The symplectic derivation Lie algebra of the free commutative algebra

Shuichi Harako
Graduate School of Mathematical Sciences, the University of Tokyo

1 Introduction

There are three Lie algebras $\mathfrak{l}_{g}, \mathfrak{a}_{g}, \mathfrak{c}_{g}$ defined by Kontsevich [7]. They are related to various geometric objects, e.g. moduli spaces of graphs and Riemann surfaces. In particular, \mathfrak{c}_{g}, the main topic in this paper, is used in perturbative Chern-Simons theory, which provides the extension of Vassiliev invariants [1, 6].

Each of three Lie algebras, denoted by \mathfrak{h}_{g} here, has a certain ideal \mathfrak{h}_{g}^{+}. By an argument of a spectral sequence,

$$
H_{\bullet}\left(\mathfrak{h}_{g}\right) \cong H_{\bullet}(\mathfrak{s p}(2 g ; \mathbb{Q})) \otimes H_{\bullet}\left(\mathfrak{h}_{g}^{+}\right)^{\mathrm{Sp}}
$$

holds in the stable range. Here $H_{\bullet}\left(\mathfrak{h}_{g}^{+}\right)^{\mathrm{Sp}}$ is the symplectic invariant part of $H_{\bullet}\left(\mathfrak{h}_{g}^{+}\right) . \mathfrak{h}_{g}^{+}$ is relatively easy to compute, and enable us to construct cohomology classes of higher degree by taking duals or cup products. This method is applied to \mathfrak{l}_{g} and \mathfrak{a}_{g} to study them by Morita [8].

Kontsevich's theorem shows each of three corresponds to a kind of graph complex. In the case of \mathfrak{c}_{g},

$$
P H_{\bullet}\left(\mathfrak{c}_{\infty}\right) \cong P H_{\bullet}(\mathfrak{s p}(2 \infty ; \mathbb{Q})) \oplus(\text { commutative graph homology }) .
$$

In fact, both homology groups of $\mathfrak{c}_{\infty}:=\lim _{g \rightarrow \infty} \mathfrak{c}_{g}$ and $\mathfrak{s p}(2 \infty ; \mathbb{Q}):=\lim _{g \rightarrow \infty} \mathfrak{s p}(2 g ; \mathbb{Q})$ have natural Hopf algebra structures. We denote by $P H_{\bullet}\left(\mathfrak{c}_{\infty}\right)$ and $P H_{\bullet}(\mathfrak{s p}(2 \infty ; \mathbb{Q}))$ the primitive parts of $H_{\bullet}\left(\mathfrak{c}_{\infty}\right)$ and $H_{\bullet}(\mathfrak{s p}(2 \infty ; \mathbb{Q}))$ respectively. There are some computational results from the viewpoint of graph homology theory (e.g. [2]). Conant-Gerlits-Vogtmann [3] computed the part up to degree 12. Willwacher-Živković [9] determined the generating function of Euler characteristic and displayed it up to weight 60 .

The homology group $H_{\bullet}\left(\mathfrak{c}_{g}^{+}\right)$has a $\mathbb{Z}_{\geq 0^{-}}$-grading called weight. It decomposes $H_{\bullet}\left(\mathfrak{c}_{g}^{+}\right)$ into direct summands $H_{\bullet}\left(\mathfrak{c}_{g}^{+}\right)_{w}$, which is generated by homogeneous elements of weight w. It is easy to see that $H_{1}\left(\mathfrak{c}_{g}^{+}\right)=S^{3} \mathbb{Q}^{2 g}$, however, the higher degree of $H_{\bullet}\left(\mathfrak{c}_{g}^{+}\right)$is still
unknown. We proved $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{w}=0$ for $g, w \geq 4$. Moreover, we determined $H_{2}\left(\mathfrak{c}_{g}^{+}\right)$in terms of Sp-modules as a corollary.

This paper is a summary of [5], in which more details of the proof are.

2 The Lie algebra \mathfrak{c}_{g}

Let $g \geq 4$ be an integer. We write $H:=\mathbb{Q}^{2 g}$ and consider the canonical $\operatorname{Sp}(2 g ; \mathbb{Q})$ action. Let $\mu: H \otimes H \rightarrow \mathbb{Q}$ be the canonical symplectic form, and $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ be a symplectic basis with respect to μ.

Definition 2.1. For $w \geq 0$, let $\mathfrak{c}_{g}(w):=S^{w+2} H$, which is the $(w+2)$-nd symmetric power, and set

$$
\mathfrak{c}_{g}:=\bigoplus_{w \geq 0} \mathfrak{c}_{g}(w) \supset \bigoplus_{w \geq 1} \mathfrak{c}_{g}(w)=: \mathfrak{c}_{g}^{+}
$$

We regard \mathfrak{c}_{g} or \mathfrak{c}_{g}^{+}as sets of polynomial functions on H of degree higher than 2 or 3 respectively. Let [,] be the classical Poisson bracket on H, i.e.

$$
[f, h]=\sum_{i=1}^{g}\left(\frac{\partial f}{\partial a_{i}} \frac{\partial h}{\partial b_{i}}-\frac{\partial f}{\partial b_{i}} \frac{\partial h}{\partial a_{i}}\right) \quad\left(f, h \in \mathfrak{c}_{g}\right) .
$$

Then $\mathfrak{c}_{g}^{+} \subset \mathfrak{c}_{g}$ becomes a Lie subalgebra. We consider the Chevalley-Eilenberg chain complex $\left(\wedge^{\bullet} \mathfrak{c}_{g}, \partial\right)$. Then $\wedge^{\bullet} \mathfrak{c}_{g}^{+} \subset \wedge^{\bullet} \mathfrak{c}_{g}$ becomes a chain subcomplex.

We introduce a $\mathbb{Z}_{\geq 0^{-}}$grading on $\wedge^{\bullet} \mathfrak{c}_{g}$.
Definition 2.2. - For $f_{1} \in \mathfrak{c}_{g}\left(w_{1}\right), \ldots, f_{k} \in \mathfrak{c}_{g}\left(w_{k}\right)$, we say that $f_{1} \wedge \cdots \wedge f_{k} \in \wedge^{k} \mathfrak{c}_{g}$ is of weight $w_{1}+\cdots+w_{k}$.

- $\left(\wedge^{k} \mathfrak{c}_{g}^{+}\right)_{w}:=\operatorname{Span}\left\{\omega \in \wedge^{k} \mathfrak{c}_{g}^{+} \mid \omega\right.$ is of weight $\left.w\right\}$

If $f_{1} \in \mathfrak{c}_{g}\left(w_{1}\right)=S^{w_{1}+2} H$ and $f_{2} \in \mathfrak{c}_{g}\left(w_{2}\right)=S^{w_{2}+2} H$, then

$$
\left[f_{1}, f_{2}\right] \in S^{\left(w_{1}+2\right)-1+\left(w_{2}+2\right)-1} H=\mathfrak{c}_{g}\left(w_{1}+w_{2}\right)
$$

In other words, the bracket [,] preserves weights. We see that the symplectic action on $\wedge^{\bullet} \mathfrak{c}_{g}^{+}$preserves weights and that so does the differential ∂, hence we have a decomposition $\bigoplus_{w \geq 1}\left(\wedge^{\bullet} \mathbf{c}_{g}^{+}\right)_{w}=\wedge^{\bullet} \mathbf{c}_{g}^{+}$as a chain complex.

Definition 2.3. $H_{\bullet}\left(\mathfrak{c}_{g}^{+}\right)_{w}:=H_{\bullet}\left(\left(\left(\wedge_{\bullet} \mathfrak{c}_{g}^{+}\right)_{w}, \partial\right)\right)$
Hence $H_{n}\left(\mathfrak{c}_{g}^{+}\right)=\bigoplus_{w \geq 1} H_{n}\left(\mathfrak{c}_{g}^{+}\right)_{w}$. Now we state the main theorem.
Theorem 2.1 (H., 2020). $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{w}=0$ if $g, w \geq 4$.
The proof is done by showing all the cycles are boundaries.

If $g, w \geq 2$ then $H_{1}\left(\mathfrak{c}_{g}^{+}\right)=S^{3} H=\mathfrak{c}_{g}(1)$ because the differential map

$$
\partial=[,]: \wedge^{2} \mathfrak{c}_{g}^{+} \rightarrow \bigoplus_{w \geq 2} \mathfrak{c}_{g}(w) .
$$

is surjective. This follows from the equation

$$
\partial_{2}\left(a_{1}^{w} a_{g} \wedge a_{1}^{2} b_{g}\right)=\left[a_{1}^{w} a_{g}, a_{1}^{2} b_{g}\right]=a_{1}^{w+2} \in \mathfrak{c}_{g}(w)
$$

and the fact that each $\mathfrak{c}_{g}(w)=S^{w+2} H$ is Sp -irreducible. We want to adopt the similar method, however, the chain space $\left(\wedge^{2} \mathfrak{c}_{g}^{+}\right)_{w}$ is not Sp-irreducible for general w. Therefore, we must find its Sp -irreducible decomposition and their generators.

3 Representation theory of $\operatorname{Sp}(2 g ; \mathbb{Q})$

Let us review the classical representation theory (see e.g. [4]).
The following is an important fact for the proof of the main theorem.

Theorem 3.1.

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { Finite dimensional polynomial } \\
\text { irreducible } \operatorname{Sp}(2 g ; \mathbb{Q}) \text { representation }
\end{array}\right\} / \cong \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { Young diagram with } \\
\text { at most } g \text { rows }
\end{array}\right\} \\
{\left[V_{\lambda}\right] \longleftrightarrow \lambda}
\end{gathered}
$$

Here V_{λ} is the submodule of $\left(\wedge^{\lambda_{1}^{\prime}} H\right) \otimes \cdots \otimes\left(\wedge_{d}^{\lambda_{d}^{\prime}} H\right)$ generated by

$$
a_{\lambda}:=\left(a_{1} \wedge \cdots \wedge a_{\lambda_{1}^{\prime}}\right) \otimes \cdots \otimes\left(a_{1} \wedge \cdots \wedge a_{\lambda_{d}^{\prime}}\right) \in\left(\wedge^{\lambda_{1}^{\prime}} H\right) \otimes \cdots \otimes\left(\wedge^{\lambda_{d}^{\prime}} H\right)
$$

as an $\operatorname{Sp}(2 g ; \mathbb{Q})$-module and ${ }^{t} \lambda=\left[\lambda_{1}^{\prime} \cdots \lambda_{d}^{\prime}\right] \quad\left(g \geq \lambda_{1}^{\prime} \geq \cdots \geq \lambda_{d}^{\prime} \geq 1\right)$ is the transpose of λ.

Example 3.1. - If $\lambda=[4] \cong S^{4} H$, then $a_{\lambda}=a_{1}^{\otimes 4 .}$

- If $\lambda=[1111]$, then $a_{\lambda}=a_{1} \wedge a_{2} \wedge a_{3} \wedge a_{4}$.
- Let $\lambda=[31]$, then ${ }^{t} \lambda=[211]$. Thus $a_{\lambda}=\left(a_{1} \wedge a_{2}\right) \otimes a_{1} \otimes a_{1}$.

We easily see that the chain space $\wedge^{2} \mathbf{c}_{g}^{+}$decomposes into

$$
\wedge^{2} \mathfrak{c}_{g}^{+} \cong \bigoplus_{w \geq 2}\left(\bigoplus_{\substack{k>l \geq 1 \\ k+l=w}} \mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l) \oplus \bigoplus_{\substack{k \geq 1 \\ 2 k=w}} \mathfrak{c}_{g}(k) \wedge \mathfrak{c}_{g}(k)\right)
$$

It is enough to discuss for each of the components $\mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l)$ and $\mathfrak{c}_{g}(k) \wedge \mathfrak{c}_{g}(k)$ because it is finite dimensional so that its Sp-irreducible decomposition always exists. We identify each of its irreducible components with a corresponding Young diagram through Theorem 3.1 for fixed k and l.

Lemma 3.1.

$$
\begin{aligned}
& \text { (i) For } k>l \geq 1, \mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l) \cong \bigoplus_{\substack{0 \leq \lambda_{2} \leq l+2}} \bigoplus_{\substack{0 \leq \rho \leq l+2-\lambda_{2}}}\left[\left(k+l+4-\lambda_{2}-2 \rho\right)\right. \\
& \text { (ii) For } k \geq 1, \boldsymbol{c}_{g}(k) \wedge \mathfrak{c}_{g}(k) \cong \bigoplus_{0 \leq \lambda_{2} \leq k+2} \bigoplus_{\substack{0 \leq \rho \leq k+2-\lambda_{2} \\
\rho+\lambda_{2} \text { is odd }}}\left[\left(2 k+4-\lambda_{2}-2 \rho\right)\right.
\end{aligned}
$$

This lemma follows from the Littlewood-Richardson rule and branching rules. In particular, the multiplicity of Sp-irreducible components of $\mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l)$ or $\mathfrak{c}_{g}(k) \wedge \mathfrak{c}_{g}(k)$ is always 1. We regard each irreducible component of $\mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l)$ or $\mathfrak{c}_{g}(k) \wedge \mathfrak{c}_{g}(k)$ as a Young diagram

satisfying the same conditions as ones in the lemma. The part described by dashed lines means the part "chopped off" by the branching rules.

4 Sketch of the proof

Note that the differential ∂ is Sp-equivariant so that it maps an Sp -irreducible component to another Sp-irreducible component isomorphically, otherwise to 0 .

We show the main theorem by the following steps:

1. Fix $w \geq 4$ and $k \geq l \geq 1$ such that $k+l=w$.

2-1. Take an irreducible component $\lambda=\left[\lambda_{1} \lambda_{2}\right] \neq[w+2]$ of $\mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l)$ or $\mathfrak{c}_{g}(k) \wedge \mathfrak{c}_{g}(k)$. 2-2. Find $\omega_{3} \in\left(\wedge^{3} \mathfrak{c}_{g}^{+}\right)_{w}$ such that $\left.\left(\partial \omega_{3}\right)\right|_{\lambda}$ generates λ as an $\operatorname{Sp}(2 g ; \mathbb{Q})$-module.
$\underline{2^{\prime}}$. Find the kernel of $\partial:\left(\wedge^{2} \mathfrak{c}_{g}^{+}\right)_{w} \rightarrow\left(\wedge^{1} \mathfrak{c}_{g}^{+}\right)_{w}=\mathfrak{c}_{g}(w)$ restricted to the isotypical component corresponding to $\lambda=[w+2]$.

The way to find ω_{3} varies depending on the conditions which $k, l, \rho, \lambda_{1}, \lambda_{2}$ satisfies. We do not discuss here the details of the construction of ω_{3} but how to determine if $\partial\left(\omega_{3}\right)$ generates λ as an Sp -module.

We define two homomorphisms.

$$
\begin{array}{cc}
\mu_{\text {end }}: & H^{\otimes(w+2)} \longrightarrow H^{\otimes w}, \\
& x_{1} \otimes \cdots \otimes x_{w+2} \longmapsto \mu\left(x_{1}, x_{w+2}\right) x_{2} \otimes \cdots \otimes x_{w+1} \\
\Lambda_{\text {end }}: & H^{\otimes(w+2)} \longrightarrow\left(\wedge^{2} H\right) \otimes H^{\otimes w} . \\
& x_{1} \otimes \cdots \otimes x_{w+2} \longmapsto\left(x_{1} \wedge x_{w+2}\right) \otimes x_{2} \otimes \cdots \otimes x_{w+1}
\end{array}
$$

We consider $\mathfrak{c}_{g}(k)=S^{k+2} H \subset H^{\otimes(k+2)}$ and $\mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l) \subset H^{\otimes(k+l+4)}$. Similarly we consider $\mathfrak{c}_{g}(k) \wedge \mathfrak{c}_{g}(k) \subset H^{\otimes(2 k+4)}$, like $a_{1}^{3} \wedge a_{2}^{4}=a_{1}^{3} \otimes a_{2}^{4}-a_{2}^{4} \otimes a_{1}^{3} \in H^{\otimes 7}$ for example. Hence $\mu_{\text {end }}$ and $\Lambda_{\text {end }}$ can be applied to an element of $\wedge^{2} \mathfrak{c}_{g}^{+}$.

Let $\eta \in \mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l)$ and let $\lambda \subset \mathfrak{c}_{g}(k) \otimes \mathfrak{c}_{g}(l)$ be an Sp-irreducible component. Let us consider the situation that η is mapped to a_{λ} (in Theorem 3.1) by some compositions of $\mu_{\text {end }} \mathrm{S}$ and $\Lambda_{\text {end }} \mathrm{S}$. Then the isotypical component of η corresponding to λ, which is denoted by $\left.\eta\right|_{\lambda}$, generates λ because both $\mu_{\text {end }}$ and $\Lambda_{\text {end }}$ are Sp-equivariant. We use this technique for the proof.

Example 4.1. Consider the case $w=7, k=4, l=3$, and $\lambda=\left[\begin{array}{ll}2 & 1\end{array}\right]$.

Since $\lambda \neq[9]$, we have to find $\omega_{3} \in\left(\wedge^{3} \mathbf{c}_{g}^{+}\right)_{7}$ with $\left.\left(\partial \omega_{3}\right)\right|_{\lambda}$ generating λ. In fact, it is enough to define $\omega_{3}:=a_{1}^{2} a_{4} \wedge a_{3}^{4} b_{4} \wedge a_{2} b_{3}^{4}$. Then $\partial \omega_{3}=a_{1}^{2} a_{3}^{4} \wedge a_{2} b_{3}^{4}-16 a_{1}^{2} a_{4} \wedge a_{2} a_{3}^{3} b_{3}^{3} b_{4}$.

Let us check $\left.\left(\partial \omega_{3}\right)\right|_{\lambda}$ generates λ. For the first term of $\partial \omega_{3}$, we have

$$
\left.a_{1}^{2} a_{3}^{4} \xrightarrow{\left(\mu_{\text {end }}\right)^{\circ 4}} 24^{2} a_{1}^{2} \otimes a_{2} \xrightarrow{\Lambda_{\text {end }}} 2 \cdot 24^{2}\left(a_{1} \wedge a_{2}\right) \otimes a_{1}=24^{2} a_{[2} 1\right] \in\left(\wedge^{2} H\right) \otimes H
$$

Here $\left(\mu_{\text {end }}\right)^{\circ 4}$ is the 4 -time compositions of $\mu_{\text {end }}$. Hence $\left.\left(a_{1}^{2} a_{3}^{4}\right)\right|_{[21]}$ generates [21] as an Sp-module. For the second term, we have $\left.\left(a_{1}^{2} a_{4} \wedge a_{2} a_{3}^{3} b_{3}^{3} b_{4}\right)\right|_{[21]}=0$ because $\mathfrak{c}_{g}(1) \otimes \mathfrak{c}_{g}(6)$ does not contain Sp -irreducible components isomorphic to [2 1] by Lemma 3.1.

Therefore, $\left.\left(\partial \omega_{3}\right)\right|_{\lambda}$ generates $[21] \subset \mathfrak{c}_{g}(4) \otimes \mathfrak{c}_{g}(3)$. This shows that $[21] \subset\left(\mathfrak{c}_{g}(4) \otimes\right.$ $\left.\mathfrak{c}_{g}(3)\right) \cap \operatorname{Im}\left(\partial: \wedge^{3} \mathfrak{c}_{g}^{+} \rightarrow \wedge^{2} \mathfrak{c}_{g}^{+}\right)$.

5 Lower weight cases

By Theorem 2.1, we have

$$
H_{2}\left(\mathfrak{c}_{g}^{+}\right)=\bigoplus_{w \geq 1} H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{w}=\bigoplus_{w=1}^{3} H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{w}
$$

In order to determine $H_{2}\left(\mathfrak{c}_{g}^{+}\right)$, it is enough to discuss the case $w=1,2,3$.
Lemma 5.1. If $g \geq 4$, then $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{1}=0, H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{2}=[51]+[33]+[22]+[11]+[0]$, and $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{3}=[1]$.

Proof. $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{1}=0$ is obvious because no $k \geq l \geq 1$ satisfy $k+l=1$.
Since the weight 2 part of $\wedge^{3} \mathfrak{c}_{g}^{+}$is zero and since $\partial_{2}=[]:, \wedge^{2} \mathfrak{c}_{g}(1) \rightarrow \mathfrak{c}_{g}(2)=S^{4} H=[4]$ is surjective, we have $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{2}=\wedge^{2} \mathfrak{c}_{g}(1) / \mathfrak{c}_{g}(2)$. The Sp -irreducible decomposition of $\wedge^{2} \mathbf{c}_{g}(1)$ is $[51]+[33]+[4]+[22]+[11]+[0]$, therefore the statement follows.

The Sp-irreducible decomposition of $\mathfrak{c}_{g}(2) \otimes \mathfrak{c}_{g}(1)$ is

$$
\mathfrak{c}_{g}(2) \otimes \mathfrak{c}_{g}(1)=[7]+[61]+[52]+[43]+[5]+[41]+[32]+[3]+[21]+[1] .
$$

The space $\wedge^{3} \mathbf{c}_{g}(1)$ does not have [5] and [1] as its Sp-irreducible components. We can use the same method as in the case $w \geq 4$ for all the other Sp-irreducible components and obtain appropriate $\omega_{3} \mathrm{~S}$ for each of them. Again, since $\partial_{2}=$ [,]: $\mathfrak{c}_{g}(2) \wedge \mathfrak{c}_{g}(1) \rightarrow \mathfrak{c}_{g}(3)=S^{5} H=[5]$ is surjective, we have $H_{2}\left(\mathfrak{c}_{g}^{+}\right)_{3}=\left(\mathfrak{c}_{g}(2) \otimes\right.$ $\left.\mathfrak{c}_{g}(1)\right) /\left(\mathfrak{c}_{g}(3) \oplus \operatorname{Im}\left(\partial_{3}: \wedge^{3} \mathfrak{c}_{g}(1) \rightarrow \mathfrak{c}_{g}(2) \wedge \mathfrak{c}_{g}(1)\right)\right)=[1]$.

Corollary 5.1. If $g \geq 4$, then $H_{2}\left(\mathfrak{c}_{g}^{+}\right)=[51]+[33]+[22]+[11]+[1]+[0]$ as an Sp-module.
From the proof of Lemma 5.1, we also have the following.
Corollary 5.2. If $g \geq 4$, then $H_{3}\left(\mathfrak{c}_{g}^{+}\right)_{3}=[711]+[63]+[531]+[333]+[52]+[421]+[322]+$ $[41]+2[311]+2[3]$ as an Sp-module.

References

[1] D. Bar-Natan. "On the Vassiliev knot invariants". In: Topology 34.2 (1995), pp. 423-472.
[2] D. Bar-Natan and B. D. Mckay. Graph cohomology - an overview and some computations. available at https://www.math.toronto.edu/drorbn/.
[3] J. Conant, F. Gerlits, and K. Vogtmann. "Cut vertices in commutative graphs". In: The Quarterly Journal of Mathematics 56.3 (Sept. 2005), pp. 321-336.
［4］W．Fulton and J．Harris．Representation Theory：A First Course．Graduate texts in mathematics． Springer， 1991.
［5］S．Harako．The second homology group of the commutative case of Kontsevich＇s symplectic derivation Lie algebra．in preparation．
［6］M．Kontsevich．＂Vassiliev＇s knot invariants＂．In：I．M．Gel＇fand Seminar．Vol．16．Advances in Soviet Mathematics．American Mathematical Society，Providence，RI，1993，pp．137－150．
［7］M．Kontsevich．＂Feynman Diagrams and Low－Dimensional Topology＂．In：First European Congress of Mathematics Paris，July 6－10，1992：Vol．II：Invited Lectures（Part 2）．Basel：Birkhäuser Basel， 1994，pp．97－121．
［8］S．Morita．＂Lie algebras of symplectic derivations and cycles on the moduli spaces＂．In：Groups， homotopy and configuration spaces（Tokyo 2005）（Feb．2008）．
［9］T．Willwacher and M．Živković．＂Multiple edges in M．Kontsevich＇s graph complexes and computa－ tions of the dimensions and Euler characteristics＂．In：Advances in Mathematics 272 （2015），pp．553－ 578.

Graduate School of Mathematical Sciences
The University of Tokyo
Tokyo 153－8914
JAPAN
E－mail address：harako＠ms．u－tokyo．ac．jp

