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1 Cyclotomic expansions of twist knots 

(Wataru Yuasa) 

The colored Jones polynomial Jn(K) E Z[q士打 isa quantum invariant of knot 
K obtained from the (n + 1)-dimensional irreducible representation of the quantum 
group of叫 Jn(K)is normalized such that Jn(U) = {n + 1}/{1} for 0-framed 
unknot U and {m} = qすー q―可
It is known, as Habiro's cyclotomic expansion for the colored Jones polynomials 
[12], that for any 0-framed knot K, Jn(K) can be presented in the form 

Jn(K) 
n-1 

Jn(U) 
=Lい (q)C(n,k), 
k=O 

for some hK,k(q) E Z[q由， where

C(n,k) = 
{ n -k }{ n -k + 1} .. ・{n + k -l }{ n + k} 

for O < k < n and C(n, 0) = 1. 
Chen, Liu and Zhu [4] gave conjectural formula of the cyclotomic expansion for 
the quantum叫 invariantwith one-row colorings. Let J~rN (K) be the quantum ,s(N 
invariant obtained from the irreducible representation corresponding to the one-row 
Young diagram of n boxes. 

Conjecture 1.1 (cyclotomic expansion for the ,7炉(K)invariant [4]). For any 0-
framed knot K, 

応 (K) n-1 

J炉(U)
=Lh図(q)C(N)(n,k), 
k=O 

for some h悶(q)E Z[q土½], where 

c(N)(n, k) = { n -k + l }{ n -k + 2} .. ・{ n + k + N -l} 
{n+l}{n+2}・・・{n+N-l}

for O < k < n and C(Nl(n, 0) = 1. 

Let KP be the twist knot with p full twist. Masbaum [25] gave the cyclotomic 
expansion { h応，k(q)}kfor KP through the linear skein theory for Kauffman bracket. 
More specifically, he used the m full twist formula and a special expansion of the 
twist element w for the Kauffman bracket skein module. 

Problem 1.2 (W. Yuasa). Calculate {hK,k(q)}k explicitly for other knots K, for 
example, knots with small crossing number, etc. 

In [35, 36], we gave m full twist formula for the A2 web with one-row coloring. 

Problem 1.3 (W. Yuasa). Give the cyclotomic expansion {h(3) (q)}k by using the Kp,k 

full twist formula for one-row colored A2 webs and Masbaum's method. 
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In [4], the volume conjecture is also formulated. Other than these conjectures, 
we can consider the slope conjecture for the quantum _s(N invariant. In general, a 
computation of the quantum叫 invariantfor knot K is so hard (except for very 
special knots and colorings). However, we can calculate { J炉(K)}n explicitly for 
some knots K by using formulas for A2 webs in [35, 36]. 

Problem 1.4 (W. Yuasa). Calculate { .f炉(K)}nfor some knots and formulate the 
slope conjecture for the quantum _s(N invariant with one-row colorings. 

2 Johnson-type homomorphisms of mapping class groups, 

and the LMO invariant 

(Anderson Vera) 

Let E be a compact connected oriented surface of genus g with exactly one 
boundary component. Denote by M the mapping class group of E, that is the group 
of isotopy classes of orientation-preserving homeomorphisms h : E→ E which are 
the identity on the boundary 8E of区
From the 3-dimensional point of view it is natural to consider E as being part 
of the boundary of a handlebody V of genus g, that is, we consider an embedding 
し： E→ V as shown in Figure 1. 
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Figure 1: Embeddingし： E→ V. Here av= EU D, where D c av is an embedded disk. 

Let * E BE and consider the following notations: 

7f =町（江＊），

H = H1(E;Z), 

1r'=町 (V>), A=  ker(1r :!!.+ 1r'), 
A=  ker(H~H'), 

H'=凡(V;Z) and K2 = ker(1r :i!.+ 1r1~H') =A・[1r, 1r]. 

The group M acts naturally on H and 1r. The Torelli group, denoted by I, 
consists of the elements of M acting trivially on H, that is, I=  {h EM  I h* = Id叫．
We also consider the following subgroups of M. The handlebody group 

1{ = {h EM  I h#(A)こA},
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the Lagrangian mapping class group 

£=  {h EM  I h*(A)こA},

the Lagrangian Torelli group 

が={h E£I h*IA = IdA}, 

and finally, the alternative Torelli group 

for x E 1r: h#(x)x―1 E K2 r~{ hE£ 位(;悶<l/;心，『力］］・［いI~K,}
The group Ia can be defined as the subgroup of M, generated by Dehn twists t'Y 
about curves'Yon I: which are homologically trivial in V. The above subgroups play 
an important role in the study of homology 3-spheres and the theory of finite-type 
invariants. 

It can be shown (for genus enough large) that the groupsが andIa are finitely 
generated (see [32, Remark 4.15]). 

Problem 2.1 (A. Vera). Find an explicit set of generators forび andIa as it is 
known for I. 

From Johnson [17] and Morita [27] works we can consider a stepwise approxi-
mation of the action of M on 7r by considering the action of M on the nilpotent 
quotients 1r /「m+17rfor m 2: 1, where {r m7r }m::,-1 is the lower central series of 1r 
(i.e. r11r = 1r and r m+i7r = [n, r mn] form 2: 1). This gives rise to the so-called 
Johnson filtration 

I= ふM~J2M~J3M···

where JmM consists of the elements in M acting trivially on訂rm+11r. Each one 
of the terms JmM of the Johnson filtration comes equipped with a group homo-
morphism Tm: JmM→ 広 (H)such that ker(Tm) = Jm+lM, and taking values in 
a particular abelian group広 (H)which can be described in terms of H. 
Similar filtrations and homomorphisms were introduced for the groupsが and
び Werefer to them as Johnson-type filtrations and Johnson-type homomorphisms. 
Let us review and state some problems about them. 
Levine [23, 24] introduced a filtration forび， whichwe call Johnson-Levine fil-
tration, 

が=Jf M~Jf M~Jf M・・・
by using the lower central series {「m7r'}吟 1of兄 moreprecisely we have 

J盆M={hE が 1 号杜(A)~rm+11r'} 

for m 2 1. Levine also introduced a family of homomorphisms咄： J{:iM→ Dm(H') 
such that ker(点） = Jf:i+1M. 
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Conjecture 2.2 (Levine [24]). For every m 2': 1,we have J盆M=JmM・(1-lnが）．

Levine showed this conjecture form E {1, 2}. 

Problem 2.3 (A. Vera). Prove or disprove that [Jl M, J, 盆M]こJにM for all 
l,m 2': 1. 

In the case that this property holds, it would be interesting to study the so-called 
Andreadakis problem forが， thatis, the comparison between the lower central of 
ぴ andthe Johnson-Levine filtration. 

Besides, Habiro and Massuyeau [13] introduced a filtration for I尺whichwe call 
alternative Johnson filtration, 

ェ11= Jf M 2 J; M 2 .f; ぶM ・・・
by using a different decreasing sequence {Km}匹 1of subgroups of 7f. This sequence 
is defined by 

K1 = 1r, K2 = [1r, 1r]・A and Km= [Ki, Km-1]・[K2, Km-1] form 2: 2. 

The m-the term of the alternative Johnson filtration is given by 

J!M~{ h E£fo,,,: f h; i!>X—'E KHm } 

form :2: 1. Habiro and Massuyeau also introduced the respective family of Johnson-
type homomorphisms喘： l!M→ Dm(H', A) such that ker(点） = l!+iM, to 
which we refer as alternative Johnson homomorphisms. In this case the abelian 
group広 (H',A) can be described by using H'and A. 

The alternative Johnson filtration satisfies [Jt M, l!M] C Ja - l+m M for all l, m :2: 
1. 

Problem 2.4 (A. Vera). Compare between the lower central series of ya and the 
alternative Johnson filtration. 

It is known that the first Johnson homomorphism T1 appears in the computation 
of H心；Z), in particular it gives all the non-torsion part [18]. This is also the case 
for Tf and H1 (エ圧Z),see [30]. 

Problem 2.5 (A. Vera). Determine H汀⑰）， ormore particularly, determine 
whether Tf gives the non-torsion part of H⑰;  Z). 

Morita refined the Johnson homomorphisms by defining the so-called Morita 
homomorphisms [28]. Since the Johnson filtration and the alternative Johnson fil-
tration have similar properties, it seems plausible the existence of a refinement of the 
alternative Johnson homomorphisms. The following problem consists in the defini-
tion of such "alternative" version of the Morita homomorphisms for the alternative 
Johnson filtration. 
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Problem 2.6 (A. Vera). If such homomorphisms exist, study their relation with the 
functorial extension of the Le-Mumkami-Ohtsuki invariant following the lines of the 
previous works /5, 26, 31, 32}. 

3 Equivalence of some ribbon 2-knots with isomorphic knot 

groups 

(Taizo Kanenobu)2 

This problem has already given in [22, Question 7.1]. Let Y43 and Y46 be ribbon 
2-knots with handlebody presentations as in Figure 2, which are given in Yasuda 
[34]. 

Problem 3.1 (T. Kanenobu, T. Sumi [22, Question 7.1]). Decide whether Y43 and 
Y46 are equivalent or not. 

Dz 

D1 

) 1111 

D3 

Dz 

D1 

D3 

Figure 2: Handle body presentations of Y 43 and Y 46. 

They have isomorphic knot groups. From Figure 2 we have 

G(Y43) =〈x,y,zlx(四）＝（四）y, x(zy) = (zy)z〉,

G(Y46) =〈x,y,zI x(yx) = (yx)y, x(z―ly―1) = (z―ly―1)z〉.

We can deform them into ribbon 2-knots of I-fusion: 

Y43~R(-1, -1, 1, 1, 1, 1, -1, -1), 

Y46~R(l, 1, 1, -1, -1, 1, 1, 1), 

which shows that they are positive-amphicheiral. So, from the mirror image of the 
handle body presentation of Y 46 we obtain: 

G(Y46) = G(Y46!) =〈x,y, z I x(y―lX―1) = (y―lX―1)y, x(zy) = (zy)z〉.

The first relation is the same as xyx = yxy, and so G(Y43) = G(Y46). 

2Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan 
kanenobucsci. osaka-cu. ac. jp 
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4 A geography problem for triangulated tori 

(Tamas Kalman) 

In my talk I discuss "trinities" (vertex-three-colorable triangulations) and'、Tutte
matchings" in two contexts, namely the sphere and the torus. Please refer to [15] 
or to the talk for the precise definitions. 
On the sphere, Tutte matchings generalize Kauffman states. With C. Hine, we 
proved that Kauffman's Clock Theorem also has a natural generalization. One 
wonders if other related phenomena, such as the Duality Conjecture (later proved 
by Gilmer and Litherland) and, of course, state polynomials, have analogues in the 
context of trinities. 
Since I do not have actual conjectures regarding the above, let me ask a concrete 
question that has to do with toric trinities. For now this is just a combinatorial 
problem with a topological flavor. On the torus, Tutte matchings are not always 
related by "triangle moves." In other words, the "state transition graph" is usually 
disconnected. Its connected components come in two types, acyclic and cyclic. The 
following question is open and my answer to it is just a guess. 

Conjecture 4.1 (T. Kalm由n).Every toric trinity has both cyclic and acyclic com-
ponents in its state transition graph. 

For example, the simplest toric trinity, shown in Figure 3, has six states. Three 
of them form a cyclic component of the state transition graph, and the other three 
are isolated points, which count as acyclic components. 

／三

Figure 3 

In fact, I suspect that a lot more can be said if we use the group H1 (Tり竺z2
to establish more structure. For that, let us place a vertex w in each white triangle 
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and represent our Tutte matchings a by directing a segment from all w to the vertex 
of the triangle that it is matched to. (I.e., we only keep the last one-third of each 
arrow that we previously used to represent matches.) Let us denote this 1-chain 
with C(J・
Then, for any two Tutte matchings a and T, we have a 1-cycle C(J -Cn whose 
homology class is denoted with a -T E凡(TりIftwo Tuttc matchings differ by a 
single triangle move, then their difference in H叩） is 0. In particular, there exist 
well-defined differences, as elements of H1 (Tり， betweenconnected components of 
the state transition graph. 
For instance, if we plot the four connected components of our example above, 
we see (on the right side of Figure 3) that the isolated points form a triangle and 
the cyclic component corresponds to the unique interior lattice point of the triangle. 
From this and other examples, the following question emerges. 

Question 4.2 (T. Kalman). Is it true that for each toric trinity, there exists a con-
vex lattice polygon whose boundary lattice points correspond to acyclic components 
of the state transition graph, while the interior lattice points correspond to cyclic 
components? 

If so, what does the area of the polygon represent? Do all lattice polygons arise 
from toric trinites, or only some special ones? What can be said about the number 
and size of the connected components that correspond to each lattice point is 
that related to the geometry of the polygon? 
For a slightly larger example, the toric trinity shown in Figure 4 has 860 Tutte 
matchings. It is not hard to find acyclic components (in fact, isolated points) at the 
lattice points indicated in orange. I can also construct cyclic components at the two 
purple lattice points shown. I have not yet determined whether components (and of 
which type) exist at the remaining two interior lattice points, or at any other lattice 
points of the plane. 

Figure 4 
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5 On quantum representation of knots via braided Hopf 

algebra 

(Jun Murakami) 

This joint work with Roland van der Veen [29] is motivated by the work of Inoue-
Kabaya [16] which gives a way to get the complex volume of the knot complement 
from the conjugate quandle corresponding to the PSL(2, C) representation of the 
knot group. It is shown in [6] and [7] that the above Inoue-Kabaya theory relates 
to the volume potential function of the Kashaev invariant and the colored Jones 
invariant. The volume potential function is a kind of a limit of such quantum 
invariants, which is obtained by replacing quantum factorial with the dilogarithm 
function, and contains information about the A-polynomial. 
We just constructed q-analogue of the quandle construction of PSL(2, q repre-
sentation, and there are many problems to construct q-analogues of things relating 
PSL(2, q representations. Among them, I would like to propose the following prob-
lems. 

Problem 5.1 (J. Murakami). Find some relation to the representations given by 
Hikami-Inoue /14] which uses the quantum dilogarithm function, and then construct 
a q-analogue of the volume potential function. 

Problem 5.2 (J. Murakami). Here we constructed a q-analogue of the representa-
tion space. Refine it to a q-analogue of the character variety. 

Problem 5.3 (J. Murakami). By introducing an element in the representation space 
corresponding to the longitude, construct a q-analogue of the A-polynomial and in-
vestigate its relation to the Al-conjecture /8]. 

If we can construct the above three objects, they must relate naturally. 

6 On the Strong Slope Conjecture for knots 

(Kimihiko Motegi)3 

Jones slopes and Jones surfaces 

Let K be a knot in the 3-sphere S3. The colored Jones function of K is a sequence 
qn/2_q-n/2 

of Laurent polynomials JK,n(q) E Z[q土ふ]for n E N, where J,。,n(q) = 1;2 for ql/2-q-

JK,2(q) the unknot O and is the ordinary Jones polynomial of K. Since the colored 
Jo,2(q) 

Jones function is q-holonomic [11, Theorem 1], the degrees of its terms are given by 
quadratic quasi-polynomials for suitably large n [10, Theorem 1.1 & Remark 1.1]. 
For the maximum degree d+[lK,n(q)], we set its quadratic quasi-polynomial to be 

知(n)= a(n厨+b(n)n + c(n) 
3Department of Mathematics, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan 
motegi.kimihikocnihon-u.ac.jp 
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for rational valued periodic functions a(n), b(n), c(n) with integral period, i.e., 
d+[JK,n(q)] =條(n)when n 2: n。forsome large integer n。.We call 4a(n) a Jones 
slope. A number p / q E (Q U { oo} is a boundary slope of a knot K if there exists 
an essential surface in the knot exterior E(K) = S3 -intN(K) with a boundary 
component representing p[μ] + q[入]E H1(8E(K)) with respect to the standard 
meridianμand longitude入.Garoufalidis conjectures 

Conjecture 6.1 (Slope Conjecture [9]). For any knot Kin S叫everyJones slope 
is a boundary slope. 

Garoufalidis'Slope Conjecture concerns only the quadratic terms of録(n).Kalfa— 

gianni and Tran propose the Strong Slope Conjecture which subsumes the Slope 
Conjecture and asserts that the topology of the surfaces whose boundary slopes are 
Jones slopes may be predicted by the linear terms of録(n).

Conjecture 6.2 (The Strong Slope Conjecture [21, 19]). Let K be a knot in 
S3. For any Jones slope p/q there exists an essential surface Fn C E(K) such that 

x(F, 砂
凡 hasbounda内1slope p/q = 4a(n) and = 2b(n) for some n EN. 

l8F, 遁

We call Fn a Jones surface. 

Question 6.3 (Selection principle). 
(1) (Garoufalidis [9]) Which boundary slope can be a Jones slope? 
(2) (Kalfagianni-Lee [20]) Which essential surface can be a Jones surface? 

Previously known example has a single Jones slope. So it may be plausible to 
ask 

Question 6.4 ([20, Question 3.7]). Is a(n) constant? 

The max-degree of colored Jones polynomials 

In general d+[Jx,n(q)] forms a quadratic quasi-polynomial 8x(n) when n~n。 for
some large integer n。.We call {n I n~n0} the stable range of d+[Jぃ(q)],and 
{n I 1 ::::: n < n0} the unstable range of d+[Jx,n(q)]. An existence of an unstable 
range bothers us. In [2, Section 3.3] we construct concrete examples of cabled knots 
K for which d+[Jx,n(q)] has an unstable range. Moreover this unstable range can 
be arbitrarily large. 
Since our construction uses cabling, and noting that d+ = 8 for torus knots, it is 
natural to wonder if any hyperbolic knot exhibits this behavior. 

Question 6.5 (K. L. Baker, K. Motegi, T. Takata). For every hyperbolic knot K, 
does d+[Jx,n(q)] = 8x(n) for all integers n~1? 

In our example, even when an unstable range exists, 山[Jx,n(q)]forms another 
quadratic (quasi-)polynomial in this unstable range. So we would like to ask 

Question 6.6 (K. L. Baker, K. Motegi, T. Takata). Even when d+[Jx,n(q)] = 8x(n) 
only for n~n。, is d+ [ J K,n (q)] another quadratic quasi-polynomial for n < n。as
well? 

10 
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Sign Condition 

An existence of an unstable range of d+[JK,n(q)] causes a difficulty to determine the 

maximum degree of the colored Jones polynomial of knots obtained by cablings and 

Whitehead doubles. 

To avoid this difficulty we introduced a rather strong condition, the Sign Condi-

tion, which requires that the sign En (K) of the coefficient of the term of the maximum 

degree of JK,n(q) satisfies cm(K) = En(K) form= n mod 2. 
In [1] we show that torus knots, B-adequate knots and knots obtained from 
theses knots by cablings, Whitehead doublings and connected sums satisfy the Sign 

Condition, and we asked if every knot satisfies the Sign Condition. 

However, a computer experiments suggest that the knots 820, 943, and 944 do not 
satisfy the Sign Condition. The following table gives the sign叫K)for K = 820, 
943, 944 and 1 :S n :::; 6. 

k 釘(K) c2(K) c3(K) 臼(K) 巧(K) 郊(K)

820 

943 

944 + 
＋ 

＋

＋

 
＋

＋

 

+
＋
+
 

We computed the colored Jones polynomials for these knots using Mathematica 

package KnotTheory'and its program ColouredJones [3, 33] in order to determine 
the signs En(K). In the above examples all knots have録(n)with period 3. It may 
be reasonable to ask: 

Question 6.7 (K. L. Baker, K. Motegi, T. Takata). Let K be a knot such that 
妖(n)has period :S 2. Then does K satisfy the Sign Condition? 
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