@zstu.edu.cn