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1 Introduction 

This is an announcement of an ongoing research project concerning a certain natural 
subgroup, which we call the "monodromy group", of the mapping class group of a closed 
orientable surface embedded in a closed orientable 3-manifold. The group is particularly 
interesting in the case where the surface is a Heegaard surface, and there are a lot of 
natural questions which we believe worth being studied. 

Let~be a closed orientable surface. The extended mapping class MCG(~) of~is 
the group of isotopy classes of (possibly orientation-reversing) self-homeomorphisms of区
When there is no fear of confusion, we do not distinguish between a self-homeomorphism 
f of~and the element [J] of MCG(~) represented by f. The mapping class group, 
MCG立）， of~is the index 2 subgroup of MCG(~), consisting of those elements which 
are orientation-preserving. 
Now, assume that~is embedded in a closed orientable 3-manifold M, and let j : 
E→ M be the inclusion map. Following the terminology introduced by Jaco-Shalen [26, 
Section 3] (see also [25, Chapter 5]), we define a spatial deformation of~in M to be a 
homotopy F = {fthEr: ~x I→ M which satisfies the following two conditions. 

l. Jo is the inclusion j : ~ → M, i.e., J0(x) = x for every x E~-

2. Ji is an embedding with image~, and so it induces a self-homeomorphism of況

Here ft : ~ → M (t E J = [O, 1]) is the continuous map from~to M defined by 
ft(x) = F(x, t). We regard Jo = j and Ji = f as elements of MCG(~), and call them 
the initial end and the terminal end, respectively, of the spatial deformation. (We note 
our setting is different from that in [25, 26], where M is an n-manifold with nonempty 
boundary and~is a subset of 8M, and it is only required that Ji is an embedding of~ 
into 8M.) 
We are interested in the subgroup of MCG(~) consisting of the terminal ends Ji of 
spatial deformations UthEr of~in M. 

Definition 1.1 Let~be a closed orientable surface embedded in a closed orientable 3-
manifold M. The the monodrnmy group or the spatial deformation group of~in M, 
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denoted by r(M, ~) (or r(~) in brief), is the subgroup of the extended mapping class 
group YICG(~) defined by 

r(Mこ） = {[!] E MCG(~) I There is a spatial deformation {fthEI with f = Ji-} 

= {[!] E MCG(~) I j Of: ~ → Mis homotopic to the inclusion j.}. 

There are two reasons why we call r(M, ~) the monodromy group. One reason is that 
ifMisa図-bundleoverゞwithmonodromy r.p, then r(Mぶ） is the cyclic group〈r.p〉
generated by the monodromy r.p (see Theorem 2.3). Another reason is that in the virtual 
branched fibration theorem, the monodromies of the surface bundles, which appear as 
double branched coverings of a closed orientable 3-manifold M with a Heegaard surface 
~, are special elements of r(M, ~) (see Theorem 8.1). 
This announcement is organized as follows. In Section 2, we treat the case where~ 
is an incompressible surface in a Haken manifold M, and give a complete description of 
the group r(M, ~) (Theorem 2.3). The remaining sections are devoted to the case where 
~is a Heegaard surface. In Section 3, we recall various natural subgroups of MCG(~) 
associated with a Heegaard surface and describe their relations with the group r(M, ~)­
We then state the main question which we treat in this work. After studying the special 
case of a genus 1 Heegaard splitting of a lens space in Section 4, we give a partial answer 
to the question in Sections 5, 6 and 7 (Theorem 5.1). In the final section, we state the 
branched fibration theorem (Theorem 8.1) which gives another motivation for defining 
and studying the monodromy group r(M, 刃）．

2 Monodromy groups of incompressible surfaces in Haken man-

ifolds 

Example 2.1 Let r.p be an element of MCG(~), and let M :=~x 股/(x,t) rv (ゃ(x),t+ 1) 
be the~-bundle over S1 with monodromy r.p. We denote the image of~x O in M by the 
same symbol~and call it a fiber surface. Then we have a natural spatial deformation {ft} 
of~in M defined by fパx)= [x, t], where [x, t] is the element of M represented by (x, t). 
Its terminal end is equal to r.p―1, because f1(x) = [x, 1] = [戸(x),O] =戸(x).Thus r.p 
belongs to the monodromy group f(M, ~)- We show in Theorem 2.3(1) that r(M, ~) is 
equal to the cyclic group〈r.p〉generatedby r.p. 

Example 2.2 Let h be an orientation-reversing free involution of a closed orientable 
surface~, and let N :=~x [-1,1]/(x,t) ~ (h(x),-t) be the twisted I-bundle over 
the closed non-orientable surface~/h. The boundary 8N is identified with~by the 
homeomorphism~ → 8N mapping x to [x, 1], where [x, t] denotes the element of N 
represented by (x, t). Then we have a natural spatial deformation of~= 8N in N, 
in the sense of [26], defined by ft([x, t]) = [x, 1 -2t]. Its terminal end is equal to h, 
because fi(x) = fi([x, 1]) = [x, -1] = [h(x), 1] = h(x) for every x E~= 8N. Let 
N'be any compact orientable 3-manifold whose boundary is identified with江 i.e.,a 
homeomorphism 8N' 竺 ~is fixed, and let M = N U N'be the closed orientable 3-
manifold obtained by gluing N and N'along the eommon boundary~- Then the preceding 
argument shows that h is an element of r(M, ~). Theorem 2.3(2) shows that if N'is 
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a Haken manifold which is not a twisted I-bundle then r(M, E) is the order 2 cyclic 
group generated by h. If N'is a twisted bundle associated with an orientation-reversing 
involution h'of E, then h'also belongs to r(M, E). Theorem 2.3(3) shows that if E 
has positive genus (i.e., E芦デ）， thenr(M, E) is the (possibly cyclic) dihedral group 
generated by the two involutions h and h'. 

The following theorem is proved by using the positive solution of Simon's conjecture 
[52] concerning manifold compactifications of covering spaces, with finitely generated fun-
damental groups, of compact 3-manifolds. A proof of Simon's conjecture can be found in 
Canary's expository article [8, Theorem 9.2], where he attributes it to Long and Reid. 

Theorem 2.3 Let M be a closed orientable Haken manifold M, and let E be an incom-
pressible surface in M. Then the following hold. 

1. Suppose that M is a E-bundle over S1 with monodromy cp and E is a fiber surface. 
Then r(M, E) is the cyclic group〈cp〉.

2. Suppose that E separates M into two submanifolds, M1 and M2, precisely one of 
which is a twisted I -bundle. Then r(M, E) is the order 2 cyclic group generated by the 
orientation-reversing involution of E associated with the twisted I -bundle structure. 

3. Suppose that E separates M into two submanifolds, M1 and M2, both of which are 
twisted I-bundles. Then r(M, E) is the (finite or infinite, and possibly cyclic) dihedral 
group generated by the two orientation-reversing involutions of E associated with the 
twisted I -bundle structures. 

4. Suppose none of the above conditions hold. Then r(M, E) is the trivial group. 

3 Natural mapping class groups associated with Heegaard sur-

faces and bridge spheres 

For an orientable manifold X and its subspaces, Yi, ... , Yn, let MCG(X, Yi, ... , Yn) be the 
extended mapping class group of (X, Yi, ... , Y, 孔 i.e.,the group of self-homeomorphisms 
of X which preserve each }"i (1 ::::; i::::; n), modulo isotopy preserving the subsets Yi, ... , Yn. 
We do not distinguish between a self-homeomorphism f of (X, Yi, ... , Yn) and the element 
[J] of MCG(X, 兄，..., Yn) represented by f. MCG+(x, Yi, ... , Y, 砂denotesthe subgroup, 
of index 1 or 2, consisting of the elements represented by orientation-preserving homeo-
morphism of X. 
Let M = ViU叫 bea Heegaard splitting of a closed orientable 3-manifold M, namely 
I: is a closed orientable surface in M which separates M into handlebodies Vi and怜
Then MCG(I:) contains the following subgroups which are naturally associated with the 
Heegaard splitting M = Vi UE怜

1. The handlebody group MCG(V;) of the handlebody¼, which is identified with a 
subgroups of MCG(I:), by restricting a self-homeomorphism of¼to its boundary 
8V; = I:. This has been a target of various works (see a survey by Hensel [22] and 
references therein). 
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2. The intersection MCG(Vi)nMCG(Vi), which is identified with MCG(M, Vi, Vi). This 
group or its orientation-subgroup MCG+(M, 片怜） is called the Goeritz group of the 
Heegaard splitting M = Vi u~ 怜 andit has been extensively studied. In particular, 
the problem of when this group is finite, finitely generated, or finitely presented 
attracts attention of various researchers (cf. Minsky [20, Question 5.1]). The work 
on this problem goes back to Goeritz [19], which gave a finite generating set of the 
Goeritz group of the genus 2 Heegaard splitting of S釘 Inthese two decades, great 
progress was achieved by many authors [50, 43, 1, 11, 27, 28, 12, 13, 14, 15, 17, 16, 24], 
however, it still remains open whether the Goeritz group a Heegaard splitting of S3 
is finitely generated when the genus is at least 4. 

3. The group〈MCG(Vi),MCG(Vi)〉generatedby MCG(Vi) and MCG(Vi). Minsky 
[20, Question 5.2] asked when this subgroup is the free product with amalgamation 
amalgamated over MCG(Vi) nMCG(怜） • A partial answer to this question was given 
by Bestvina-Fujiwara [4]. 

4. The mapping class group MCG(Mぶ）of the pair (M, ~). This contains MCG(M, 見怜）
as a subgroup of index :S 2. The result of Scharlemann-Tomova [51] says that the 
natural map MCG(M, ~) to MCG(M) is surjective if the Hempel distanced(~) (see 
[21]) is greater than 2g(~). On the other hand, it is proved by Johnson [27], im-
proving the result of Namazi [43], that the natural map MCG(M, ~) to MCG(M) is 
injective if the Hempel distance d(~) is greater than 3. Hence, the natural map gives 
an isomorphism MCG(M, ~)竺 MCG(M) if g(~) 2: 2 and d(~) > 2g(~). Build-
ing on the work of McCullough-Miller-Zimmermann [39] on finite group actions on 
handlebodies, finite group actions on the pair (M, ~) are extensively studied (see 
Zimmermann [53, 54] and references therein.) 

5. The subgroup ker(MCG(Mぶ）→ MCG(M)), which forms a subgroup of the mon-
odromy group r(M, ~). Johnson-Rubinstein [31] gave systematic constructions of 
periodic, reducible, pseudo-Anosov elements in this group. Johnson-McCullough [30] 
called this group the Goeritz group, and they used the group to study the homotopy 
type of the space of Heegaard surfaces. 

6. The group r(¼) := ker(MCG(¼) • Out(1r1(¼))). (We employ the symbol f(¼), for 
it is contained in the monodromy group「(M,~).) It was shown by Luft [33] that its 
index 2 subgroup r+(¼) := ker(MCG+(¼) • Out(1r1 (¼))) is the twist group, that 
is, the subgroup of MCGゴ¼) generated by the Dehn twists about meridian disks. 
McCullough [38] proved that f(¼) is not finitely generated by showing that it admits 
a surjection onto a free abelian group of infinite rank. A typical orientation-reversing 
element off(¼) is a vertical I-bundle involution, namely an involution h on¼for 
which there is an I-bundle structure such that h preserves each fiber setwise and acts 
on it as a reflection. 

7. Thegroup <r(½),r(怜）〉generatedby f(½) and r(怜），whichis contained in r(M, ~)­
This group arises in the question raised by Minsky [20, Question 5.4], and it was 
proved by Bowditch-Ohshika-Sakuma [44] (see also Bestvina-Fujiwara [4]) that its 
orientation-preserving subgroup <r+(½), r+(½)>isthe free product r+ (½) * r+ (½) 
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if the Hempel distance d(~) is high enough. (The question of whether the same 
conclusion holds for〈r叫叫）〉 isstill an open question.) 

There are natural analogues of the above groups for bridge spheres. Let K be a link 
in S3, and let S be a bridge sphere of K. (We regard a knot as a one-component link.) 

Then (S叫K)is a union of two trivial tangles (B詞） and (Bぷt2)such that (S, Sn 
K) = o(Bf, t1) = o(Bぶt2).We denote the surface (S, Sn K) with marked points by 
the same symbol S, and consider its extended mapping class group MCG(S). Then 
the extended mapping class group MCG(BJ, tj) of the pair (BJも） can be identified 
with a subgroup of MCG(S) by restricting a self-homeomorphism of (BJ, も） to S. Let 
訊） be the subgroup of MCG(B詞） consisting of mapping classes represented by self-
homeomorphisms pairwise-homotopic to the identity. Let r(K, S) be the subgroup of 
MCG(S) consisting of the elements represented by self-homeomorphisms f such that 
the composition j of : (S, Sn K)→ (S叫K)is pairwise homotopic to the inclusion 
j: (S,SnK)→ (S汽K).Then the subgroup〈r(t1),r(t2)〉iscontained in the group 
f(K,S). 
The group〈r(t1),r(ゎ）〉 forthe 2-bridge spheres S of 2-bridge links K play key roles 
in the work of Ohtsuki-Riley-Sakuma [45] on systematic construction of epimorphisms 
between 2-bridge link groups and the series of joint works of Lee-Sakuma [34, 35, 36, 37] 
which (i) solves a problem for 2-bridge spheres corresponding to [20, Question 5.4], which 
in turn implies a characterization of epimorphism between 2-bridge link groups (see [2, 
Theorem 8.1]), (ii) solves the conjugacy problem of essential simple loops on the 2-bridge 
sphere in a 2-bridge link complement in terms of the group〈r(t1),r(わ）〉， and(iii) applies 
these results to establish a variation of McShane's identity for hyperbolic 2-bridge links. 
(See [34] and [44, Theorem 1] for summary.) Moreover, the second author recognized 
through discussion with Ken Baker [3] and through a comment of the referee of [37] (see 
[37, p.5] and Proposition 3.2 below)) that it is more natural to work with r(K, S) than 
to work with its subgroup〈r(t1),r(t2)〉.This paper, as well as [44], is motivated by the 
following natural question. 

Question 3.1 To what extent do the results for the 2-bridge spheres described above 
hold in general setting? 

We now describe the question that we study in this announcement. Recall the following 
inclusion: 

〈f(Vi),f(½) >< f(M,~) and 〈r(t1),r(わ）〉<f(K,S) 

For 2-bridge sphere of 2-bridge links, the following result can be proved by using [35, 
Main-Theorem 2.3]. 

Proposition 3.2 For the 2-bridge sphere S of a 2-b'T'idge link (S汽K)which is not a 
2-component trivial link, the following hold. 

1. If K is hyperbolic (i.e., the Hempel distance of the 2-bridge sphere is greater than 2), 
then〈r(t1),r(t2)〉=f(K,S). 

2. If K is not hyperbolic (i.e., the Hempel distance of the 2-bridge sphere is 1 or 2), 
then〈r(t1),r(わ）〉 hasindex 2 in f(K, S). The gap comes fmm a "book mtation" 
(see /37, p.5, Figure 3}). 
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Moreover, except for the case where K is a trivial knot, the image of〈r(t1),r(t2)〉inthe 
automorphism group of the curve complex of the 4-times punctured sphere (namely the 
Farey tessellation) is the free product of the images of r(t1) and r(t2). 

The only gaps between r(M, ~) and its subgroup <r(½),r(怜）〉， whichwe know, are 
book rotations (see the next section for the precise definition of a book rotation) and 
those associated with genus 1 Heegaard splitting of lens spaces (see Proposition 4.2 in the 
next section). So we would like to pose the following question. 

Question 3.3 What is the difference between the two groups <r(½), f(½) 〉 andf(Mこ）？
Is it true that if the Heegaard surface is complicated enough, e.g., a high Hempel distance, 
then these groups are identical? 

After treating in Section 4 the special case of genus 1 Heegaard splittings of lens spaces, 
we give a partial answer to this question in Sections 5, 6 and 7. In fact, we prove that 
a gap can actually exist, by showing that, in the case~is induced from an open book 
decomposition, book rotations are not contained in the subgroup <f(½), f(½) >provided
that the 3-manifold M is aspherical or has positive Gromov norm (see Theorem 5.1). 

4 Monodromy groups of genus 1 Heegaard surfaces of lens spaces 

We first note the following characterization of the monodromy group f(M, ~) in terms of 
the induced homomorphisms between the fundamental groups. 

Lemma 4.1 Let~be a closed orientable surface embedded in a closed orientable 3-
manifold M which is irreducible. Then a mapping class [f] E MCG(~) belongs to f(M, ~) 
if and only if the homomorphism (j o !). : 1r1 (~)• 町 (M)is equal to the homomorphism 
j, modulo post composition of an inner-automorphism of 1r1(M). 

This lemma follows from the fact that 1r2(M) = 0 which in turn is a consequence of 
the irreducibility of M and the sphere theorem. 

Let L(p, q) = Vi屯怜 bea genus 1 Heegaard splitting of the Lens space L(p, q). Thus 
the meridian of Vi is identified with p(longitude) + q(meridian) of怜.We identify Vi with 
S1 x D2 and~= 町 with 81 x 8D2 = 81 x 81. We identify MCG(~) with GL(2,Z) 

by identifying A = (a b) with the self-homeomorphism of~= 81 x 81 that maps 
C d 

(zぃ⇔） to (z言，髯） • Let入andμbethe elements of 1r1(~) = H心） represented by 
81 x 1 and 1 x 81, respectively. Then the automorphismふ ofH1 (~) induced by the 
self-homeomorphism A is given by 

(A.(入），A.(μ))=(入，μ)A.

Then the following proposition can be easily proved by using Lemma 4.1. 

Proposition 4.2 For the genus 1 Heegaard splitting L(p, q) = Vi Ur; 怜 ofthe (p, q)-lens 
space, the following holds. 

f(L(p, q), ~) = { A E GL(2, Z) I A三(!1i) (mod p)} 
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In particular, r+(L(p, q), ~) is a principal congruence subgroup of 81(2, Z) of level p. 

This proposition says that r(L(p, q), ~) is solely determined by p and independent 
of q which together with p determines a homeomorphism type of the lens space. It 
also implies that f(L(p, q), ~) is much bigger than the subgroup〈f(Vi),f(½) >ingeneral, 
because r(L(p, q), ~) has finite index in the full mapping class group MCG(~) = GL(2, Z), 
whereas〈f(Vi),r(½)>hasinfinite index except when p~4 or L(p, q)竺 L(5,2). We think 
these are rather exceptional phenomena caused by the specificity of lens spaces that their 
fundamental groups are cyclic. 

5 Monodromy groups of Heegaard surfaces induced from open 

book decompositions 

In the following, we always identifyゞ with股/Z.In our notation, we will not distinguish 
between an element of S1 and its representative in艮
Let M be a closed, orientable 3-manifold. Recall that an open book decomposition of 
Mis defined to be the pair (L, 1r), where 

l. Lis a (fibered) link in M; and 

2. 1r: M -L→ S1 is a fibration such that 1r-1 (0) is the interior of a Seifert surface~。
of L for each 0 E S1. 

We call L the binding and~。 a page of the open book decomposition (L, 1r). The mon-
odromy of the fibration 1r is called the monodromy of (L, 1r). We think of the monodromy 
ゃof(L, 1r) as an element of MCG冗ど。rel卵。）， themapping class group of恥 relativeto 
a~。， i.e., the group of self-homeomorphisms of~。 which fix 8~。， modulo isotopy fixing 
卵。. The pair (M, L), as well as the projection 1r, is then recovered from~。 and <p. 

Indeed, we can identify (M, L) with 

(~。 x 艮，卵。 x 股）／～，

where~ is defined by (x, s) ~ (r_p(x), s + 1) for x E~。 and any t E賊， and(y, 0) ~ (y, s) 
for y E饂 andany t E股.By this identification, we see that (M, L) admits an股-action
{ht}tE恥， calleda book rotation, defined by ht([x, s)]) = [x, s + t], where [x, s] denotes the 
point of M represented by (x, s). 
Given an open book decomposition (L項） of M, we obtain a Heegaard splitting M = 
Vi UE½, where Vi = 1r―1([0, 1/2]) UL, 怜=7r―1([1/2, 1]) UL, and~=~。 U~1/2- We 
call this the Heegaard splitting of M induced from the open book decomposition (L, 1r). 
For this Heegaard splitting, we define two particular elements of the extended mapping 
class group MCG(~) as follows. The first one, denoted by p = P(L,1r), is defined by 
p(x) = h1;2(x) for every x E~- The second one, denoted by u =叩，1r),is defined by 

l. u(x) = h1(x) for every x E~。； and 

2. u(x) = x for every x E~l/2· 

Clearly, both p and u are elements of f(M, ~). Indeed, {fthEI with ft = ht;2 (t E [O, 1]), 
see Figure 1, gives a homotopy from the inclusion j : ~ → M to p, while {gt} with 
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． ． ． 

Figure 1: The homotopy {ft}tEI・

， ． ， 

Figure 2: The homotopy fothEI・

1. gパx)= ht (x) for x E~。, t E [O, 1]; and 

2. gパx)= x for x E~1;2, t E [O, 1], see Figure 2, 

gives a homotopy from j to u. We note that pis orientation-reversing and u is orientation-
preserving. These elements are related by庄 =p2。位 oL1, whereい（位， respectively)is 
the vertical I-bundle involution on Vi (Vi, respectively) with respect to the natural I-
bundle structure given by (L, 1r). The map u restricted to the page~。 is nothing but the 
monodromy of the open book decomposition (L, 1r). 

We prove the following theorem in Sections 6 and 7. 

Theorem 5.1 Let M = Vi UE怜 bea Heegaard splitting of a closed, orientable 3-manifold 
M induced frnm an open book decomposition. If M is asphe'T'ical or M has a positive 
Grnmov norm, then we have f(M, I;) 2: 〈虚），r(怜）〉．

In fact, we will see that neither p nor a-, defined above, is not contained in〈r(Vi),f(½) >.
To show this, we define a Z2-valued invariant, called the homological degree, for elements 

off(Mぶ）．

6 Definition of the homological degree and non-zero degree maps 

for Heegaard splittings 

Let M = Vi UE怜 bea Heegaard splitting of a closed, orientable 3-manifold M. We will 
adopt the following convention. Given an orientation of M, or equivalently, a fundamental 



55

class [M] E凡(M),we always choose the fundamental classes [¼] E H鵡叩） (i=l,2) 
and [:E] E疇） so as to satisfy the following: 

• [M] = [½]ー［囚； and 

• [:El= [叩],where [8Vi] is the one induced from [Vi]. 

By [J] E H1 (I; 81) we always mean the fundamental class corresponding to the canonical 
orientation of I. The inclusion map :E <-+ M is always denoted by j. We define a map 
Deg: r(Mぶ）→ Z2 as follows. First, we fix an orientation of M. Let J E r(M, :E). By 
definition, there exists a homotopy F = {fthEI : (:E x I, :E x 81)→ (M, :E) with Jo = j 
and Ji = j o f. The induced map 

凡： H孔:Ex I, :E x 8J)→几(M,:E)竺 H叫，叱） EBH孔片叫）

takes [:E x J] to d叶Vi]+ ん[½] for some d凶 EZ, where [:E x J] is the cross product of 
岡 and[J]. The image Deg(!), called the homological degree off, is then define to be 
the pair (d1, 必） • We note that this element in Z2 does not depend on the choice of the 
orientation of M. However, this does depend on the choice of the above homotopy Fin 
general, as shown by the following lemma. 

Lemma 6.1 Let M = Vi虚怜 bea Heegaard splitting of a closed, orientable 3-manifold 
M. Then the map Deg : r(M, :E)→ Z2 is well-defined if and only if there exits no 
non-zero degree map from (:E x S1, :E x {O}) to (Mぶ）．

There are various examples of non-zero degree maps from (:Ex S1, :Ex {O}) to (M, :E), 
as shown below. We note that open book decompositions with trivial monodromies play 
key roles in the construction. 

Example 6.2 1. Let M =先(S2X 8り， and:E a Heegaard surface of M. Then there 
exists a degree-d map from (:E x S1, :E x {O}) to (M, :E) for any integer d. 

2. Let M be a closed, orientable spherical 3-manifold (i.e., a 3-manifold admitting the 
慇 geometry)with I町 (M)I= n, and :Ea Heegaard surface for M. Then there exists 
degree-d map from (:E x S1, :E x {O}) to (M, :E) for any integer d with nld. 

3. Let M =股lP'悼股lP'3,and :E a Heegaard surface for M. Then there exists a degree-d 
map from (:E x S1, :E x {O}) to (M, :E) for any even integer d. 

4. Let M be a closed, orientable 3-manifold, :E a Heegaard surface for M, and :E'the 
Heegaard surface obtained by a stabilization of :E. If there exists a degree-d map from 
(:E x 81, :E x { 0}) to (M, :E), then there exists a degree-d map from (:E'x 81ぶIX{O}) 
to (M, :E') as well. 

By using the Seifert fiber space Conjecture established by Gabai [18] and Casson-
Jungreis [10] and the Geometrization Theorem of Perelman [46, 47, 48] (see [5, 9, 32, 41, 42] 
for exposition), we can prove the following complete chracterization of closed, orientable, 
prime 3-manifolds M which admit a non-zero degree map from (:Ex 81, :Ex {O}) to (Mぶ）
for some Heegaard surface :E. 
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Theorem 6.3 Let M be a closed, orientable, prime 3-manifold, and I: a Heegaard surface 
for M. Then there exists a non-zero degree map from (I: x S1, I: x {O}) to (M, I:) if and 
only if M is non-aspherical. 

In addition to the above theorem, there is a well-known obstruction, in terms of the 
Gromov norm, for the existence of a nonzero degree map from I: x S1, which is applicable 
to all (not necessarily prime) closed orientable 3-manifolds. So the above theorem together 
with Lemma 6.1 implies the following corollary. 

Corollary 6.4 Let M be a closed, orientable 3-manifold, and I: a Heegaard surface for 
M. Then if M is aspherical or has a positive Gromov norm IIMII > 0, then the map 
Deg : f(M, I:)→ Z2 is well-defined. Furthermore, when M is geometric or prime, the 
map Deg: f(M, I:)→ Z2 is well-defined if and only if M is aspherical. 

7 Proof of Theorem 5 .1 

Let M = ViU叫 bea Heegaard splitting of a closed, orientable 3-manifold M, where the 
homological degree is well-defined. We begin with easy examples of homological degrees 
of elements of〈f(Vi),f(½) >.

Example 7.1 1. If f is a Dehn twist about a meridian of¼(i E {1, 2}), then Deg(!)= 
(0, 0). 

2. If f is a vertical I-bundle involution on Vi (½, respectively), then Deg(!) is (-2, 0) 
((0, -2), respectively). 

3. Let p be an element of r(Mぶ） defined in Section 5. Then Deg(p) = (-1,-1). 

Next, we present basic properties of the homological degree. 

Lemma 7.2 Let M = Vi甚怜 bea Heegaard splitting of a closed, orientable 3-manifold 
M, where the homological degree is well-defined. Then the following hold. 

1. If Deg(!)= (d1, d砂forf E f(M, :E), then d1 + d2 = -l + deg]. 

2. For any J, g E「(M,:E), we have Deg(g o J) = deg f・Deg(g) + Deg(!). 

3. For any f E f(Vi), Deg(!) = (-1 + deg J, 0); and 

4. For any f Er(屹）， Deg(!)=(0, -1 + deg J). 

By using the above lemma, we can show the following proposition by induction. 

Proposition 7.3 Let M = Vi UE½be a Heegaard splitting of a closed, orientable 3-
manifold M, where the homological degree is well-defined. If f E〈f(Vi),f(½) >, then
Deg(!) is equal to (2n, -2n) or (2n -2, -2n) for some n E Z. In particular, the mod 2 
reduction of Deg(!) is (0, 0) E (Z/2Z)2. 
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We can now prove Theorem 5.1 as follows. Suppose that M is aspherical or M has 
a positive Gromov norm. Then by Corollary 6.4, the map Deg : r(M, I:)→ Z2 is well-
defined. Let (L, 1r) be an open book decomposition (L, 1r) of M with½= 戸([O, 1/2])UL, 
怜＝戸([1/2,1]) UL, and I; = I;。UI:1;2. Let p be an element of r(M, I:) defined in 
Section 5. Then by Example 7.1 we have Deg(p) = (-1, -1). Therefore, p does not 
belong to〈r(V1),f(½) > by Proposition 7.3, which implies the assertion. Note that we 
also have Deg((]')= (-1,1) for (J'E r(M,I:) defined in Section 5, and thus, we can prove 
the assertion using this element as well instead of p. 

8 Monodromy groups of Heegaard surfaces and the virtual branched 

fibration theorem 

In the final section of this paper, we give yet another motivation for the study of the 
monodromy group r(M, E) and its subgroup〈「(Vi),f(½) >associated with a Heegaard 
splitting M = Vi u~ 怜. To describe this, let エ(¼) be the set of torsion elements of 
f(¼). (In fact, this set is equal to the set of vertical I-bundle involutions of¼.) Then we 
have the following theorem, refining the observation [49, Addendum 1] that every closed 
orientable 3-manifold M admits a surface bundle as a double branched covering. 

Theorem 8.1 Let M = Vi U凸怜 bea Heegaard splitting of a closed orientable 3-manifold 
M. Then there is a double branched covering p : M→ M that satisfies the following 
conditions. 

(i) M is a surface bundle over S1 whose fiber is homeomorphic to E. 

(ii) The inverse image p-1(E) of the Heegaard surface E is a union of two {disjoint) 
fiber surfaces. 

Moreover, the set D(M, E) of monodromies of such bundles is equal to the set {h山 I九E
I(¼)}, up to conjugation and inversion. 

Brooks [7] and Montesinos [40] independently proved that D(M, E) contains a pseudo-
Anosov element whenever g(E)~2. Hirose and Kin [23] studied the asymptotic behavior 
of the minimum of the dilatations of pseudo-Anosov elements contained in D(S叫均） as 
g→ oo, where均 isa genus g Heegaard surface of S>
For the special case where g(E) = 1 and M is a lens space, we can easily see that 
D(M, E) contains an Anosov element. Moreover, we can observe that the minimum 
translation length of the action on the curve complex of any element of D(M, E) with 
g(E) = 1 is "comparable" with 2d(E) where d(E) is the Hempel distance of E. We hope 
this toy example leads us to a refinement of the results of Brooks and Montesinos. 

Problem 8.2 Compare the complexity of the Heegaard surface E of M, e.g. the Hempel 
distance, and the complexities of the elements in D(M, E), e.g. the minimum translation 
lengths of the actions on the curve complex. 
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