On quantum representation of knots via braided Hopf algebra

Jun Murakami
Waseda University

1 Introduction

For a knot K and a linear algebraic group G, there is the space of G representations of K, which is the set of all homomorphisms from the fundamental group $\pi_{1}\left(S^{3} \backslash K\right)$ to G. This space is reconstructed from the view point of the fundamental quandle and its representation associated with a Hopf algebra. Here we extend this construction to any braided Hopf algebra with braided commutativity. The typical example of a braided Hopf algebra is $\operatorname{BSL}(2)$, which is the braided quantum SL(2) introduced by S. Majid [3]. By applying the above construction to $\operatorname{BSL}(2)$, we get a quantized $\mathrm{SL}(2)$ representation of K. This is based on [4] which is a joint work with Roland van der Veen.

2 Wirtinger presentation for a closed braid

Let K be a knot in S^{3} and D be its diagram. Then the fundamental group $\pi_{1}\left(S^{3} \backslash K\right)$ of the complement of K has the following presentation.

$$
\pi_{1}\left(S^{3} \backslash K\right)=\left\langle x_{1}, x_{2}, \cdots, x_{n} \mid r_{1}, r_{2}, \cdots, r_{n}\right\rangle
$$

where n is the number of crossings of D, the generators x_{1}, \cdots, x_{n} corresponds to the overpasses of D and r_{i} is the relation coming from the i-th crossing as follows.

Every knot can be expressed as a closed braid. For a knot K, let $b \in B_{n}$ be a braid whose closure is isotopic to K. Let $y_{1}, y_{2}, \cdots, y_{n}$ be elements of $\pi_{1}\left(S^{3} \backslash K\right)$ corresponding to the overpasses at the bottom (and the top) of b. By applying the relations of the

Wirtinger presentation at every crossings from bottom to top, we get $\Phi_{1}\left(y_{1}, \ldots, y_{n}\right), \cdots$, $\Phi_{n}\left(y_{1}, \cdots, y_{n}\right)$ at the top of b, and the Wirtinger presentation is equivalent to

$$
\pi_{1}\left(S^{3} \backslash K\right)=\left\langle y_{1}, \cdots, y_{n} \mid y_{1}=\Phi_{1}\left(y_{1}, \cdots, y_{n}\right), \cdots, y_{n}=\Phi_{n}\left(y_{1}, \cdots, y_{n}\right)\right\rangle .
$$

$y_{1} y_{2} \cdots y_{n}$

3 SL(2) representation space

An $\mathrm{SL}(2)$ representation ρ of $\pi_{1}\left(S^{3} \backslash K\right)$ is determined by $\rho\left(y_{1}\right), \cdots, \rho\left(y_{n}\right) \in \mathrm{SL}(2)$ satisfying

$$
\begin{gathered}
\Phi_{1}\left(\rho\left(y_{1}\right), \cdots, \rho\left(y_{n}\right)\right)=\rho\left(y_{1}\right) \\
\cdots, \\
\Phi_{n}\left(\rho\left(y_{1}\right), \cdots, \rho\left(y_{n}\right)\right)=\rho\left(y_{n}\right) .
\end{gathered}
$$

Let I_{b} be the ideal in the tensor $\mathbb{C}[\operatorname{SL}(2)]^{\otimes n}$ of the coordinate ring of $\operatorname{SL}(2)$ generated by the above relations.
Theorem 1. The quotient $\mathbb{C}[\operatorname{SL}(2)]^{\otimes n} / I_{b}$ does not depend on the presentation of $\pi_{1}\left(S^{3} \backslash\right.$ $K)$ and is called the $\mathrm{SL}(2)$ representation space of $\pi_{1}\left(S^{3} \backslash K\right)$.

The ccordinate algebra $\mathbb{C}[\operatorname{SL}(2)]$ of $\mathrm{SL}(2)$ is generated by a, b, c, d corresponding to the matrix elements of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2)$. The algebra $\mathbb{C}[\mathrm{SL}(2)]$ has natural Hopf algebra structure coming from the group structure of SL(2).

$$
\begin{aligned}
\Delta & : \mathbb{C}[\operatorname{SL}(2)] \\
S & \rightarrow \mathbb{C}[\operatorname{SL}(2)] \otimes \mathbb{C}[\operatorname{SL}(2)] \\
\varepsilon & \rightarrow \mathbb{C}[\operatorname{SL}(2)] \text { with } S(f)(x)=f\left(x^{-1}\right), \\
\varepsilon & : \mathbb{C}[\operatorname{SL}(2)] \rightarrow \mathbb{C} \text { with } \varepsilon(f)=f(1) .
\end{aligned}
$$

Let $\Phi^{*}: \mathbb{C}[S L(2)]^{\otimes n} \rightarrow \mathbb{C}[S L(2)]^{\otimes n}$ be the dual map of $\Phi=\left(\Phi_{1}, \cdots, \Phi_{n}\right)$. At a crossing, Φ^{*} acts as follows.

Theorem 2. Let J_{b} be the ideal generated by the image of $\Phi^{*}-i d$, then J_{b} is equal to the previous ideal I_{b} and $\mathbb{C}[\mathrm{SL}(2)]^{\otimes n} / J_{b}$ is the $\mathrm{SL}(2)$ representation space of $\pi_{1}\left(S^{3} \backslash K\right)$.

Remark. This construction can be generalized to any commutative Hopf algebra.

4 Braided Hopf algebra

Definition 1. An algebra A is called a braided Hopf algebra if it is equipped with following linear maps satisfying the relations given in the next picture.
multiplication $\mu: A \otimes A \rightarrow A$,
comultiplication $\Delta: A \rightarrow A \otimes A$,
unit $1: k \rightarrow A$,

multiplication

antipode

comultiplication
 inverse antipode positive braiding negative braiding

Figure 1: Operations of a braided Hopf algebra

Definition 2. The adjoint coaction ad : $A \rightarrow A \otimes A$ is defined by

$$
\operatorname{ad}(x)=(i d \otimes \mu)(\Psi \otimes i d)(S \otimes \Delta) \Delta(x)
$$

The adjoint coaction is explained graphically as follows.

The adjoint coaction ad satisfies the following relations.

$$
\langle=|=|\lambda \quad X=\lambda X \quad \forall=|=|, \quad Y=1 \downarrow
$$

$$
S)=\frac{1}{T}=\left(S \quad Y^{\prime}=1=1=1\right.
$$

$$
\gamma^{\prime}=\lambda^{\prime}
$$

$$
Y_{S}=S_{S}^{S} \quad \underbrace{S}=S_{S}^{S} \quad \underset{\sim}{S}=/ \uparrow \quad /=1 /
$$

Figure 2: Relations of a braided Hopf algebra

The first relation means
$(i d \otimes i d \otimes \mu)(i d \otimes \Psi \otimes i d)(\mathrm{ad} \otimes \mathrm{ad}) \Delta=(\Delta \otimes i d) \mathrm{ad}$.
The second relation means

$$
(\mathrm{ad} \otimes i d) \mathrm{ad}=(i d \otimes \Delta) \mathrm{ad} .
$$

Now we introduce braided commutativity, which is a weakened version of the commutativity.

Definition 3. A braided Hopf algebra A is braided commutative if it satisfies $(i d \otimes \mu)(\Psi \otimes i d)(i d \otimes \mathrm{ad}) \Psi=(i d \otimes \mu)(\mathrm{ad} \otimes i d)$.

If A is braided commutative, the following relations hold.

$\mathrm{ad} \otimes \mathrm{ad}$ and Ψ

ad and μ
$\stackrel{S}{S}^{8}=\underbrace{-s}_{S}$
ad and S

As an example, we prove the last relation. These relations are proved graphically as follows.

5 Representation space from a braided Hopf algebra

We first construct a representation of the braid group by using a braided Hopf algebra. Let A be a braided Hopf algebra which may not be braided commutative. Let R and R^{-1} be elements of $\operatorname{End}\left(A^{\otimes 2}\right)$ given by the following.

For $\sigma_{i}^{ \pm 1} \in B_{n}$, let $\rho\left(\sigma_{i}\right)=i d^{\otimes(i-1)} \otimes R \otimes i d^{\otimes(n-i-1)}$ and $\rho\left(\sigma_{i}^{-1}\right)=i d^{\otimes(i-1)} \otimes R^{-1} \otimes i d^{\otimes(n-i-1)}$.
Theorem 3. The above ρ defined for generators of B_{n} extends to a representation of B_{n} $i n \operatorname{End}\left(A^{\otimes n}\right)$.

If A is a usual Hopf algebra, such representation of the braid group was constructed in [5]. The proof for this theorem was given in [2] for a usual Hopf algebra, and their proof is easily generalized for a braided Hopf algebra.

From now on, we assume that the braided Hopf algebra A is braided commutative. For $b \in B_{n}$, let $\rho(b) \in \operatorname{End}\left(A^{\otimes n}\right)$ be the representation of b defined as above. Let I_{b} be the left ideal of $A^{\otimes n}$ generated by the image of the map $\rho(b)-i d^{\otimes n}$.

Proposition 1. The left ideal I_{b} is a two-sided ideal.
This proposition comes from the following lemma.
Lemma 1. For $\boldsymbol{x}, \boldsymbol{y} \in A$, we have

$$
\rho(b) \mu(\boldsymbol{x} \otimes \boldsymbol{y})=\mu(\rho(b) \boldsymbol{x} \otimes \rho(b) \boldsymbol{y}) .
$$

To prove this lemma, we need the braided commutativity.
Theorem 4. Let X be a set of generators of A and $\boldsymbol{x}_{i}=1^{\otimes(i-1)} \otimes \boldsymbol{x} \otimes 1^{\otimes(n-i)}$ for $\boldsymbol{x} \in X$. Then the ideal I_{b} in $A^{\otimes n}$ is generated by

$$
\left\{\rho(b) \boldsymbol{x}_{i}-\boldsymbol{x}_{i} \mid \boldsymbol{x} \in X, i=1, \cdots, n-1\right\} .
$$

Proof. Since

$$
\begin{aligned}
& d(b) \mu_{n}(\boldsymbol{x} \otimes \boldsymbol{y})-\mu_{n}(\boldsymbol{x} \otimes \boldsymbol{y}) \\
& =\mu_{n}(d(b) \boldsymbol{x} \otimes(d(b) \boldsymbol{y}-\boldsymbol{y}))+\mu_{n}((d(b) \boldsymbol{x}-\boldsymbol{x}) \otimes \boldsymbol{y}) .
\end{aligned}
$$

and $d(b) \boldsymbol{x}-\boldsymbol{x}, d(b) \boldsymbol{y}-\boldsymbol{y}$ are both contained in I_{b}.
For an n braid b, let $A_{b}=A^{\otimes n} / I_{b}$.
Theorem 5 (Main theorem). If the closures of two braids $b_{1} \in B_{n_{1}}$ and $b_{2} \in B_{n_{2}}$ are isotopic, then $A_{b_{1}}$ and $A_{b_{2}}$ are isomorphic algebras. Moreover, $A_{b_{1}}$ and $A_{b_{2}}$ are isomorphic A-comodules with adjoint coaction. In other words, A_{b} is an invariant of the knot (or link) \widehat{b}, which is the closure of b.

Definition 4. The quotient algebra $A_{b}=A^{\otimes n} / I_{b}$ is called the A representation space of the closure \widehat{b}.

To prove the above theorem, we show that the quotient algebra A_{b} is invariant under the Markov moves.

Definition 5. These moves are called the Markov moves and such b_{1} and b_{2} are called Markov equivalent.

Theorem 6. The closures of two braids $b_{1} \in B_{n_{1}}$ and $b_{2} \in B_{n_{2}}$ are isotopic in S^{3} if and only if there is a sequence of the following two types of moves connecting b_{1} to b_{2}.

The main theorem is proved by showing the invariancde under MI and MII. To prove the invariance under MI is not difficult, but the invariance under MII is not so easy. To show this, we need to introduce some moves of diagrams which are duals of Tietze transformations which are moves to change the presentation of a combinatorial group defined by generators and relations.

Definition 6. For $b \in B_{n}$ we present $I_{\rho(b)}$ by $\rho(b) \sim \rho(1)$. Similarly, for two diagrams d_{1}, d_{2} representing elements of $\operatorname{Hom}\left(A^{\otimes m}, A^{\otimes n}\right), d_{1} \sim d_{2}$ present a two-sided ideal $I_{d_{1}, d_{2}}$ in $A^{\times n}$ generated by

$$
d_{1}\left(x_{1} \otimes \cdots \otimes x_{m}\right)-d_{2}\left(x_{1} \otimes \cdots \otimes x_{m}\right)
$$

for $x_{1}, \cdots, x_{m} \in A$. Such d_{1} and d_{2} are called the equivalent pair of diagrams corresponding to the two-sided ideal $I_{d_{1}, d_{2}}$ and the quotient algebra $A^{\otimes n} / I_{d_{1}, d_{2}}$.

Proposition 2 (dual of Tietze tranformation). Let $d_{1} \sim d_{2}$ be an equivalent pair and let $d_{1}^{\prime} \sim d_{2}^{\prime}$ be the equivalent pair where d_{1}^{\prime} and d_{2}^{\prime} are obtained from d_{1} and d_{2} respectively by one of the following operations (1), (2), (3), (3S), (4L), (4LS), (4R), (4RS) illustrated in the following. Then the corresponding ideals $I_{d_{1}, d_{2}}$ and $I_{d_{1}^{\prime}, d_{2}^{\prime}}$ are equal.

(1)

(2)

(3)

(3S)

$1 i n$
(4L)

$1 i n$
(4LS)

$1 i n$
(4R)

$1 i n$
$(4 R S)$

The invariance under MII is proved by transforming the equivalent pair $b \sigma_{n} \sim e$ to the diagram in the next figure by using Proposition 2.

Let p_{n} be the surjection from $A^{\otimes(n+1)}$ to $A^{\otimes n}$ defined by

$$
p_{n}\left(x_{1} \otimes \cdots \otimes x_{n} \otimes x_{n+1}\right)=x_{1} \otimes \cdots \otimes x_{n-1} \otimes \mu\left(\Psi^{-1}\left(x_{n}, x_{n+1}\right)\right) .
$$

Then the above picture means that $I_{d\left(b \sigma_{n}\right)}$ is generated by $\left(d(b) \circ p_{n}\right)(\boldsymbol{x}) \otimes 1-\boldsymbol{x}$ for $\boldsymbol{x} \in A^{\otimes(n+1)}$. For $\boldsymbol{y} \in I_{d(b)}, \boldsymbol{y} \otimes 1 \in I_{d\left(b \sigma_{n}\right)}$ and $p_{n}(\boldsymbol{y} \otimes 1)=\boldsymbol{y}$, so $p_{n}\left(I_{d\left(b \sigma_{n}\right)}\right)=I_{d(b)}$. For $\boldsymbol{x} \in \operatorname{Ker} p_{n}$,

$$
\left(d(b) \circ p_{n}\right)(\boldsymbol{x}) \otimes 1-\boldsymbol{x}=-\boldsymbol{x},
$$

and so $\boldsymbol{x} \in I_{d\left(b \sigma_{n}\right)}$. This means that $\operatorname{Ker} p_{n} \subset I_{d\left(b \sigma_{n}\right)}$, which implies $p_{n}^{-1}\left(I_{d(b))}\right)=I_{d\left(b \sigma_{n}\right)}$ since $p_{n}\left(I_{d\left(b \sigma_{n}\right)}\right)=I_{d(b)}$. Therefore p_{n} gives an isomorphism $A^{\otimes(n+1)} / I_{d\left(b \sigma_{n}\right)} \cong A^{\otimes n} / I_{d(b)}$.

Example. The figure eight knot 4_{1} is isomorphic to the closure of the braid $b=$ $\sigma_{1}^{-1} \sigma_{2} \sigma_{1}^{-1} \sigma_{2}$. The graphical expression of $d(b)$ is given in Figure 3. So the space of A representation of 4_{1} is $A \otimes A \otimes A / I_{d(b)}$ where $I_{d(b)}$ is generated by $d(b)(x \otimes y \otimes z)-x \otimes y \otimes z$ for $x, y, z \in A$. We will see the relation for $x_{1}=x \otimes 1 \otimes 1$ and $x_{2}=1 \otimes x \otimes 1$. Let $d\left(b_{1}\right)_{i}$

Figure 3: A graphical expression of $d(b)$
is a mapping from A to $A^{\otimes 3}$ sending $x \in A$ to $d(b)\left(x_{i}\right) \in A^{\otimes 3}$ for $i=1,2$. Then the ideal $I_{d(b)}$ is generated by $\left\{d(b)_{1}(x)-x \otimes 1 \otimes 1, d(b)_{2}(x)-1 \otimes x \otimes 1 \mid x \in A\right\}$ where

$$
\begin{aligned}
& d(b)_{1}(x)=\left(\Psi^{-1} \otimes i d\right)\left(i d \otimes S^{-1} \otimes i d\right)(\operatorname{ad} \otimes i d) \Psi^{-1}\left(i d \otimes S^{-1}\right) \operatorname{ad}(x), \\
& d(b)_{2}(x)=(i d \otimes \Psi)(\operatorname{ad}(x) \otimes 1) .
\end{aligned}
$$

These elements are explained graphically in Figure 4. Let p be a mapping from $A^{\otimes 3}$ to $A^{\otimes 2}$ defined by $p(x \otimes y \otimes z)=(\mu \otimes \mu)(x \otimes a d(y) \otimes z)$. Then p is surjective, $\operatorname{ker} p$ is

$$
d(b)_{1}(x) \sim x \otimes 1 \otimes 1
$$

$$
d(b)_{2}(x) \sim 1 \otimes x \otimes 1
$$

where $\bullet=\boldsymbol{S}^{-1}$.
Figure 4: Relations for the figure eight knot.
generated by $d(b)_{2}(x)-1 \otimes x \otimes 1$ for $x \in A$, and $A^{\otimes 3} / \operatorname{ker} p \cong A^{\otimes 2}$. Let $I^{\prime}=p\left(I_{d(b)}\right)$, then I^{\prime} is generated by

$$
p\left(d(b)_{1}(x)-x \otimes 1 \otimes 1\right)=(\mu \otimes \mu) a d_{2}\left(\Psi^{-1} \otimes i d\right) S_{2}^{-1} \operatorname{ad}_{1} \Psi^{-1} S_{2}^{-1} \operatorname{ad}(x)-x \otimes 1
$$

where $\mathrm{ad}_{i}, S_{i}^{-1}$ act to the i-th component of the tensor product. The ideal I^{\prime} is graphically explained in Figure 5. Moreover, the mapping p gives the isomorphism between $A \otimes A \otimes$ $A / I_{d(b)}$ and $A \otimes A / I^{\prime}$, so $A \otimes A / I^{\prime}$ is isomorphic to the A representation space of 4_{1}. It corresponds to a presentation of $\pi_{1}\left(S^{3} \backslash 4_{1}\right)$ with two generators and one relator.

$$
p\left(d(b)_{1}(x)\right) \sim x \otimes 1
$$

Figure 5: Equivalent diagram for I^{\prime}.

6 Braided SL(2)

Definition 7. A braided $\mathrm{SL}(2)$ is a one-parameter deformation of $\mathbb{C}[\mathrm{SL}(2)]$ defined in [3] by the following. It is denoted by BSL(2).

$$
\begin{aligned}
& b a=t a b, \quad c a=t^{-1} a c, \quad d a=a d, \quad d b=b d+\left(1-t^{-1}\right) a b, \\
& c d=d c+\left(1-t^{-1}\right) c a, \quad b c=c b+\left(1-t^{-1}\right) a(d-a), \quad a d-t c b=1,
\end{aligned}
$$

$$
\begin{aligned}
\Delta(a) & =a \otimes a+b \otimes c, \quad \Delta(b)=a \otimes b+b \otimes d, \quad \Delta(c)=c \otimes a+d \otimes c, \\
\Delta(d) & =c \otimes b+d \otimes d, \quad S(a)=(1-t) a+t d \quad S(b)=-t b, \quad S(c)=-t c, \\
S(d) & =a, \quad \varepsilon(a)=1, \quad \varepsilon(b)=0, \quad \varepsilon(c)=0, \quad \varepsilon(d)=1, \\
\Psi(x \otimes 1) & =1 \otimes x, \Psi(1 \otimes x)=x \otimes 1, \Psi(a \otimes a)=a \otimes a+(1-t) b \otimes c, \Psi(a \otimes b)=b \otimes a, \\
\Psi(a \otimes c) & =c \otimes a+(1-t)(d-a) \otimes c, \Psi(a \otimes d)=d \otimes a+\left(1-t^{-1}\right) b \otimes c, \\
\Psi(b \otimes a) & =a \otimes b+(1-t) b \otimes(d-a), \Psi(b \otimes b)=t b \otimes b, \Psi(d \otimes b)=b \otimes d, \\
\Psi(b \otimes c) & =t^{-1} c \otimes b+(1+t)\left(1-t^{-1}\right)^{2} b \otimes c-\left(1-t^{-1}\right)(d-a) \otimes(d-a), \\
\Psi(b \otimes d) & =d \otimes b+\left(1-t^{-1}\right) b \otimes(d-a), \Psi(c \otimes a)=a \otimes c, \Psi(c \otimes b)=t^{-1} b \otimes c, \\
\Psi(c \otimes c) & =t c \otimes c, \Psi(c \otimes d)=d \otimes c, \Psi(d \otimes a)=a \otimes d+\left(1-t^{-1}\right) b \otimes c, \\
\Psi(d \otimes c) & =c \otimes d+\left(1-t^{-1}\right)(d-a) \otimes c, \Psi(d \otimes d)=d \otimes d-t^{-1}\left(1-t^{-1}\right) b \otimes c .
\end{aligned}
$$

Theorem 7．The braided Hopf algebra $\mathrm{BSL}(2)$ is braided commutative．
Since BSL（2）is an example of a braided commutative braided Hopf algebra，we have $\operatorname{BSL}(2)$ representations of K ，which is $\mathrm{BSL}(2)^{\otimes n} / I_{d(b)}$ ．We also call it the space of quan－ tized $\operatorname{SL}(2, \mathbb{C})$ representations of K ．It follows directly from the relations and Proposition I．8．17 of［1］that $\operatorname{BSL}(2)$ is Noetherian，so the ideal $I_{d(b)}$ is finitely generated．

References

［1］K．Brown and K．Goodearl，Lectures on algebraic quantum groups，Advanced courses in mathematics CRM Barcelona，Birkhauser， 2002.
［2］J．Scott Carter，A．Crans，M．Elhamdadi and M．Saito，Cohomology of the adjoint of Hopf algebras，J．Gen．Lie Theory Appl． 2 （2008），19－34．
［3］S．Majid，Examples of braided groups and braided matrices，J．Math．Phys． 32 （1991）， 3246－3253．
［4］J．Murakami and R．van der Veen，Quantized SL（2）representations of knot groups， arXiv：1812．09539．
［5］S．Woronowicz，Solutions of the braid equation related to a Hopf algebra．Lett．Math． Phys． 23 （1991），143－145．

Department of Mathematics
Faculty of Science and Engineering
Waseda University
3－4－1 Ohkubo，Shinjuku－ku，Tokyo 169－8555，JAPAN
E－mail address：murakami＠waseda．jp

