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On  quantum representation of knots via braided Hopf algebra 

Jun Murakami 

Waseda University 

1 Introduction 

For a knot K and a linear algebraic group G, there is the space of G representations of 

K, which is the set of all homomorphisms from the fundamental group町 (S3¥ K) to 

G. This space is reconstructed from the view point of the fundamental quandle and its 

representation associated with a Hopf algebra. Here we extend this construction to any 

braided Hopf algebra with braided commutativity. The typical example of a braided Hopf 

algebra is BSL(2), which is the braided quantum S1(2) introduced by S. Majid [3]. By 

applying the above construction to BSL(2), we get a quantized S1(2) representation of 

K. This is based on [4] which is a joint work with Roland van der Veen. 

2 Wirtinger presentation for a closed braid 

Let K be a knot in S3 and D be its diagram. Then the fundamental group 1r1(S3 ¥ K) of 

the complement of K has the following presentation. 

1r1(S3 ¥ K) =〈X1,X2,・・・,XnI r1, 乃，...,rn〉

where n is the number of crossings of D, the generators x1, • • •, Xn corresponds to the 
overpasses of D and r; is the relation coming from the i-th crossing as follows. 
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Every knot can be expressed as a closed braid. For a knot K, let b E Bn be a braid 

whose closure is isotopic to K. Let y1, y2, ・ ・ ・, Yn be elements of町 (S3¥ K) corresponding 

to the overpasses at the bottom (and the top) of b. By applying the relations of the 
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Wirtinger presentation at every crossings from bottom to top, we get叱(Yi,・・・,Y砂，．．．，
叫 (y1,・ ・ ・, Yn) at the top of b, and the Wirtinger presentation is equivalent to 

1r1(S3 ¥ K) =〈YI,・・・,Yn I YI= <I>1(Y1, ・ ・ ・, Yn), ・ ・ ・, 珈 ＝ 叫(Y1,・・・,Yn)〉．

叱動・・・ <I>n

ば~
Y1 Y2・ ・ ・Yn 

3 SL(2) representat10n space 

An SL(2) representation p of 1r1(S3 ¥ K) is determined by p(y1), • • •, p(yn) E SL(2) 

satisfying 

虹(p(い），..・,P(Yn)) = P(Y1), 

... 

虹(p(y1),... ,P(Yn)) = P(Yn)-

Let h be the ideal in the tensor C[SL(2)]Rn of the coordinate ring of SL(2) generated by 
the above relations. 

Theorem 1. The quotient C[SL(2)]Rn / h does not depend on the presentation of町 (S3¥ 

K) and is called the SL(2) representation space of町 (S3¥ K). 

The ccordinate algebra (C[SL(2)] of SL(2) is generated by a, b, c, d corresponding to 

the matrix elements of (: !) E SL(2). The algebra (C[SL(2)] has natural Hopf algebra 

structure coming from the group structure of SL(2). 

△ : C[SL(2)]→ C[SL(2)] 129 C[SL(2)] with△ (f)(x⑧ y) = f(叫

S : C[SL(2)]→ C[SL(2)] with S(f)(x) = f(x―1)' 

c : C[SL(2)]→ (C with r::(f) = f(l). 

Let <I>* : (C[SL(2)]Rn→ (C[SL(2)]Rn be the d叫 mapof <I>= (叫...'叫） • At a crossing, 

<1>* acts as follows. 

a ⑭ (3 a 0 (3 a ⑭ 〇 aR/3 

X 叉―→ 買 翼
'igi 6 ァ⑳ 6 

,Ro= ,R<5= 
13(2) Q9 aS((3(ll)f3(3) a(llS(a(3l)(3@ a(2) 
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Theorem 2. Let Jb be the ideal generated by the image of <I>* — id, then Jb is equal to the 
previous ideal h and C[SL(2)]Rn / Jb is the S1(2) representation space of町 (S3¥ K). 

Remark. This construction can be generalized to any commutative Hopf algebra. 

4 Braided Hopf algebra 

Definition 1. An algebra A is called a braided Hopf algebra if it is equipped with following 

linear maps satisfying the relations given in the next picture. 

multiplicat10nμ: A Q9 A→ A, 

comultiplication△ : A→ A⑳ A, 

umt 1: k→A 

． 
coumt s: A→ K ， 

antipode S : A→ A, 

braiding w : ARA→ A@A. 
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Figure 1: Operations of a braided Hopf algebra 

Definition 2. The adjoint coaction ad : A→ ARA is defined by 

ad(x) =(idR μ)(wRid)(SR △)△ (x). 

The adjoint coaction is explained graphically as follows. 

~~/1 
The adjoint coaction ad satisfies the following relations. 

叶囚い八
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Figure 2: Relations of a braided Hopf algebra 

The first relation means 

(id⑭ id 0μ)(id 0 w 0 id)(ad 0 ad)△ ＝（△ 0 id)ad. 

The second relation means 

(ad⑳ id)ad = (idR △) ad. 

Now we introduce braided commutativity, which is a weakened version of the commu-

tativity. 

Definition 3. A braided Hopf algebra A is braided commutative if it satisfies 

(idR μ)(wRid)(idRad)w = (idR μ)(adRid). 

贔付



114

If A is braided commutative, the following relations hold. 

贔いいい＼＝＼
adRad and ¥[I ad andμ ad and S 

As an example, we prove the last relation. These relations are proved graphically as 

follows. 
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5 Representation space from a braided Hopf algebra 

We first construct a representation of the braid group by using a braided Hopf algebra. 

Let A be a braided Hopf algebra which may not be braided commutative. Let Rand R-1 

be elements of End(AR2) given by the following. 

R ＝ 尺 R ー賛
Forび戸 EBn, let p(a-』=id0(i-1)⑭R⑭ id0(n-i-l) and p(が） = id0(i-1)霞R-l⑧idCJ(n-i-l). 

Theorem 3. The above p defined for generators of Bn extends to a representation of Bn 

in End(A0n). 
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If A is a usual Hopf algebra, such representation of the braid group was constructed in 

[5]. The proof for this theorem was given in [2] for a usual Hopf algebra, and their proof 

is easily generalized for a braided Hopf algebra. 

From now on, we assume that the braided Hopf algebra A is braided commutative. 

For b E Bn, let p(b) E End(ARn) be the representation of b defined as above. Let h be 
the left ideal of ARn generated by the image of the map p(b) -idR 匹

Proposition 1. The left ideal h is a two-sided ideal. 

This proposition comes from the following lemma. 

Lemma 1. For x, y E A, we have 

p(b)μ(x⑭ y) =μ(p(b)x 0 p(b)y). 

To prove this lemma, we need the braided commutativity. 

Theorem 4. Let X be a set of generators of A and xi = 1R(i-l)⑳尤⑭ lR(n-i) for x EX. 

Then the ideal h in ARn is generated by 

{p(b)ユーXiIx EX, i = 1, ・ ・・,n-1}. 

Proof. Since 

d(b)匹 (xRy)一匹(xRy)

=μn(d(b)x@(d(b)y-y)) +μn((d(b)の一 x)@y).

and d(b) x -x, d(b) y -y are both contained in I: か 口

For an n braid b, let Ab= A0n / h. 

Theorem 5 (Main theorem). If the closures of two braids b1 E Bn, and b2 E B四 are

isotopic, then Ab, and Ab2 are isomorphic algebras. Moreover, Ab, and Ab2 are isomorphic 

A-comodules with adjoint coaction. In other words, Ab is an invariant of the knot (or link) 

b, which is the closure of b. 

Definition 4. The quotient algebra Ab = A0n / h is called the A representation space of 

the closure b. 

To prove the above theorem, we show that the quotient algebra Ab is invariant under 

the Markov moves. 

Definition 5. These moves are called the Markov moves and such b1 and b2 are called 

Markov equivalent. 
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Theorem 6. The closures of two braids b1 E Bn, and b2 E B四 areisotopic in S3 if and 

only if there is a sequence of the following two types of moves connecting b1 to b2. 

The main theorem is proved by showing the invariancde under MI and MIL To prove 

the invariance under MI is not difficult, but the invariance under MII is not so easy. 

To show this, we need to introduce some moves of diagrams which are duals of Tietze 

transformations which are moves to change the presentation of a combinatorial group 

defined by generators and relations. 

Definition 6. For b E Bn we present lp(b) by p(b) ~ p(l). Similarly, for two diagrams 

d1, d2 representing elements of Hom(ARm, ARn), d1 ~必 presenta two-sided ideal Id,,d2 

in A xn generated by 

d1(X1⑳ ・ ・ ・ Rxm)―ん(x1R・ ・ ・ R 知）

for x1, ・ ・ ・, Xm E A. Such d1 and d2 are called the equivalent pair of diagrams correspond-

ing to the two-sided ideal I, 心d2and the quotient algebra ARn / I, 五必・

Proposition 2 (dual of Tietze tranformation). Let d1 ~ d2 be an equivalent pair and let 

d~~ d~be the equivalent pair where d~and d~are obtained from d1 and d2 respectively by 
one of the following operations (1), (2), (3), (3S}, (4L}, (4LS}, (4R), (4RS} illustrated 

in the following. Then the corresponding ideals Id,,d2 and Idi,d; are equal. 

1 i m 

1 n 

(1) 

1 m 

1 i n 

(4L) 

1 n 

(2) 

1 m 

(4LS) 

1 i m 

1 n 

(3) 

1 m 

1 i n 

(4R) 

1 i m 

l n 

(3S) 

1 m 

1 i n 

(4RS) 



117

The invariance under MIi is proved by transforming the equivalent pair b四 rv e to 

the diagram in the next figure by using Proposition 2. 

～
 臼↓ ～
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Let Pn be the surjection from AR(n+l) to ARn defined by 

叫 X1@・ ・ ・@ Xn @ Xn+1) = X1⑭ ・ ・ ・@ Xn-1 @μ('1f-1(Xn,Xn+1)). 

Then the above picture means that Id(ban) is generated by (d(b) op砂(x)⑭ 1 -X for 

x E AR(n+l). For y E Id(b), y@ 1 E Id(ban) and四 (yR1)= Y, so Pn(Id(ban)) = Jd(b)・For 

x E Kerpn, 

(d(b)op叫(x)@1―X=―x, 

and so X E Id(ban)・This means that Kerpn C Id(bびn),which implies p;;,1(Id(b)) = Id(bびn)

since Pn(Id(ban)) = Id(b)・Therefore Pn gives an isomorphism A0(n+l) /Id(bびn)竺 A<2!n/Jd(b)・

Example. The figure eight knot 41 is isomorphic to the closure of the braid b = 

可1u2 u11 u2. The graphical expression of d(b) is given in Figure 3. So the space of A 

representation of 41 is A@A@A/Id(b) where Id(b) is generated by d(b)(x@y@z)-x⑳ y@z 

for x, y, z E A. We will see the relation for x1 = x@ 1@ 1 and巧 =1 @ x @ 1. Let d(b凸

冒
の
＿
5
庄
＿
5

Figure 3: A graphical expression of d(b) 

is a mapping from A to AR3 sending x EA to d(b)(xi) E AR3 for i = 1, 2. Then the ideal 

Id(b) is generated by {d(b)i(x) -x 0101, d(bh(x) -10 x 01 Ix EA} where 

d(b)i(x) = (¥J! ―1 0 id)(id 0 s-1 0 id)(ad 0 id)屯―1(id0 s-1) ad(x), 

d(bh(x) = (id 0 W)(ad(x) 01). 

These elements are explained graphically in Figure 4. Let p be a mapping from AR3 to 

AR2 defined by p(x⑭ y 0 z) = (μ0μ)(x 0 ad(y) 0 z). Then p is surjective, kerp is 



118

d(b)i(x)~x0101 

d(bh(x) ~ 1121 xRI 

T
 
where• =@). 

Figure 4: Relations for the figure eight knot. 

generated by d(bh(x) -10 x 01 for x EA, and A03 / kerp竺 A翌 LetI'= p(ld(b)), then 

I'is generated by 

p (d(b)i(x) -x 0 1 01) = (μ0μ) ad2(w-1 0 id) S21 ad1 w-1 S21 ad(x) -x 0 1 

where ad;, s;1 act to the i-th component of the tensor product. The ideal I'is graphically 

explained in Figure 5. Moreover, the mapping p gives the isomorphism between A⑧ A0  

A/ Id(b) and A 0 A/ I', so A 0 A/ I'is isomorphic to the A representation space of 41. It 

corresponds to a presentation of 1r1(S3 ¥ 4リwithtwo generators and one relator. 

p (d(b)i(x)) ~ xR1 

T
 

Figure 5: Equivalent diagram for I'. 

6 Braided S1(2) 

Definition 7. A braided S1(2) is a one-p紅 ameterdeformation of C[SL(2)] defined in [3] 
by the following. It is denoted by BSL(2). 

ba=tab, ca=t―1ac, da=ad, db=bd+(l-t―1) ab, 

cd=dc+(l-t―1)ca, bc=cb+(l-t―1)a(d-a), ad-tcb=l, 
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△ (a) = aRa + bRc, △ (b) =aRb + bRd, △ (c) = cRa+ dRc, 

△ (d) = cRb+dRd, S(a) = (l-t)a+td S(b) = -tb, S(c) = -tc, 

S(d) = a, c:(a) = l, c:(b) = 0, c:(c) = 0, c:(d) = 1, 

w(xR1) = 1Rx, 屯(lRx)=x⑳ 1位 (a⑳ a)= aRa+ (l -t) bRc, w(aRb) = bRa, 

w(aRc) = cRa+ (l -t)(d -a)Rc, w(aRd) = dRa+ (l -t―1) bRc, 

w(bRa) =aRb + (l -t) bR(d -a), w(bRb) = t bRb, w(dRb) = bRd, 

w(bRc) = t―l C Q9 b + (l + t)(l -t―1げbRC-(l -t―1)(d -a)R(d -a), 

屯(bRd)= dRb + (l -r1) bR(d -a), 屯(cRa)= aRc, w (cRb) = r 1 bRc, 

w(cRc)=tc⑳ c, w(cRd) = dRc, w(d⑳ a)= aRd + (1-C1) bRc, 

w(dRc) = cRd + (1 -t―1) (d -a)Rc, w (dRd) = dRd -t―1 (1 -t―1) bRC. 

Theorem 7. The braided Hopf algebra BSL(2) is braided commutative. 

Since BSL(2) is an example of a braided commutative braided Hopf algebra, we have 

BSL(2) representations of K, which is BSL(2)Rn / Id(b)・We also call it the space of quan-

tized S1(2, C) representations of K. It follows directly from the relations and Proposition 

1.8.17 of [1] that BSL(2) is Noetherian, so the ideal Id(b) is finitely generated. 
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