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Johnson-type homomorphisms, a conjecture by Levine, and the 

LMO  invariant 

Anderson Vera1 

Department of Mathematics, Kyoto University 

1 Introduction 

This note is based on the talk at the conference Intelligence of Low-dimensional Topol-
ogy 2020 held at the Research Institute of Mathematical Sciences, Kyoto University. It 
provides a survey on the results on different filtrations of the mapping class group, their 
generalizations to homology cobordisms and their relations with the functorial extension of 
the Le-Murakami-Ohtsuki invariant, called the LMO functor. We refer to [10, 9, 3, 20, 21] 
for a detailed exposition of these subjects. 

The organization of the note is as follows. In Section 2 we introduce the basic definitions 
about mapping class group and homology cobordisms. Section 3 is devoted to Johnson-
type filtrations and Jhonson-type homomorphisms, in particular we state a result which 
can be considered a weak version of a conjecture stated by Levine about the comparison of 
two of the filtrations. In Section 4 we explain the explicit relations between the Johnson-
type homomorphisms and the tree reduction of the LMO functor. 

2 Mapping class group and Homology cobordisms 

2.1 Mapping class group and some important subgroups 

Let I; be a compact connected oriented surface of genus g with exactly one boundary 
component. Denote by M the mapping class group of I;, that is, the group of isotopy 
classes of orientation-preserving homeomorphisms h : I; → I; which are the identity on 
the boundary 8I; of I;. 

From the 3-dimensional point of view it is natural to consider I; as being part of the 
boundary of a handlebody V of genus g, that is, we consider an embedding l : I; → Vas 
shown in Figure 1. 

Let * E 8I; and consider the following notations: 

7r =町(I;,*), が＝町(V,*), A=ker(1r~ が），
A = ker(H -':.'+ H'), 

H=H心；Z), H'=凡 (V;Z) and K2 = ker(1r~1r'~H') =A・[1r, 1r]. 
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Figure 1: Embedding l: ~ → V. Here av=~u D, where D c av is an embedded disk. 

The group M acts naturally on Hand 1r. The Torelli group, denoted by I, consists of 
the elements of M acting trivially on H, that is, 

I = { h E M I h. = I伽｝

We also consider the following subgroups of M. The handlebody group 

1{ = {h EM  I h#(A) CA}, 

the Lagrangian mapping class group 

.C = { h E M I h. (A) c A}, 

the Lagrangian Torelli group 

び={ h E .c I h•IA = Id叶，

and finally, the alternative Torelli group 

for x E 7r: h#(x)x―1 E K2 I'~{ h E£, h,(y):d:; [!,〗T竺1] IいI~, K,} 

(1) 

(2) 

(3) 

(4) 

(5) 

The group工acan be defined as the subgroup of M, generated by Dehn twists t勺
about curves I on~which are homologically trivial in V. The above subgroups play an 
important role in the study of homology 3-spheres and the theory of finite-type invariants. 

Example 2.1. Let ta, be the (left) Dehn twist about the meridian cu切 eai (1 :S: i :S: g) 
from Figure 1. Then ta, E I。nIL n 11, but ta, (j_ I. Similarly, 似 l:S:k<l:S:g
and consider the simple closed curve oぃwhichturns around the k-th handle and the l-th 
handle as shown in Figure 4. 7 (a). Let t°'kl be the (left) Dehn twist about akl・We have 
t°'kl E (Ia n IL n 11,) ¥ I. 

A remarkable result is that (for genus enough large) the Torelli group工isfinitely 
generated [12]. It can also be shown thatび andエaare finitely generated (see [21, 
Remark 4.15]). 

1The author is supported by the JSPS Postdoctoral Fellowship for Research in Japan ID No. PE19728 
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2.2 Homology cobordisms 

The notion of homology cobordism was introduced independently by Goussarov [6] and by 
Habiro [8] in connection with the theory of finite-type invariants. A homology cobordism、

of~is the equivalence class of a pair M = (M, m), where M is a compact connected 
oriented 3-manifold and m : 8(~x [ 1 1])→ aM・ 1s an onentat10n-preservmg homeo-
morphism, such that the bottom and top embeddings m斗）：=m(・，土1):~ → M induce 
isomorphisms in homology. Two pairs (M, m) and (M', m') are equivalent if there exists 
an orientation-preserving homeomorphism <p : M → M'such that <p o m = m'. From now 
on, we specify a homology cobordism by M = (M, m+, m_). 

The composition Mo  M'of two homology cobordisms of~is the equivalence class of 
令一.• .-.• 

(M,m~,m-), where Mis obtained by gluing the two 3-manifolds Mand M'by using 
the map m+ o (m~_)-1. This composition gives a structure of a monoid. Denote by C the 

monoid of homology cobordisms of~-

Proposition 2.2. [9, Proposition 2.4] The cylinder map c : M → C defined by associating 
to any h E M the homology co bordisms (~x [-1, 1], h, Id叫isinjective. 

By the above proposition, the monoid C can be considered as a sort of generalization 
of M. Let us define the submonoids of C respectively analogous to the subgroupsエ，礼
,C andエLof M. 

The monoid of homology cylinders 

工C= {(M,m+,m-) EC Im芯 om+,•= ldH,(I:J}, 

the monoid of special Lagrangian cobordims 

(6) 

HC = {(M,mゎ叫） EC I MUm_ V=  V邸 cobordisms}, (7) 

the monoid of Lagrangian homology cobordims 

ひ={(M, m+, m_) EC I m+,.(A) C m_,.(A)}, 

aJ1d the monoid of Lagrangian homology cylinders 

ェひ={(M, m+, m_) E cL I m+,•IA = m_, 山｝．

By definition we have c(I) CIC, c(H) C HC, c(£) CCL and c(が） cICL. 

3 Johnston-type homomorphisms 

3.1 Johnson homomorphisms 

(8) 

(9) 

From the works of Johnson [11] and Morita [18] we can consider a stepwise approximation 
of the action of M on 1r by considering the action of M on the nilpotent quotients 
訂rn+17rfor n?: 1, where {r詞｝立1is the lower central series of 1r (i.e. r汀 =1r and 
r n+17r = [1r, r汀]for n?: 1). This gives rise to the so-called Johnson filtration of M: 

I = J1M ::, hM  ::, J3M・・・ (10) 
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where JnM consists of the elements in M acting trivially on訂rn+17f.
Let£ie(H) = E9n:::,:1£ien(H) be the free graded Lie algebra on H. Denote by Dn(H) 

the kernel of the Lie bracket map [ , ] : H @£ien+ 1 (H)→ £ien+2 (H). Each one of the 
terms JnM of the Johnson filtration comes equipped with a group homomorphism, the 
n-th Johnson homomorphism, 

冗： lnM ---+ Dn(H) (11) 

such that ker(Tn) = ln+1M. 
The Johnson filtration and the Johnson homomorphisms of M extend in a natural 

way to C, see [4]. Given M = (M, m+, m_) EC, since m+ and m_ induce isomorphisms 
in homology in all degrees, by Stallings'theorem [19, Theorem 3.4], the maps m士，＊：

訂fn7r→町 (M,*)/fn町 (M,*) are isomorphisms for all n~2. The Johnson filtration 
of C is the decreasing sequence of submonoids 

IC= J1CっJ2CっJ3C・ ・ ・ (12) 

where JnC consists of the elements (M, mが叫 EC such that m二し om+,• acts trivially 
on計rn+11r. Notice that under the cylinder map we have c(JnM) C 1ぶ

The homomorphism (11) extends to a monoid homomorphism, 

Tn: lnC---+ Dn(H) (13) 

such that ker(T!:) = .J, 如Cand called then-th Johnson homomorphism for C. 

3.2 Johnson-Levine homomorphisms 

Levine [13, 15] introduced a filtration forが， whichwe call Johnson-Levine filtration, 

where 

が =JfMっJfMっJfMつ・・・

J~M={hEILI し＃位(A) C fn+11r'} 

(14) 

for nミ1.Notice that JnM C J[;:M. Levine also introduced a family of group homo-
morphisms 

T;: J;M→ Dn(H') (15) 

such that ker(心） = J[:+lM. Here ,.Cie(H') = EBn2".1,.Cien(H') is the free graded Lie algebra 
on H'and Dn(H') the kernel of the Lie bracket map [, ] : H'Q?i,.Cien+1(H')→ ,.Cien+2(H'). 

The Johnson-Levine filtration extends naturally to homology cobordisms as the de-
scending chain of submonoids 

ェひ=Jfc :::i JfcコJfcつ・・・ (16) 

where 

J加={MEICL I i#m言叫，.(A)c r n+11r'}. 

Clearly we have lnC c Jf:C and c(J{:M) c Jf:C. Th en-th Johnson-Levme homomor-
phism extends to a monoid homomorphism 

咄： JれC→ Dn(H') (17) 

such that ker(か=Jf:+1C. 
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3.3 A conjecture by Levine 

It is natural to ask about the relationship between the Johnson filtration and the Johnson-
filtration. Levine proposed the following. 

Conjecture 3.1 (Levine [15]). For every n~1, we have J;M = lnM• (1-l nび）．
Levine showed this conjecture for n E {1, 2}. In [20] we obtained a comparison of the 

Johnson and Johnson-Levine filtrations for homology cobordisms but up to some surgery 
equivalence relations called Y,.-equivalence (defined for any r~1). The notion of Y,.-
equivalence was introduced independently by Goussarov [6, 5] and Habiro [8] in their 
study of finite-type invariants. Let us explain these relations, we follow [8]. 

Let G be a graph that can be decomposed into two subgraphs, say G = G'U G0, such 
that G'is a unitrivalent graph and G0 is a union of looped edges of G. The subgraph G' 
is called the shape of G. Let us consider a compact oriented 3-manifold M (possibly with 
boundary) . A graph clasper in Mis an embedding (G <-+ int(M) of a thickening (G of G, 
see Figure 2. We still denote the image of the embedding by G. The degree of a graph 
clasper is the number of trivalent vertices of its shape. From now on, we assume that the 
degree of graph claspers is greater than or equal to 1. 

(a) (b) (c) 

Figure 2: (a) Graph G. (b) Thickening G. (c) Embedding (G'-+ M. 

A graph clasper G in M carries surgery instructions for modifying M as follows. Sup-
pose that G has degree 1. Consider a regular neighbourhood N(G) of G in int(M). 
Perform surgery in N(G) along the framed six-component link L illustrated in Figure 3. 

□→ 

Figure 3: Framed link邸 sociatedto a degree 1 clasper. 

Denote the result by N(G)L-We obtain a new 3-manifold Mc by setting 

恥：= (M ¥ int(N(G))) U N(G)L. 

If G is of degree > 1 we apply the fission rule, illustrated in Figure 4, until obtaining a 
disjoint union of degree 1 claspers. Then Mc is defined by performing surgery as before 
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along each degree I-clasper. If the degree of G is r, we say that Ma is obtained from M 
by a Y;.-surgery. 

>----<: → >----m-< 
Figure 4: Fission rule. 

The Y,.-equivalence is the equivalence relation among 3-manifolds generated by Y,. ― 

surgeries and orientation-preserving homeomorphisms. 
Hahira proved that IC/Y,. is a group [8, Theorem 5.4], see also [6, Theorem 9.2]. 

Consider the short exact sequence 

1→ IC/Yr~C/Y,. 且 Sp(H)→ 1, (18) 

where p1(M) = m芯mぃ： H→ H for M = (M, m+, m_) EC. This map is well-defined 
on C/Yr by [17, Lemma 6.1]. It follows from (18) that C/Y,. is also a group. 

Lemma 3.2 ([20, Lemma 4.5]). For r~n~1, the group C/Yr contains lnC/Yr and 
虚 /Yras subgroups. 

We can state now our comparison result. 

Theorem 3.3 ([20, Theorem 4.9]). For all n, l~1, we have 

J加 lnC. L 

Y 
伽+z(1iC n IC) , 

n+l Yn+l 
(19) 

where qn+l : C→ C /Yn+l is the canonical projection. 

Compare this statement with Conjecture 3.1. The main application of Theorem 3.3 
is that it allows to relate the Johnson-Levine homomorphisms with the tree reduction of 
the LMO functor, see Section 4. 

3.4 Alternative Johnson homomorphisms 

Habiro and Massuyeau [10] introduced a filtration for the alternative Torelli group四
which we call alternative Johnson filtration, 

ェa=JfMっJfMっJぶM・・・

by using a decreasing sequence { Kn}立 1of subgroups of 1r. This sequence is defined by 

K1 = 1r, K2 = [1r, 1r]・A and Kn = [Ki, Kn-1]・[K2, Kn-1] for n 2'. 2. 

Then-the term of the alternative Johnson filtration is given by 

屈~{ h EC focx~;!~,; ピ鸞,0->EK,-,,, 

h訊11)11―'EK'+n } 

for n 2'. 1. 
The main properties of the alternative Johnson filtration and its relations with the 

Johnson and Johnson-Levine filtration are given in the following result. 
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Theorem 3.4 ([21, Theorem Al). We have 

(i) nn;,1なM = {Id叫・

(ii) For all n 2". 1 the group J~M is residually nilpotent, that is, nk几なM ={I屯｝．

Besides, for every n;:::: 1, we have 

(iii) JぶMclnM. (iv) lnM c J~_1M· (v) J~M c J{;:+1M, 

where Iiふtvt= L. In particular, the Johnson filtration and the alternative Johnson filtra-
tion are cofinal. 

Hahira and Massuyeau also introduced the respective family of Johnson-type homo-
morphisms 

岱： J~M • Dn(H',A) (20) 

such that ker(埒） =JいM,to which we refer as alternative Johnson homomorphisms. 
In this case the abelian group Dn(H', A) is a subgroup of (H'EB A) 181£ie(H', A), where 
£ie(H', A) is the graded free Lie algebra generated by H'in degree 1 and A in degree 2. 

Example 3.5. For the Dehn twists ta,, taki E Ia from Example 2.1, we have 

吋(taJ= -ai Q9 a, 

and 

Tf(t叩 i)= -(ak Q9叫ー (alQ9叫ー (akQ9叫ー (alQ9叫

Lemma 3.6 ([21, Lernrna 5.10]). For n~1, there is a well-defined homomomorphism 

し*:Dn(H';A)→ Dn+1(H') 

induced byら： H→ H'. 
Proposition 3. 7 ([21, Proposition 5.11]). For n~1, the diagram 

J~M~Jf:+1M 

叶!T;(十1

Dn(H'; A)~Dn+1(H') 

is commutative. In other words, for J~M, the homomorphism咄t-1is determined by the 
homomorphism岱

4 Johnson-type homomorphisms and the LMO functor 

4.1 Jacobi diagrams and diagrammatic Johnson-type homomorphisms 

A Jacobi diagram is a finite unitrivalent graph such that the trivalent vertices are oriented, 
that is, its incident edges are endowed with a cyclic order. Let C be a finite set. We call a 
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Jacobi diagram C-colored if its univalent vertices are colored with elements of the Q-vector 
space spanned by C. 

The internal degree of a Jacobi diagram is the number of trivalent vertices, we denote 
it by i-deg. We use dashed lines to represent Jacobi diagrams and, in pictures, we as-
sume that the orientation of trivalent vertices is counterclockwise. See Figure 5 for some 
examples. 
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Figure 5: C-colored Jacobi diagrams of i-deg 0, 1, 2 and 2, respectively. Here C = { a, b, c} 

The space of C-colored Jacobi diagrams is defined as 

A(C) := 
Ve嗅 {C-coloredJacobi diagrams} 

AS, IHX, IQ .. -mult1lmeanty' 

where the relations AS, IHX are local and the multilinearity relation applies to the C-
colored vertices, see Figure 6. 
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Figure 6: Relations in T(C). Here a, b EC. 

multilinearity 

A Jacobi diagram in A(C) is looped if it has a non-contractible component, for instance 
the third diagram in Figure 5 is looped. We denote by At(C) the quotient of A(C) by the 
subspace generated by looped diagrams. We refer to the elements in At(C) as tree-like 
Jacobi diagrams. We denote by At,c(C) the subspace generated by connected tree-like 
Jacobi diagrams. 

If G is a finitely generated free abelian group, we define the space A(G) of G-colored 
Jacobi diagrams by A(G) = A(C) where C is any set of free generators of G. We are 
interested particularly in G = H, G = H'or G = H'E9 A. 

The rational versions Dm(H)⑧ (Ql, Dm(H') igi(Ql and I品(H';A) igi (Ql of the target spaces 
of the Johnson-type homomorphisms can be interpreted as subspaces of At,c(H), At,c(H') 
and At,c(H'① A), respectively, as follows. For a connected tree-like Jacobi diagram T in 
one of these spaces, set 

ry(T) = Lcolor(v)R(T rooted at v), 
V 

(21) 

where the sum ranges over the set of univalent vertices of T and we interpret a rooted 
tree as a Lie commutator. 
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Example 4.1. Let a, a'EA and b, b'EH'. Hence, 

b'.、,. b 、、
曹

T= . T/ 
b'.、..b b'.、..c a'.、,.a a'.、 ,.a

・ヽ ・ヽ
曹 會 曹 " 

1)  a@ : ,•a' 十 a'@ 広. : + b@ : ,•b'+ b'@い：
が・. が・. ． ・、a.・ 、.a' .:. .:. .:. .:. 

=a⑳ [[b', bl, a']+ a'@ [a, [b', bl]+ b@ [[a', a], b'] + b'@ [b, [a', a]]. 

We have that rJ(T) E HR  £ie3(H) and rJ(T) E (AR £ie4(H'; A))① (H'R £ie5(H'; A)). 

For n~1 and G = H or G = H', denote by Aば(G)the subspace of At(G) generated 
by connected diagrams of i-deg = n. If T E Aゲ(G),then rJ(T) E Dm(H), see [14, 
Lemma 3.1]. The following result is well known. 

Theorem 4.2. For n~1 the map 

77: A~c(H) →几(H) 0(Q, 

defined in (21) is an isomorphism of Q-vector spaces. 

We refer to [14, Corollary 3.2] or [7, Theorem 1] for a proof of Theorem 4.2. 
In particular we have an isomorphism of graded Q-vector spaces 

7) : 〶心(H) →〶Dn(H) 0 (Q. 
n:2'.l n>l 

(22) 

(23) 

The same statements hold replacing H by H'. We define a degree for connected tree-
like Jacobi diagrams with univalent vertices colored by H'EB A, which we call alternative 
degree and denote by a-deg, such that if TE At,c(H℃ A) is such that a-deg(T) = m then 
ry(T) E広 (H';A)@Q. 

Definition 4.3. Let T be a H'① A-colored connected tree-like Jacobi diagram. The 
alternative degree of T, denoted a-deg(T), is defined as 

a-deg(T) = 2#{ A-colored vertices of T} + #{ H'-colored vertices of T} -3. 

Here #S denotes the cardinal of the set S. 

For nミ1,let 7,, ご(H'EBA) denote the subspace ofル (H'EBA) generated by diagrams 
of alternative degree n. 

Proposition 4.4 ([21, Proposition 5.28]). For n 2'. 1 the map'T/ defined in (21) induces 
皿 isomorphism

77 : T;, 孟(H' 〶 A) -----+ Dm(H'; A) 1Zi (Ql (24) 

of Q-vector spaces. 

Theorem 4.2 and Proposition 4.4 allow to define diagrammatic versions of the Johnson-
type homomorphisms. 
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Definition 4.5. Let n~l. The diagrammatic version of the n-th alternative Johnson 
homomorphism is defined as the composition 

J~M 三 Dn(B; A)噂二Tば(H'① A). (25) 

Similarly, the diagrammatic versions of then-th Johnson homomorphism and of then-th 
Johnson-Levine homomorphism are defined as the compositions 

皿 d

respectively. 

Jふ1~Dn(H) パ Q工心(H)

ルM~ 几 (H')181 (Q)上 Aば(H'),

In Equations (26) and (27) we can change M by C. 

Example 4.6. In Example 3. 5 we calculated寸(ta.)= -a; @ a; and 

吋(takl)= -(ak@叫ー (al@叫ー (ak@叫ー (al@叫，

J or the Dehn twists ta, and t°'kl from Example 2.1. We have 

and 

4.2 

-1 a 

n―1叶(taJ= -½;·····、、..
ai ai 

1 .....、 1 、....、、....、= --.、--• • - • • n巧(t)
Uk/ 2 ''2''''  ak ak a1 a1 ak a1 

Sketch of the definition of the LMO functor 

(26) 

(27) 

This subsection is devoted to a brief description of the LMO functor Z : CL→ A2. We 
refer to [3] for more details. In this subsection we also consider formal series of Jacobi 
diagrams. For instance, if D is a Jacobi diagram we can consider the series expu(D) = 
江2'.0記び， whereDk is the disjoint union of k copies of D. 

Let M = (M, m+, m_) EC. We can associate to M a  particular kind of tangle whose 
components split in g bottom components labelled 1―, ... ,g―; and g top components 
labelled labelled 1 +, ... , 炉 (theyare called bottom-top tangles in [3]). The association is 
defined as follows. First fix a system of meridians and parallels { a虚}on I: as shown in 
Figure 1. 
Then attach g 2-handles on the bottom surface of M by sending the cores of the 2-
handles to the curves m_ (叫.In the same way, attach g 2-handles on the top surface 
of M by sending the cores to the curves m凰） • This way we obtain a pair (B, ,), called 
the bottom-top tangle presentation of M, where B is a compact connected oriented 3-
manifold with 8([-1, 1門）二→ 8B and I is a tangle in B determined by the cocores of 
the 2-handles. In Figure 7 we illustrate the procedure to obtain the bottom-top tangle 
presentation of the trivial cobordism I: x [-1, 1], see also Example 4.7. 
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glue t t glue 

轡彎
Figure 7: Obtaining the bottom-top tangle presentation of the trivial cobordism~X [-1, l]. 

~~ 喜）二三 +glJrt 

け
□
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1〔

占
い
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□

白い
1--・ ・k―.  . . z-... g― 

(a) (b) 

Figure 8: (a) Curve akl and (b) bottom-top tangle presentation of c(t,,k,). 

Example 4. 7. Figure 8 (b) shows the bottom-top tangle presentation of c(takz) E CL, 
where takz E工ais the (left) Dehn twist about the curve akl. 

Basically the objects of the source and target category of the LMO functor are the non-

negative integers3. The set of morphisms in the source category are Lagrangian homology 

cobordisms, in our case we only consider the monoidび whichcorresponds to the set of 

morphisms from g to g. The set of morphisms from g to f in the target category is a 

subspace A(g, J) of diagrams in A(CJ) whereび={1+ ，．．．，炉}U {1―, ... ,f }. 
Roughly speaking, the LMO functor Z : ひ→ A is defined as follows. Let M E CL. 

Let (B, ,') be the bottom-top tangle presentation of M. Take a surgery presentation of 

(B, 1'), that is, a framed link L c int([-1, 1ド） and a tangle I in [-1, 1]3 ¥ L such that 

surgery along L carries ([-1, 1]い） to (B, 11). Now, consider the Kontsevich integral of 

LU 1, which gives a series of a kind of Jacobi diagrams. To get rid of the ambiguity in the 

surgery presentation, it is necessary to use some combinatorial operations on the space 

of diagrams. Among these operations there is the so-called Aarhus integral (see [1, 2]), 
which is a kind of formal Gaussian integration on the space of diagrams. We then obtain 

2We only consider a restriction of the LMO functor to the monoid of Lagrangin homology cobordisms cL. 
3The definition of the LMO functor uses the Kontsevich integral, which is the universal invariant among Vassiliev (or 

finite-type) invariants of links. Because of this, it is necessary to modify the objects of in the source category: instead of 
non-negative integers, the objects are non-associative words in the single letter•· 
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a series of Jacobi diagrams Z(M) in A(g,g). 

The colors 1 +, ... , 炉 and1―, ... , g-in Z(M) refer to the curves m+仇），．．．，叫（的）
and m_(叫，..., m_(a9) on the top and bottom surfaces of M respectively. 

The definition of the Kontsevich integral requires the choice of a Drinfeld associator, 
and the bottom-top tangle presentation requires the choice of a system of meridians and 
parallels. Thus, the LMO f~nctor also depends on~ese choices. 

For ME  C互denoteby zt(M) the reduction of Z(M) modulo looped diagrams. 

Example 4.8. Consider the cobordism c(taJ E ICL from Example 2.1. We have 

+½f\-) LJ exp0 (i-deg :> 2) 

g • i+ 

力(c(t~)) -expu(L _ 
i=l• i 

which shows that there are no terms of i-deg = 1 in牙(c(taJ).

Example 4.9. Consider the cobordism c(takJ, where taki is like in Example 2.1. In this 
case we obtain 

瓦 (L⑪ ,))~'"'Pu( 言::・ ― +½f\_+½P,-+ P, 一）
がり

U expu(—½(\_ -½;-:¥_ + (i-dcg :> 2)) 

Comparing the results in Examples 4.8 and 4.9 with the results in Example 4.6, we 
can see that (after the change ak→ K一）， thediagrammatic diagrammatic versions of尻

and T°'kL appear in the LMO functor with an opposite sign. This is a more general fact 
which we develop in next section. 

4.3 Johnson-type homomorphisms and the LMO functor 

We finish this note by stating the explicit relation between Johnson-type homomorphisms 
皿 dthe tree reduction of the LMO functor. 

Theorem 4.10 ([3, Corollary 5.11]). For ME  JnC, we have 

zt(M) 

／→O 

〇-rJ―1冗 (M)1a1→j-, bJ→ j+ + (i-deg > n). 

Theorem 4.11 ([20, Theorem 5.4]). For M E  J;C, we have 

牙(M) = 0 -r, ―1T/:(M)1b戸 J++ (i-deg > n). 

/::,,c->。
.,. → O 
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Theorem 4.12 ([21, Theorem 6.14]). If h E J「M=エa,then 

log (Z'(,(h)))~( 言 C)- ("吋(h))lo,Mj-,b,Mj"+ (n-deg> !). 

Theorem 4.13 ([21, Theorem 6.16]). For h EなM with n ;::=: 2, we have 牙(,,→ "~ 0-~ ―1呼(h)誓喜＋十(o-deg>n). 

The above results provide a topological interpretation for the tree reduction of the LMO 
functor. Theorem 4.10 was generalized by Massuyeau in [16]. He proved that it is possible 
to read a refinement of the Johnson homomorphisms (The Morita homomorphisms) in 
the tree reduction of the LMO functor. 
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