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Khovanov-Rozansky HOMFLY homology and general 

diagrams: a survey 

Keita N akagane1 

Department of Mathematics, Tokyo Institute of Technology 

In this note, we will review the definition of the HOMFLY homology, and we will see 
that it is not well-defined for general diagrams, by computing the graded Euler charac-
teristic of the lowest q-degree part of the homology. 

1 Overview 

The HOMFLYpolynomial P(L)(v, q) [3, 10] is a polynomial link invariant, which has been 
widely studied since its discovery. The polynomial P(L)(v, q) is recursively computed from 
a diagram of L, by the skein relation 

v―1 P(X) -vP(X) = (q―i - q)P(只），

and the normalization P(unknot) = 1. 
The invariant is specialized to other skein polynomials, namely the Alexander polyno-

mial (v = 1) and the sl(N) polynomials (v = qN). We note that the sl(2) polynomial is 
the Jones polynomial, which is the first discovered skein polynomial [4] 

At the end of the 20th century, Khovanov introduced the concept of "categorification" 
of link invariants. He defined a homological link invariant Kh(L) called Khovanov homol-
ogy [6], which is thought as a categorification of the Jones polynomial. It has two main 
properties as a categorification: 

• its graded Euler characteristic is the Jones polynomial, 

• it is a topological quantum field theory (TQFT), that is, a cobordism D1→ D2 
between two link diagrams is associated with a homomorphism Kh(D1)→ Kh(D2) 
between their homologies. 

The concept of categorification is now extremely common in topology, for example, the 
knot Floer homology is a categorification of the Alexander polynomial. 

A few years after Khovanov's breakthrough, Khovanov and Rozansky [7, 8] defined 
the sl(N) homologies HN(L) and the HOMFLY homology H(L). Dunfield, Gukov and 
Rasmussen [2] proposed one conjecture concerning these homology theories, stated vaguely 
below. 

A homological knot invariant 11,(K) is expected to exist here, along with differentials 
｛心}NEZ on it. The conjecture claims that the homologies H国(K),心） are isomorphic 

1The author was supported by JSPS KAKENHI Grant Number JP19Jl2350. 
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to the sl(N) homologies恥 (K)for N > 0, and the homology H(1-l(K), d0) is isomorphic 
to the knot Floer homology of K. Although more properties on differentials dN are 
required in the conjecture, we can roughly summarize the conjecture as follows: 1-l(K) is 
an inclusive categorified invariant of skein polynomials. 

The Khovanov-Rozansky HOMFLY homology H(K) is a reasonable candidate for 
1-l(K). As another evidence for it, Rasmussen [11] constructed a spectral sequence from 
H(K) converging to HN(K), but the conjecture is still unsettled right now. 

As Rasmussen's spectral sequence tells us, H(K) "contains" all the homologies HN(K). 
However, there is a big philosophical mystery between them: well-definedness for general 
diagrams. 

First of all, Khovanov and Rozansky defined the sl(N) homology HN(D) for all link 
diagrams D. Its invariance under the Reidemeister moves is proven, therefore, HN(D) 
is well-defined for all diagrams. They also defined the HOMFLY homology H(D) for all 
diagrams D, however, they failed to show its invariance under certain Reidemeister moves. 
The missing move here is the RIIb move (see figure 1), and it turns out that H(D) cannot 
be invariant under this move [1]. At least H(D) is invariant under braid-like Reidemeister 
moves, so H(D) is well-defined for closed braid diagrams. 

ニー）（ロー）（
(a) RIIa move (b) RIIb move 

Figure 1: The Reidemeister II moves 

Considering the above, now we have a natural question below. 

Question 1. Is there any definition of the HOMFLY homology for general diagrams? If 
not, why doesn't it exist? 

In this note, we will see how the homology H(D) fails to be an invariant for general 
diagrams, by observing the lowest q-degree part of H(D). We hope that it gives some 
hints on the question. (Note that it gives us a similar construction with the chromatic 
homology defined by Stosic [12].) 

The organization of the note is as follows. In section 2, the definition of the HOMFLY 
homology will be explained. In section 3, we review Koszul complexes and how to compute 
their homologies in simple cases, and prepare some lemmas for section 4. In section 4, 
we observe the lowest q-degree part of the homology and we compute its graded Euler 
characteristic. The result shows that it cannot be an invariant for general diagrams. 

2 Definition of the HOMFLY homology 

We review the definition of the HOMFLY homology, following Rasmussen [11]. 
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Remark 2. We will define the homology H(D) for general diagrams D first, however, this 
is not a link invariant. When we restrict D to closed braid diagrams, H(D) induces a link 
invariant and it is called the HOMFLY homology. (In [11], it is rather called the reduced 
HOMFLY homology.) 

Let D be an oriented link diagram. We assume that D is connected, in the sense that 
the underlying projection G(D) of Dis connected. We will define the diagram ring R(D) 
of D below. 

We consider the projection G(D) as an oriented 4-valent graph. The set of edges in 
G(D) is denoted by E(D). Let V'(D) be the Q-vector space Q〈e〉eEE(D)generated by the 
edge set E(D). Let 1r E V'(D) be the sum of all edges in G(D). For each crossing p of 
D, we define a vector vP E V'(D) by vP = a+ b -c -d, where a, b are outgoing edges 
at p and c, dare incoming edges at p (see figure 2). Let W'(D) be a subspace of V'(D) 
spanned by 7r and vP for all crossings p. We define the vector space V(D) as the quotient 
V'(D)/W'(D). 

Lemma 3. dim V(D) = c(D), where c(D) is the number of crossings in D. 

Proof. We have dim V'(D) = 2c(D). The number of generators of W'(D) is 1 +c(D), but 
these generators have unique relation区戸P= 0. Therefore dim W'(D) = c(D). ロ

The ring R(D) is defined as the symmetric algebra of V(D); if we fix a basis {xi} of 
V(D), then R(D) is a polynomial ring Q[xi] generated by the vectors xi. We introduce 
the q-grading on R(D) by setting every element in V(D) on degree 2. 

Remark 4. We can also regard that R(D) is the quotient of the polynomial ring Q[E(D)], 
by the relations 7r = 0 and Vp = 0. 

We wish to define the double chain complex C(D) over R = R(D) for a diagram D, 
but we start with some conventions and terminologies on C(D). 

The complex C(D) has two homological gradings, and we write ?(D) =①  cj,k(D). 
The first degree is called the horizontal degree, and the second degree 1s called the ve仕ical
degree. 

The complex C(D) has two differentials: the horizontal differential dh and the ve廿ical
differential dv. Each of them corresponds to one of the above gradings, and they have 
degree 2; deg(dり=(2, 0), and deg(dサ=(0, 2). The R-module cj,k(D) will be trivial 
if j or k is odd. Summarizing the above, C(D) is a double complex with "doubled" 
cohomological gradings. 

Now it is time to construct C(D). The complex C(D) is partitioned into piecesら(D),
where p runs over all crossings in D. The double complexら(D)is defined by the diagrams 
in figure 2, according to the sign of p. In the figure, the horizontal arrows define dh and 
the vertical arrows define dv. Each arrow is labeled by an element x in R, and it means 
that the arrow represents the multiplication map by x. Here, a, b, c, dare edges in G(D) 
near pas shown in the right figure. The underline specifies the module on bidegree (0, 0), 
and { n} means a q-grading upper-shift by n; for example, in the complex for a positive 
crossing, the Ron the lower-right corner has bidegree (0, -2). 

It is easy to check that two differentials commute and that degq(d砂=2, deg凸） =0 
in Cp(D). Finally C(D) is defined邸 thetensor product (over R) ofら(D)for all crossings 
p of the diagram D. 



18

R 
a-c 

E. 
a b 

Cp(D) b-c 1 for 
p =ゾ

C d 
R{2} 

(a-c)(b-c) 
R 

R 
(a-c)(b-c) 

R{-2} 

a b 

Cp(D) 1 b-c for p = ゞC d 
R R 

a-c 

Figure 2: The definition of Cp(D) 

In order to obtain H(D) from C(D), we need to take homology twice. First we 
take homology H(C(D), dh) by the horizontal diげerentialdh, and then we take homol-
ogy H(H(C(D), dh), d~) by the induced differential d~. The resulting homology will be 
denoted by万(D).By applying some grading shifts on万(D),we obtain H(D). 

Defimtmn 5 ([8, 11]). Let w be the writhe of D, and let s be the number of Seifert 
circles of D. The homology H(D) of the diagram Dis given by 

H(D) =万(D){-w+ s -l}(w + s -1, w -s + 1), 

where {・} means q-grading upper-shift, and (・, •) means homological bigrading upper-shift. 
When D is a closed braid diagram, then H(D) is called the HOMFLY homology of D, 
皿 dit induces a link invariant. 

The graded Euler characteristic of the HOMFLY homology H(D) is the HOMFLY 
polynomial P(D). 

Theorem 6 ([11]). For a closed braid diagram D, we have 

P(D) =~(一l/k-j)/2ず炉 dimHi,j,k(D),

i,J,k 

where Hi,i,k(D) is the part of H(D) with q-degree i and homological bidegree (j, k). 

3 Koszul complexes 

Let R be an algebra over IQ. For an element a in R, we define a cochain complex [a] by 

[a]= (Ji畠 R),
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where the underline specifies the module on cohomological degree 0. 
Let a = (a1, ... , a砂bea sequence of elements in R. The Koszul complex for a is 

the tensor product [a1]R • • • R[a』ofcomplexes over R. We denote this complex by 
[a1, ... , a』.

We give an equivalent definition of the Koszul complex [a1, ... , a』inthe following. 
Let I be the finite set {1, ... , n}. For each subset AC  I, we assign one copy of Rand 

denote it by RA. For A C I and i E I -A, we define a map dA,i: RA→ RAu{i} as the 
multiplication map by (-1厄 wheres=l{J EA: j < i}I-

We define the k-th cochain R-moduleび by

び＝〶 RA,
IAl=k 

and we define the diげerentiald: Ck→ Ck+l as the sum 

d=~dA,i· 
IAl=k, iEI-A 

Now the co chain complex (C*, d) is isomorphic to [ a1, ... , a』.The complex (C*, d) is 
called a cube complex of R's, because of its shape (figure 3 shows it for n = 3). 

御｝二 R{l,2}7 .,x-o,~ 
均一二 R{2} 凡1,3}二 R{l,2,3}

＼又"'/,
R{3}一R{2,3}

a2 

Figure 3: A 3-dimensional cube complex 

The complex [a1, ... , a』hasanother description. As a graded R-module, it is iso-
morphic to the exterior algebra (over R)八*M of the free R-module M = R〈e1,... , e砂
The differential on八*M can be defined by (~; a凸）八.It is not hard to verify that the 
complex八*M is isomorphic to [a1, ... , a』.With this identification, we will sometimes 
write 

[a1, ... , 叫=[ ;;: : : : : :: ] • 

This description gives us elementary operations on Koszul complexes. For入ERand 
1 :S i,j :Sn with i cJ j, we have 

a1釘十··• +a凸＋・ ·•+a炉j+··• +a詑 n

=a凸＋・・・+(ai+入aj)ei+・・・+aj(ej―入ei)+・・・+a芯 n・
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Therefore, we have the following isomorphism: 

［釘，..,,an]=[釘，．．．佑十入aj,
釘，..., en 釘，.. • ei, 

aj, 
ej・—入ej, : : : ~= ] . 

In general, it is quite difficult to compute the homology of Koszul complexes. Fortu-
nately, however, the complexes we will work with are relatively easy to treat. 

Now we additionally assume that R is the symmetric product of a (Qi-vector space V. 
Let x = (x1, ... , xn) be a sequence of vectors in V, and we wish to compute the homology 

of [x1, ... , 叫・

Lemma 7. If x1, ... , Xn are linearly independent in V, then 

H([ :~:::::::]) =R/(x1,---,Xn)・(e1八・・.I¥ e砂．

Proof. This is a special case of the well-known result for regular sequences. Briefly, the 
lemma can be proven by induction on n, using short exact sequences 

0→ [丘・・・,Xn-1] 竺➔ [互· ・.,xn]ぢ [x1,... , Xn-1]→ 0. 

口

Lemma 8. Suppose that x1, ... , Xk are linearly independent, and that Xk+1, ... , Xn can be 
written as a linear combination of x1, ... , Xk as follows: 

k 

巧＝区riJふ (j=k+l,... ,n). 
i=l 

Then we have 

H ([ :~::::: :: ]) = (e~I\••• I¥ eい^バR'〈ek+l,・・・,en〉，

where R'= R/(x1, ... , 咋） and 

n 

叶=e;+区 r;凸 (i=l,... ,k). 
j=k+l 

Proof. We have 

[ :~::::: :: ] = [ :t , , , Xk, 0, 
I 
ek, ek+l, : : : e0n ]' 

by applying elementary operations. Since H([x1, ... , 叫） = R'·(e~ 八．．．^外） by the 
previous lemma, we have the claimed isomorphism. ロ
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4 The lowest q-degree part 

Let D be a connected, oriented link diagram. By the definition, the lowest q-degree with 
a non-trivial chain group in C(D) is -2c_(D), where c_(D) is the number of negative 
crossings in D. We wish to compute the homology万(D)on that part, as possible as we 
can. 

Remark 9. The lowest q-degree in the homology H(D) is -c(D) + s(D) -1, where c(D) 
is the number of crossings in D and s(D) is the number of Seifert circles of D. The value 
-c(D) + s(D) -1 is known as the Morton bound [9] for the q-degree in the HOMFLY 
polynomial P(D). 

For our purposes, we may simplify the complexesら(D).The simplified complexes are 

shown in figure 4, and they are denoted by贔D).We define the complex C(D) as the 

tensor product ofら(D)for all crossings pin D (over R). 

＾ Cp(D) 

Cp(D) 

a-c (=xp) 
R '且

oj 11 
0•R 

゜
゜0• R{-2} 

,] 1□ 

0• 0 

゜

a、b

for p = A 
C d 

a Jf b 

for P =~ 

c/ d 

Figure 4: The simplified complex Cp(D) for crossings 

Remark 10. Because the horizontal differential of C(D) has q-degree 2, we cannot work 
only on the lowest q-degree part for the moment. This is why we are still working over 

R, and why C(D) still has elements with higher q-degree than -2c_(D). 

As we can see, Cp(D) has a unique R-summand for a negative crossing p. We can 
ignore them in computations of homologies, thus we wjll assume that D has only positive 

crossings. Note that the lowest q-degree in C(D) (or C(D)) is O for positive diagrams D. 
Let r(D) be the Seifert graph of D, and let s(D) be the set of edges in r(D). For each 

crossing pin D, we will denote by the same symbol pits corresponding edge of r(D). 
Let us fix a crossing p in D. We define an element Xp E R by Xp = a -c, where a, b, c, d 

are edges in G(D) near p as shown in figure 4. Now we can consider that Cp(D) is a 
complex of (horizontal) complexes R→ [x』,where [叫 isa Koszul complex for Xp, 
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The tensor product C(D) =Rp Cp(D) gives us a "cube complex" of horizontal com-
plexes. A subset AC  1::(D) gives one vertex of the cube, and its corresponding horizontal 
complex is a Koszul complexRpEA[x』=[xp]pEA・In order to compute their homologies, 
we need the following lemma. 

Lemma 11. Let A be a subset of 1::(D). The vectors {xp}pEA are linearly independent if 
and only if A does not give a cut of the graph「(D).

Proof. Among all vectors Xp, we have one linear relation for each Seifert circle S of D: 
the sum区p土Xpis zero if p runs over crossings on S. (The sign of Xp is determined by 

whether pis on the right or left of S.) 
If A gives a minimum cut of r(D), then we can deduce a linear relation on {xp}pEA as 

a linear sum of the above relations. Hence the only-if part is proven. 
For a subset A C 1::(D), let DA be the diagram obtained from D by smoothing all 

crossings in A. 
In order to prove the if part of the lemma, let us assume that A does not give a cut in 

r(D). It is sufficient to prove that the set {xp}pEA can be extended to a basis of V(D). 
By the assumption on A, DA is still connected. Therefore, we can take a set B of 

crossings in DA so that D Aus is a knot diagram. For a crossing p~A U B, we define 
a vector Yp in V(D) by Yp = b -c, where a, b, c, d are as in the figure 4. Now the set 
X = {叫pEAUBリ｛叫piAuBis spanning V(D), because any difference of two edges in 
G(D) can be written by a linear combination of vectors in X. Since dim V(D) = c(D) by 
the lemma 3, Xis a basis of V(D). ロ

Now we can compute the homologies of horizontal complexes [叫pEA,by using lemma 8 
皿 dlemma 11. 

Lemma 12. Let U be a maximal uncut of 1::(D) contained in A. Then we have 

H([叫pEA)竺バ(R'〈e砂pEA-U),

where R'= R/(xp)pEU• The lowest q-degree part of the homology is l¥*(Q〈e砂pEA-U),

As the main result of this note, we compute the graded Euler characteristic of the 
lowest q-degree part of万(D).

Theorem 13. Assume that D is a connected, oriented, positive link diagram. Let s be 
the number of Seifert circles of D. We have 

(-l)s-1万(v-2,0) =区（一l)(k-j)/2炉dimず,j,k(D),

J,k 

where Tr(x, y) is the Tutte polynomial of the graph r = r (D). 

Remark 14. The Tutte polynomial花 (x,y) of a graph G = (V, E) is 

花 (x,y)= I:(x-l)k(A)-k(El(y-1?1(A), 

ACE 

where k(A) is the number of connected components in the subgraph (V, A) and b1 (A) is 
the first Betti number of (V, A). 
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Proof. We can compute the graded Euler characteristic on the right-hand side before 
taking homology by vertical differentials, but after taking homology by horizontal differ-
entials. 

Let us fix a subset A C c(D). We denote the complement c(D) -A by A*. Let Ube a 
maximal uncut of c(D) contained in A. Ifwe contract A* in r(D), then the edges in A-U 
will give a spanning tree in the resulting graph. Therefore, we have IA -UI = k(A*) -1. 

The lowest q-degree part of the homology H([叫pEA)gives 

(-l)IA*l(l-v―2)k(A*)-1 = (-l)s-1. (-1/i(A*l(v―2 _ 1t(A*)-l 

in the graded Euler characteristic of万(D).Therefore, we have the claimed equation. ロ

K仙lmanand Murakami [5] showed that the lowest q-degree part of the HOMFLY 
polynomial for a positive diagram D is written by the interior polynomial I叫x)for the 
hypergraph 1-l induced from f(D). The interior polynomial is a generalization of the 
Tutte polynomial to hypergraphs. They are not equivalent as graph invariants, therefore 
we have the following corollary. 

Corollary 15. The homology H(D) is not invariant under some Reidemeister moves. 

Remark 16. Abel [1] proved that H(D) was not invariant under RIIb move, by using 
chain complexes for virtual link diagrams. 

We shall end this note, by proposing the following question. 

Question 17. Can we "categorify" the Interior polynomial, in order to get well-defined 
HOMFLY homology for general diagrams? 
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