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[rrationality exponents of certain alternating serries

Iekata Shiokawa

1 Introduction

Davison and Shallit [2] introduced the sequence {¢,} of positive integers
defined by the recurrence

w=1 q=wo Ggnt1=0aqn-1(wngn+1) (n>1),

where {w,} is any sequence of positive integers. They gave the following
regular cotinued fraction representing alternating seriesO

= (-1

P = [0; wo, wiqo, w2q1, w3qe, . . - |
nin—

n=1

and proved its transecendence by using Roth’s theorem. As a spcial case,
transcendence of Cahen’s constant

[e's) _1)n
C:Zé —)1’

n=0""

where Sp = 2, Spi1 = S2 — S, +1 (n > 0) is Sylvester’s sequence (cf.[7]),
was established. Finch [5, Section 6.7] asked what can be said about the

number
o0
> 5
= S, —1

Recently, Duverney, Kurosawa, and the author of this paper proved the fol-
lowing (see [3, Example 1.5]): For a positive integer [ and algebraic numbers
a # 0 and p with S,, # p for all n > 0, the number

o0
an

0 (Sn - p)l

n—=



is transcendental except when [ = a =1 and p = 0, and if so
= Sp 2

For a sequence {wy, } of positive integers and a sequence {y,, } with y; > 0
of nonzero integers, we define

=1 g =wo, qnt1=gn-1(wng) +yn) (n>1) (1)

where m is a positive integer. We assume that

w1 (> 2), (2)
n
so that {¢,}n>1 is an increasing sequence of positive integers. Moreover,
since log ¢n+1 > mlog, +log,_,, we have logq, > P, for all n > 2, where
Pr=1, P, =m and P11 = mP, + P,_1 (n > 2). Hence, there exists a
constant v > 1 such that

@ > (n>2), (3)

where o > (1 4+ /5)/2 and 3 = —1/a are the roots of the equation X2 —
mX — 1= 0. We define the series

o0
19192 Yn
&= —pntgs gn 4

nZ:l( ) dndn—1 ( )

In this talk, we give exact value of the number £(cf.[6]), where the irra-
tionality exponent p(«) of a real number « is defined by the supremum of
the set of numbers p for which the inequality

1
o<
q qt

has infinitely many rational solutions p/q. Every irrational number « satis-
fies p(a) > 2. If p(a) > 2, then « is transcendental by Roth’s theorem. If
(@) = oo, then « is called a Liouville number.

We first expand the number ¢ in the irregular continued fraction:

Lemma 1. Let {q,} be the sequence defined by (1). Assume that the series
(4) is convergent. Then we have

o0
Y2 Yn W Y2 vs
£=S " (cpyntAY2 Y YL - e
T; o1 wo+wigoq" " +waqigy T +
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We then apply the next lemma to the above continued fraction.

Lemma 2 ([4, Corollary 4]). Let an infinite continued fraction

§7a1 az Qn
bbby

be convergent, where a, and b, are non-zero integers. Assume that

| a
S| | <
n—0 bnbn+1
and
log |an| _
2% Tog [bu|
Then

. log ‘bn-i-l‘
=2+1 — ol 5
p(§) =2+ S T s (5)

In this way, we find the following formula.

Theorem 1. Let & be as in (4). Assume that

log [ya| = o(a™). (6)

Then we have

1
(&) =1+ limsup 08 n+1
n—00 og qn

Furthermore, we show an expression of log ¢,. Let P, be the linear
requrrent sequence defined by
P =1 Po=m, Ppyy =mP,+P,_1 (n2>2),
or equivalently,
a” — ﬁn
VD
m+ /D 5= m — /D

2 2
with D = m? 4 4 are the roots of the equation X? —mX — 1= 0.

Lemma 3. Let {q,} be defined by (1). Then we have

Py (n>0), (7)

where

o =

n—1
log g = Py log wo + ), Pt log <wk + j—i) (n=1). ()
k=1 k
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Using this formula, we obtain the explicit value of the number &.

Theorem 2. Make the same assumptions as in Theorem 1. Then we have

( . log w
14+« if Z gk LS 00,
k=0 @
n
u(e) = > 8" log wy
1+ a + limsup :i? otherwise.
n—oo
Z Pk log wy
k=0

Corollary 1. Every number & as in Theorem 1 s transcendental.
Finally, we give few examples.

Example 1. For any sequence {€,} of 1 or -1 with ¢; = 1, we define the
sequence {q,} by

0 =1 q =w @ni1 = n-1(wng, +0,) (n>1),

where {wy,} be any sequence of positive integers satisfying

o0

log w

Z gkk:—i—oo
«

k=0

and 8, = €,/01 -+ 0p—1. Then we have by Theorem 2

o
€n
I E =1+a.
(n:l Qnin)

As {wy,}, we can take for example any one of the following sequences;

{n}, {f()}, {a/™}, {10V ]},

where b > 1 is an integer, 1 < X\ < «, and f(x) is a polynomial of z:, possibly
a constant, taking positive integral values at any positive integers.

Example 2. For any positive integer a, we put wo = a, Wy = ¢p—1 (0 > 1)
and Yy, = a (n > 1). We have by (1) with m =1

w=1 qg=a qi1=qm 1(@m-1qn+a) (n>1), 9)
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The assumption (2) is automatically satisfied. Define the number & by (4).
We set sy, = qni1qn+a (n > 1). Since ¢ui1qn+2 = @ndn+1(qngnr1 +a) (n >
0), we find
S0 = 2a, Spi1 = 5721 —asp, +a (n>0).
Taking logarithm of both sides of (9) and using the resulting formula repeat-
edly, we have
log ¢, = ¢52" + 0(2").

Appying Theorem 1, we obtain

In the case of a = 1, we have pu(C) = 3.

We note that, for any real A with 1 + a < A < oo, we can construct
uncountably many numbers ¢ as in Theorem 1 having the irrationality ex-
ponent .
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