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1 Introduction

There are three Lie algebras [, a,, ¢, defined by Kontsevich [7]. They are related to
various geometric objects, e.g. moduli spaces of graphs and Riemann surfaces. In partic-
ular, ¢,, the main topic in this paper, is used in perturbative Chern-Simons theory, which
provides the extension of Vassiliev invariants [1, 6].

Each of three Lie algebras, denoted by b, here, has a certain ideal f);r. By an argument
of a spectral sequence,

Hy(by) = Hau(sp(29: Q) © Ha(b; )™

holds in the stable range. Here H.(h;)Sp is the symplectic invariant part of H,(hf). b
is relatively easy to compute, and enable us to construct cohomology classes of higher
degree by taking duals or cup products. This method is applied to [, and a, to study
them by Morita [8].

Kontsevich’s theorem shows each of three corresponds to a kind of graph complex. In
the case of ¢4,

PH,(¢s) = PH.(sp(200;Q)) @ (commutative graph homology) .

In fact, both homology groups of ¢, = lim, . ¢, and sp(200; Q) = lim, ., sp(2g; Q)
have natural Hopf algebra structures. We denote by PH,(cy) and PH,(sp(200;Q)) the
primitive parts of H,(¢) and He(sp(200; Q)) respectively. There are some computational
results from the viewpoint of graph homology theory (e.g. [2]). Conant-Gerlits-Vogtmann
[3] computed the part up to degree 12. Willwacher-Zivkovié [9] determined the generating
function of Euler characteristic and displayed it up to weight 60.

The homology group H.(c}) has a Z>o-grading called weight. It decomposes H,(c})
into direct summands H,(c] )., which is generated by homogeneous elements of weight
w. It is easy to see that Hi(c)) = 53Q%, however, the higher degree of H,(c) is still



unknown. We proved Hy(c), = 0 for g,w > 4. Moreover, we determined Hy(c,) in
terms of Sp-modules as a corollary.
This paper is a summary of [5], in which more details of the proof are.

2 The Lie algebra ¢,

Let g > 4 be an integer. We write H := Q% and consider the canonical Sp(2g; Q)-
action. Let u: H ® H — Q be the canonical symplectic form, and a4, ..., a,,b1,...,b, be
a symplectic basis with respect to .

Definition 2.1. For w > 0, let ¢j(w) = S“*?H, which is the (w + 2)-nd symmetric

power, and set
&y = Do) > Peslw) = ¢

w>0 w>1

We regard ¢, or ¢/ as sets of polynomial functions on H of degree higher than 2 or 3
respectively. Let [,] be the classical Poisson bracket on H, i.e.

- (O0f Oh Of Oh
[f’h]z(a_ma_laa_@a_@> (f,h€cy).

1=

Then cg+ C ¢4 becomes a Lie subalgebra. We consider the Chevalley-Eilenberg chain
complex (A%cy, d). Then A*c C A®cy becomes a chain subcomplex.
We introduce a Zxy-grading on A®c,.

Definition 2.2. o For fi € cy(w1),..., fir € ¢y(wy), we say that fi A--- A fir, € AFe,
is of weight wy + - - - 4+ wy.
o (AF¢f) = Span{w € A*¢] | w is of weight w}

If f1 € cg(wl) = S"*T2[ and f2 S Cg(’wz) = Sw2+2H, then
[flv f2] S S(w]+2)_1+(w2+2)_1H = Cg(wl + UJQ).

In other words, the bracket [,] preserves weights. We see that the symplectic action on
/\'cg+ preserves weights and that so does the differential 0, hence we have a decomposition
D1 (A%cy)w = A%cy as a chain complex.

Definition 2.3. H.(c;)w = H.(((/\'c;r)w,@))

Hence H,(c;) = @, Hn(c})w Now we state the main theorem.

Theorem 2.1 (H., 2020). Hy(c}), = 0if g,w > 4.

The proof is done by showing all the cycles are boundaries.
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If g,w > 2 then Hy(c}) = S*H = ¢,(1) because the differential map

o=11] Nc} %@cg(w).

w>2

is surjective. This follows from the equation
Do(ai’ag A aibg) = [alluagva%bg] =af? e cy(w)

and the fact that each ¢,(w) = S“T?H is Sp-irreducible. We want to adopt the similar
method, however, the chain space (/\Zc;)w is not Sp-irreducible for general w. Therefore,
we must find its Sp-irreducible decomposition and their generators.

3 Representation theory of Sp(2¢g; Q)

Let us review the classical representation theory (see e.g. [4]).
The following is an important fact for the proof of the main theorem.

Theorem 3.1.

Finite dimensional polynomial 111 Young diagram with
irreducible Sp(2¢; Q) representation / o at most g rows

VAl A
Here Vj is the submodule of (AMMH) ® - - ® (AMH) generated by
ay=(a A Nay) @@ (ag A Aay) € (ANH) - @ (ANH)

as an Sp(2g; Q)-module and ‘A =[N, ---X)] (¢ >N >--- >N, > 1) is the transpose of
A.

Example 3.1. o If A = [4] = S*H, then a) = a}*.
o If A\ =[1111], then ay = a3 A az A az A ay.
o Let A = [31], then ‘A =[211]. Thus ay = (a1 Aag) ® a1 ® ay.

| I

‘ | transpose
’ ay

[ ai

We easily see that the chain space /\ch+ decomposes into

Neh = @ @ co(k) @ ¢ (1) @ @ ¢y (k) A cy(k)

w>2 k>1>1 k>1
k+l=w 2k=w



It is enough to discuss for each of the components ¢, (k)®@¢, (1) and ¢y (k) Ac, (k) because it is
finite dimensional so that its Sp-irreducible decomposition always exists. We identify each
of its irreducible components with a corresponding Young diagram through Theorem 3.1
for fixed k and .

Lemma 3.1.

(i) For k> 1> 1, ¢ (k) 2 c,(1) = P P (E+i+a-2-2p) X

0<A2<I+2 0<p<l+2—y

(ii) For k > 1, ¢,(k) Acy(k) = €D P (k+4-2-20) X
0< Ao <k+2 0<p<k+2—\2
p+A2 is odd

This lemma follows from the Littlewood-Richardson rule and branching rules. In particu-
lar, the multiplicity of Sp-irreducible components of ¢, (k) ® ¢4(1) or ¢ (k) A¢y(k) is always
1. We regard each irreducible component of ¢;(k) ® ¢,4(1) or ¢,(k) A ¢y(k) as a Young
diagram

p A1

r=a--=-T7 7

-]

A2

satisfying the same conditions as ones in the lemma. The part described by dashed lines
means the part “chopped off” by the branching rules.

4 Sketch of the proof

Note that the differential 0 is Sp-equivariant so that it maps an Sp-irreducible compo-
nent to another Sp-irreducible component isomorphically, otherwise to 0.
We show the main theorem by the following steps:

1. Fix w >4 and kK > 1 > 1 such that k + 1 = w.
2-1. Take an irreducible component A = [A\j o] # [w + 2] of ¢, (k) ® ¢, (1) or ¢, (k) A cy(k).
2-2. Find w3 € (A’c) ), such that (Jws)|, generates A as an Sp(2g; Q)-module.
2'. Find the kernel of 9 : (A%¢) )y — (A'c¢f)w = ¢y(w) restricted to the isotypical
component corresponding to A = [w + 2.

The way to find w3 varies depending on the conditions which k, [, p, A1, Ao satisfies. We
do not discuss here the details of the construction of ws but how to determine if 9(ws)
generates A as an Sp-module.
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We define two homomorphisms.

/j’end: H@(w+2) H®wa
T1 Q- Q Ty —> M<$17$w+2)l‘2®"'®$w+1
Ao a2 s (AN?H) ® H®v.

TR ® Tyyz > (T1 A Tp2) @ T2 Q-+ @ Ty

We consider ¢,(k) = S¥2H < H®**2 and ¢,(k) @ ¢, (1) ¢ H***H . Similarly we
consider ¢ (k) A ¢ (k) C HE+Y like a A a3 = a} ® a3 — a3 @ a} € H® for example.
Hence pieng and Agnq can be applied to an element of /\QCJ.

Let n € ¢y(k) ® ¢,(1) and let A C ¢,(k) ® ¢4(l) be an Sp-irreducible component. Let us
consider the situation that 7 is mapped to ay (in Theorem 3.1) by some compositions of
tenas and Acpgs. Then the isotypical component of 1 corresponding to A, which is denoted
by 1|,, generates A because both fienq and Aenq are Sp-equivariant. We use this technique
for the proof.

Example 4.1. Consider the case w =7, k=4, =3, and A = [2 1].

p=4 M\ =2

—Pt—
I'__\__I__T__I |
1 1 1 1 |
A= oty
LN I [ Y A
~—~—
Ay =1

Since A # [9], we have to find ws € (A%c))7 with (Ows)|, generating A. In fact, it is
enough to define wy = afay A ajby A asbi. Then Ows = a?aj A asbi — 16a2ay A aza3bib,.

Let us check (Ows)|, generates \. For the first term of Ows, we have

alay {tren) 24%a3 ® ay lendy 9. 24%(ay A az) ® a1 = 24%ap 4 € (N°H) ® H.
Here (pena)®* is the 4-time compositions of jiena. Hence (aja)|, |, generates [2 1] as an
Sp-module. For the second term, we have (ajas A a2a3b3bs)|, ) = 0 because ¢ (1) ® ¢ (6)
does not contain Sp-irreducible components isomorphic to [2 1] by Lemma 3.1.

Therefore, (Ows)|, generates [2 1] C ¢4(4) ® ¢4(3). This shows that [2 1] C (¢,(4) ®
¢(3)) N Im (9: A ¢f — A%c)).
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5 Lower weight cases

By Theorem 2.1, we have

3

Hy(cy) = @D Halc))w = @D Halc) )

w>1 w=1

In order to determine Hy(c}), it is enough to discuss the case w = 1,2, 3.

Lemma 5.1. If g > 4, then Hy(c)), = 0, Ha(c))s = [51] + [33] + [22] + [11] + [0], and
HQ(C;):\, = [1]

Proof . Hz(c;“)l = 0 is obvious because no k > [ > 1 satisfy k+ 1 = 1.

Since the weight 2 part of A%c} is zero and since 0y = [,]: A%cy(1) = ¢,(2) = S*H = [4]
is surjective, we have Hy(cF)2 = A%cy(1)/c,(2). The Sp-irreducible decomposition of
N?ey(1) is [51] + [33] + [4] + [22] + [11] + [0], therefore the statement follows.

The Sp-irreducible decomposition of ¢,(2) ® ¢ (1) is

¢(2) ®¢g(1) = [7] 4 [61] + [52] + [43] + [5] + [41] + [32] + [3] + [21] + [1].

The space A’c,(1) does not have [5] and [1] as its Sp-irreducible components. We
can use the same method as in the case w > 4 for all the other Sp-irreducible
components and obtain appropriate wss for each of them. Again, since 0y =
[ 6g(2) Acy(l) — ¢,(3) = S°H = [5] is surjective, we have Hy(c))s = (¢g(2) ®
o (1)/ (64(3) © Im (D52 A% ¢y(1) = ,(2) A ¢y(1))) = [1]. 3

Corollary 5.1. If g > 4, then Hy(c}) = [51]+[33]+[22] +[11] 4 [1] +[0] as an Sp-module.
From the proof of Lemma 5.1, we also have the following.

Corollary 5.2. If g > 4, then H3(c; )z = [7T11]+[63] + [531] + [333] + [52] + [421] + [322] +
[41] + 2[311] + 2[3] as an Sp-module.
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