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GUIDE TO  THE  BRISTOL MODEL: 

GAZING INTO THE  ABYSS 

ASAF KARAGILA 

ABSTRACT. The Bristol model is an inner model of L[c], where c is a Cohen 
real, which is not constructible from a set. The idea was developed in 2011 

in a workshop taking place in Bristol, but was only written in detail by the 

author in [8]. This paper is meant as a guide for those who want to get a 

broader view of the construction. We try to provide more intuition that might 
serve as a jumping board for those interested in this construction and in odd 

models of ZF. We also correct a few minor issues in the original paper, as well 

as prove new results. For example, that the Boolean Prime Ideal theorem fails 

in the Bristol model, as some sets cannot be linearly ordered. In addition to 
this we include a discussion on Kinna-Wagner Principles, which we think may 

play an important role in understanding the generic multiverse in ZF. 
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1. INTRODUCTION 

Mathematicians love classifications. We enjoy classifying objects into different 
categories, and for a good reason. Classifications teach us about abstract properties, 
and help us deepen our understanding of various objects and theories. 

Set theorists are generally interested in models of set theory. If V satisfies ZFC, 
we want to classify models of set theory which lie between V and some generic 
extension, V[G]. In the case where "set theory" is understood as ZFC, Vopenka's 

theorem tells us exactly what the intermediate models are: they are generic exten-
sions given by subforcings of the forcing which is used to introduce Gover V. 
On the other hand, when we are interested in classifying arbitrary models of 

ZF, instead, even if we assume that V satisfied ZFC, the task becomes significantly 
harder, and dare we say, nigh impossible. For a start, a generic extension of a 
model of ZFC cannot be a model of ZF十-.AC.One might be inclined to say that 

such intermediate extension would still be a symmetric extension, which is a type 
of inner modcl of a generic extension defined using automorphisms of the forcing. 

While this is true under some additional conditions on the intermediate model, it 
turns out that if M is an intermediate model between V and V[G], even if M is 
a symmetric extension of V, it might not be given by any forcing even remotely 
related to the one for which G was generic. 

The reality is that intermediate models of ZF are far wilder than their ZFC-
counterparts. The Bristol model is the first explicit example of such a model. This 

is a model intermediate to L[c], where c is an£-generic Cohen real, which is not 
constructible from a set, let alone a symmetric extension of L (by any means, not 
just the Cohen forcing). While there is a semi-canonical Bristol model, modulo a 

particular choice of c, it is immediate from the construction that, in a very good 
sense of the word, most models intermediate to L[c] are not even definable. We will 
clarify on this in section 7. 

The idea for this model came about in a small 2011 workshop in Bristol on 
topics related to the HOD Conjecture. In attendance were Andrew Brooke-Taylor, 
James Cummings, Moti Gitik, Menachem Magidor, Ralf Schindler, Matteo Viale, 
Philip Welch, and W. Hugh Woodin, henceforth "the Bristol group". The details 

were not written down in full, and the model remained as a folklore rumour until 
the author's effort to formalise it. The details of the construction are given in [8], 
which was part of the author's Ph.D. dissertation. This paper aims to give a bird's 
view of the construction, from three different perspectives (for people coming from 

different walks of set theory). We will also correct a few minor mistakes in the 
original paper, and prove a handful of new theorems about the Bristol model, and 

about models of ZF in general. 

1.1. Structure of this Paper. The Bristol model is presented in [8] as an itera-

tion of symmetric extensions, starting from a Cohen real. The idea is to have, at 
successor steps, a "decoding mechanism" which is a symmetric extension over an 

intermediate step such that two properties hold: (1) the decoding mechanism has 

a generic (relative to the intermediate step) in the Cohen extension, and (2) the 
decoding mechanism only adds subsets of sufficiently high rank. 

We will cover the basics of the technical tools in section 2. We will define 
symmetric extensions, and briefly outline the main ideas related to iterating them 

(or rather, why it is hard to iterate symmetric extensions). We will also discuss 
the combinatorial ideas needed for the decoding mechanism, both at successors of 

limits, as well as double successors. 
After covering the preliminary tools, we will present the decoding mechanism, 

and the generic argument needed for the proof to work. In section 4 we explain 



3

GUIDE TO THE BRISTOL MODEL 

the three different approaches to constructing the Bristol model. All three are 
equivalent, but for different people some of these might be seen as "more natural" 
and can help understand the model better. We will not dive into the intimate 

details, though. The goal of this paper is to serve as a companion, and help provide 
not only the big picture of the construction, but also serve as a first step towards 

reading and understanding the construction's details presented in [8]. 
Having discussed the construction of the model, we will then point towards 
some minor gaps and typos in the original [8]. Then we will discuss Kinna-Wagner 
Principles whieh we expect to play a role in the study of ehoiceless models such as 

the Bristol model. We will make some new observations, and suggest conjectures 
for future research. Finally, in section 9 we will prove that some sets in the Bristol 

model cannot be linearly ordered, and therefore the Boolean Prime Ideal theorem 
is false there. We finish the paper with a long list of open questions related to the 

Bristol model. 

Acknowledgements. The author would like to express his deepest gratitude to 
Daisuke Ikegami for providing the opportunity to give a long tutorial on the Bristol 

model during the RIMS Set Theory Workshop in November 2019, "Set Theory and 

Infinity", as well as to the audience, who sat and listened, asked questions, and 
pointed out difficulties, all of which contributed to this paper. We also want to 

thank David Asper6 and Andres E. Caicedo for providing thorough comments on 
early versions of this manuscript. 

2. SYMMETRIC EXTENSIONS AND OTHER TECHNICAL TOOLS 

In this paper, the term forcing will denote a preordered set with a maximum, 
denoted by 11, unless explicitly mentioned otherwise.1 Of course, we will invariably 

think about a forcing as a partially ordered set, a separative one, in fact, knowing 
full well that this will not limit our generality. 2 The elements of lP'are called 

conditions, and using them we define lP'-names. We refer the reader to any of 
[4, 6, 11] for the basic methodology of forcing. 
Let lP'be a notion of forcing, we follow the convention that if p, q E JP', then 
qさpindicates that q is a stronger condition, and we will often say that q extends 
p. Two conditions are compatible if they have a common extension, and they are 
incompatible otherwise. 

Given a collection of lP'-names, {わ Ii E I}, that we want to transform into a 
name, we will denote by {ふ Ii E n・the name {〈11,ふ〉 Ii EI}, and we say that a 
name is a● -name when it has this form. This extends naturally to ordered pairs, 

sequences, functions, etc. With this notation we can easily define the canonical 
names for ground model sets: ゑ ={f;lyEx}•.

Given two lP'-names, 尤andy, we say that :i; appears in iJ if there is some p E lP' 
such that (p, :i; 〉Ey. We will use a similar terminology stating that p appears in y. 

2.1. Symmetric extensions. As we remarked, a generic extension of a model of 

ZFC is again a model of ZFC. Symmetric extensions are intermediate models to 
generic extensions where the axiom of choice may fail. 
Let lP'be a forcing, and let 7r be an automorphism of JP'. The action of 7r extends 
to the lP'-names by recursion: 

社＝｛〈1rp,1riJ〉I(p, ii>€ 出｝．

1 We will, eventually, tickle class forcing. 
2We still insist on the preorder definition, as it does make the definition of an iteration signif-
icantly more manageable. 
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Lemma {The Symmetry Lemma). Let 7r be an automorphism of a forcing lP', 
and let x be a lP'-name. For every condition p, 

plト1.p(力）⇔ 7rp Iト1.p(詮）．

Fix a group'§C:: Aut(lP'). We say that§is a filter of subgroups on <§if it is a 
filter on the lattice of subgroups, namely, it is a non-empty collection of subgroups 
which is closed under finite intersections and supergroups. We will, unless stated 
otherwise, assume it is a proper filter, i.e. the trivial group is not inク.3Finally, 

ク isnormal if whenever 7r E'§and HE§, then 7rH7r-l E§as well. In most 
cases we are interested not necessarily in a filter, but in a filter base, and we will 
ignore the distinction between the two. 
Call〈JP',<§,§〉asymmetric system if lP'is a notion of forcing,'§is a group of 
automorphisms of lP', andク isa normal filter of subgroups on'§. We shall fix a 

symmetric system〈JP',<§,§〉forthe rest of this subsection. 
For a lP'-name, x, let symcg(x) denote the group {7r E'§I社＝出}.If it is the 
case that symcgは） E§, then we say that x is $-symmetric. And similarly, we say 
that尤ishereditarily $-symmetric if being $-symmetric is hereditarily true for all 

names appearing in {士}・.
We denote by HSg; the class of hereditarily戻 symmetricnames. We denote 

by I卜HSthe relativisation of the forcing relation to HS: we restrict the quantifiers 
and free variables to this class. It is not hard to check that the Symmetry Lemma 

HS applies for I卜,provided that we use automorphisms from'§. 

Theorem. Let G C:: lP'be a V -generic filter, and let M denote the interpreted class 

HS~= {紗 Ij; E HSク}. Then M is a transitive class model of ZF such that 
V C:: MC:: V[G]. Moreover, MF  1.p(砂） if and only if there is some p E G such 
that p I卜HS1.p(x).

The class M is also called a symmetric extension of V. It turns out that M is 

a symmetric extension of V if and only if M = V(x) for some x E V[G]. We will 

discuss this in more detail in section 7. 
We will omit <§and§from the notation and terminology when they are clear 

from context, which is usually what is going to happen. 

2.2. Example. Let lP'be Add(w,w1). Namely, p E lP'is a finite partial function 
from W1 x w→ 2. We let our'§be the group of permutations of w1 acting on lP' 
in the natural way: 7rp(7ra, n) = p(a, n). Finally, for E C:: w1, let fix(E) denote 

{7rE'§l7r「E= id}, and set§= {fix(E) I EE  [w1臼｝．
For every a < w1, let iLa be the name of the ath Cohen real, { (p, n〉lp(a,n)=l},
and set A = { iLa I aく切｝り

Claim 2.1. For every 7r E'§and a < wぃ叫=iL,ra. Consequently, 7r A = A. ロ

As an immediate corollary, iLa E HS for each a<  w1, as witnessed by fix({a}), 

and so A E HS as well. 

Theorem 2.2. ] I卜HSA cannot be well-ordered. Consequently, the real numbers 

cannot be well-o成eredand there o詑 ]I←f HS ,AC. 
HS・ 

Proof. Let f E HS, and suppose that p is a condition such that p I卜. f:A→り for
some ordinal rJ. Let Ebe a countable set such that fix(E) C:: sym(f). We may also 
assume that 7r E fix(E) satisfies 7rp = p by adding a finite set to E, and replacing 

it with E U { a Iヨn〈a,n〉Edomp}. 

3There is no point in using the improper filter when taking a symmetric extension. However, 
for the sake of generality it should be noted that this can be useful when iterating. We promise 
to never bring this up in the course of this paper again. 



5

GUIDE TO THE BRISTOL MODEL 

Fix a tf. E, as lP'is a c.c.c. forcing, the set X = {~< 1) IヨqSp: q I卜HSj(aa) = l} 
is countable. Note that 

HS . 
pl卜 f(aa)EX. 

For any /3 < w1, let 1r13 denote the 2-cycle (a (3). Therefore, 

疇 1卜HS1r13j(1r13aa) E 1r13X. 

Easily, 1r13 E fix(E) if and only if /3 tf. E. So for all /3 tf. E, p I卜HSj(a13) E .X. In 
particular, p must force that j has a countable range. Asp and j were arbitrary, we 

in fact have shown that every ordinal-valued function in the symmetric extension 
defined on A must have a countable range. 
To finish the proof we appeal to the c.c.c. of the Cohen forcing again, noting that 

叩 isnot collapsed, and therefore ] I卜HSIA.I -I~。. Therefore there is no injection 
from A into the ordinals as wanted. 口

The standard arguments are usually presented in a slight~y different way. We 
usually extend p to a condition q, which decides the value of f(aa), and then show 

that we find 7r E fix(E) such that 1rq is c~mpatible with q, and 1ra -/ a. This then 
shows that no extension of p can force f to be injective. Chain condition based 
arguments are not very common in results of this type, and we hope that this paper 
will help to popularise the idea. 4 

2.3. Iterations of symmetric extensions. Iterating symmetric extensions is not 

an easy task. While some ad-hoc constructions can be found in the literature from 
the very early 1970s,5 the only systematic development of such framework was done 

by the author in [9], and so far only for finite support iterations. The goal of this 
section is not to fully develop and explain this technique, but instead provide an 

intuition as to how the technique works, and what are the difficulties that need to 
be overcome in the case of the Bristol model. 
The intuition behind iterations of symmetric extensions is as naive and simple 

as it can get. We want to have an iteration of forcing notions, in this case with 
finite support, and we want to identify a class of names which correspond to the 
intermediate model that we would get if we were to iterate symmetric extensions 
one step at a time. 
Looking at a two-step iteration, say lP'* (Q), we also need to associate ,;ff and§to 
JP', an~names for a group of automorphisms, 炭， anda filter of subgroups笈.Now, 
a lP'* IQ-name is going to be in the iterated symmetric extension if its projection to 
lP'is in HSク， andit is guaranteed to be interpreted as a name in HS況,, that is a 
hereditarily symmetric name in the second step. 

But we can weaken this slightly, and much like we only require that the lP'-name 

is guaranteed to be a name in HS況， wecan require that the lP'-name is guaranteed 
to be equal to some name in HSg;. That we, we are allowed to "mix" names from 

HSク over an ant1cham. 6 

Consider, for example, Cohen's first model, this is a model similar to the example 
above, replacing w1 by w. Namely, we add an w-sequence of Cohen reals, permute 
them, and consider finite stabilisers. Let an be the name for the nth real, then we 

can define the name 

a={〈p血〉 Iヨn(p(n,0) = 1 A Vk < n,p(k, 0) = 0 A p(n, m) = 1)}. 

4See [10] for more examples of this sort. 
5Examples include [121,[16],[17], and to some extent also [14]. 
6In general a class of names X has the mixing property if when 1 I卜xEX, that is we can find 
a (pre-)dense set of conditions p and Xp E X such that p If-わ=xp, then x EX. 
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In clearer terms, this is the name for the first an which contains 0. We are guar-
anteed that a will be interpreted as one of the an. But it is not hard to see that a, 
as defined above, is not stabilised by fixing any finite subset of w.7 

Considering names like a seems like an unnecessary complication. But upon 
a closer examination of the general construction of iterations, we see this idea is 

somehow necessary. Indeed, the conditi?ns of the iteration are usually defined to 
be (p, q〉suchthat p E lP'and ]II'Iトq_E Q. This definition generalises to non-finite 
supports. We will call the forcing notions defined this way "Jech(-style) iterations". 

Kunen, in his book, introduces iterations with a perhaps mor_e naive approach: 
the conditions are pairs〈p,q〉suchthat p E lP'and p Iトq_E Q. This definition 
fails to generalise nicely to infinite supports, but it is useful for understanding 
finite support iterations. We will use "Kunen(-style) iterations" to refer to forcing 

iterations defined this way. 

Remark 2.3. It is worth pointing out at this point that we assume ZFC holds in 
our ground model. While the theory of symmetric extensions, as well as that of 
iterated forcing, can be developed reasonably well in ZF, it is not clear to what 
extent choice is truly necessary for developing the theory of iterated symmetric 

extensions. We utilise the mixing property quite significantly in the general theory, 

and while it is conceivable, and indeed it is our conjecture, that we can remove 
choice from the assumptions, there is a certain comfort and simplicity in assuming 

it. Moreover, as we want to start with Las our underlying model, ZFC is already 

a given. While V = L is far too strong of an assumption, we will see that at the 
very least we will want GCH to hold, which implies choice anyway. 

When worki_ng with Jech iterations, we can quickly see that even for the con-
ditions of lP'* Q to be in the intermediate model, we need to allow this so-called 
"mixing property". And so, if we require it to hold for the conditions, we will need 
to require it to also hold for the automorphisms of Q, etc., and so the idea itself 
is important. We can now proceed towards finding a combinatorial definition that 

will allow us to directly define the class of names, much like we did with HS in the 
case of a single symmetric extension. 

Definition 2.4. Let lP'be a notio_n of forcing~nd l~t 1r be an automorphism of JP'. 
We say that Jr respects a name A if ]II'If-1rA = A. If〈JP',<§,§〉isa symmetric 
system we say that A is§-respected if there is some H E§such that every 1r E H 
respects A. 

Much like the definition of主 symmetricbefore it, this definition lends itself to 
a hereditary version. We will simply say "respected" whenク isclear from context. 

If A carries an implicit structure (e.g., a forcing notion) then this structure is also 
required to be respected. 

The idea is that being respected is "almost" being symmetric. We will soon 
weaken this property a bit further to accommodate the "mixing property" into the 
respected names. 

Respect is the foremost necessary condition for developing a combinatorial char-
acterisation of iterated symmetric extensions. Given a symmetric system〈JP',<§,§〉
and a lP'-name Q, in order to define an automorphi~m of lP'* Q using some 1r E <§, 
the first thing we need to ensure is that 1r respects Q. Otherwise, (p, り〉→ 〈1rp,Jrり〉
is not an automorphism of lP'* Q. 

7This shows that typically HS does not have the mixing property. This is not a bad thing, 
though, as we are often concerned with particulars when working with symmetric extensions, and 
having to specify witnesses is a good thing. 
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Definition 2.5. Let〈JP',笈ク〉 bea symmetric system, and let〈Q,洸，力〉• be a 
hereditarily respected name for a symmetric system. Suppose that 71'E <§and & is 

a name such that恥 I卜&E泣 thenwe denote by J〈,r,&〉theautomorphism defined 
by〈p,<j〉→ 〈71'p,71'(吋）〉．

Here we utilise the mixing property quite significantly, by defining &<j to be the 
name guaranteed to be interpreted as the action of & on the condition <j. If we were 
using Kunen iterations, we would have to define J as a partial automorphism 

〈1r,&〉
which is only defined when p I卜&E <§. This is not a formal problem, but it makes 

the actual legwork a lot har~er. 
We will denote by <§*洸 thegroup of all such automorphisms. In [9] we refer 
to this gr?UP as the generic semidirect product. Turning our attention to t~e filters 
ク andぷ wedefine a support to be_〈H。，刷 whereboth of them are lP'*Q-names 
such that I卜H。E彦 andHi E笈. Note that we can always extend whatever 
condition to decide the actual group iI。,and likewise we can decide the actual 
lP'-name for .H1. However, using this approach allows us to take advantage of the 
mixing property. 

We can~ow _define the notion of respect relative to the supp_orts. Namely, there 
is a pair〈H。,Hりsuchthat whenever ゆ， q〉|卜〈71',&〉€ 〈H。,H1〉,which is to say 
ゅ，q〉|卜升 E.H。andけ E崖 wehave thatゆ，q〉|卜 J A = A. Whereas in 〈1r,&〉

Definition 2.4 we required that iI。wouldactually be a concrete group, here we 
allow a bit more leeway. The result is that the respected names, in this sense, are 
truly the closure of HSク undermixing. 
A symmetric iteration, or an iteration of symmetric extensions, is defined by 

specifying a sequence of names for symmetric systems, <<Q13,~13,ff13 I f3 < a〉,and 
defining lP'"'as the finite support iteration of the forcings Q13; 9a as the finite 

support generic semidirect product of the groups'#13; and凡 asthe collection of 
all supports. 

We define supports _in the general cas~as lP'"'-names for sequences〈iI13I f3 < a〉
such that I冨 H13E§13, and that Iは {(3I iI /3 i='#13}• is finite. The last part is 
crucial, as it allows us the flexibility in "knowing something has a finite definition" 

while not committing to its specifics just yet. 

Let IS。bethe class of lP'"'-names which are hereditarily respected. This class is 
now the class of names which will be interpreted in the intermediate model of stage 

a. So to complete our definition of a symmetric iteration we need to require that 

心尻，沙ふ isin ISa, and indeed that it is respected by all automorphisms in 
9a, as we pointed out before. We also have a forcing relation I卜閃 whichis defined 
by relativising the names and quantifiers to ISa, 

Using this definition we can show that when G is V-generic, then 1S0 is a model 
"' 

of ZF, and if a = (3 + I, then this model is a symmetric extension of 1S0113 using 
/3 

the (3th symmetric system. On the other hand, if we want to continue a symmetric 

iteration, that is of course possible, but we need to make sure that the generic filter 
G used is not only IS"-generic, but rather V[G]-generic, and we may need to shrink 

the groups':113 in a few places. This may present an issue if we want to continue our 
iteration by infinitely many steps, as we may need to shrink our groups infinitely 
many times, which might not be possible. 
But here we arrive to our first obstacle when applying this to the Bristol model. 

We just required that the generic filter is not "pointwise"-generic, but rather V-
generic for the entire iteration. While in the case of iterated forcing this is not an 
issue for the successor case,8 here we run into the first problem we had defining 

8 Although it can be an issue for the limit case. 
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the whole apparatus using mixing. The use of mixing allows us to use arbitrary 
antichains and predense sets to define the names in ISa, and so we end up with 

names in ISa which encode some generic information in them. 
The "easy" way to leave this mess is to require that we relativise the definition 
pointwise. That is, at each step we only take names which are in the intermediate 
model. But this adds a layer of complexity when defining the actual forcing lP'a, 

or the automorphisms in 9a, or using these in the same manner that we are used 
to when working with symmetric extensions.9 Even worse, while for finite support 

iterations all of these different constructions are equivalent, this is not the case if 
we want to extend our definition to other types of iterations. 

We take a different route instead. Looking at products as a type of degenerate 
iterations, we may want to mimic this definition here. But a copy-paste approach 

is bound to result in just a product of symmetric extensions. While this is fine, it 
is not what we are looking for. We want to force over the symmetric extensions, 

but yvith a "very canonically defined forcing". The idea is that we want to iterate 
lP'* Q, and in V[G], where G C::: JP', the forcingが isisomorphic to a forcing in V, 
and to some extent, this isomorphism does not even depend on G. This means that 

we are really taking a product. But in the symmetric extension given by JP', the 
forcingが isnot isomorphic to any partial order in V, maybe because it cannot be 
well-ordered, or maybe due to a similar consideration. Nevertheless, it is distinct 

from forcings in Vas far as HS0 is concerned. 

We say that a symmetric iteration is productive if each Q"'is a•-name which 
allows us to use the Kunen-iterations for lP'a, which ar~simply the products of these 
names. We also require that the names of 燒 and 乞~have similar properties, in 
that they are•-names and that ]"'decides equality related propositions. 
Finally, in the definitior_i of a support, needed for the definition of I Sa, we reguire 

more. We require that〈HfJI /3 < a〉isan excellent suppo廿， meaningthat H fJ is 
a name appearing in乞， andin particular a 恥—name, and the finite set of non-
trivial coordinates is decided in advance. This is in line with the previous demands: 
everything is decided in advance, this is "almost a product". 

Now that we have a condition on the iteration, we need a condition on the generic 
filters as well. 

Definition 2.6. Suppose that〈lP',9,F〉isan iteration of symmetric extensions. We 
say that D C::: lP'is symmetric if there is an excellent support H such that whenever 

plトifE H, then p I卜D= {fffq I q E D}. In other words, D is stable, as a set, 
under a large group of automorphisms. 

We say that G c::: lP'is symmetrically V -gene戊cif it is a filter meeting every 
symmetrically dense set in V. 

It turns out that symmetrically generic filters are exactly the filters needed to 
interpret symmetric names. And we have the following theorem for productive 

1terat1ons: 10 

Theorem 2. 7. Let lP'be a productive iteration, and let p E lP'and x E IS be some 
symmetric name. The following conditions are equivalent: 

(1) p I卜IS亨）．

(2) For eve内 symmetricallyV-generic filter G such that p E G, 1S°F ,p(砂）．
(3) For every V-generic filter G such that p E G, 1S°F沢朽）．

9This is not to say that this is not doable, or maybe even a better way of iterating symmetric 
extensions. We hope that these remarks will inspire more people to work on these problems. 
10These include, of course, actual products, as well as single-step symmetric extensions. 
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It is not hard to check now that at least for the successor steps, the iteration of 
"pointwise" symmetrically generic filters is indeed a symmetrically generic filter. 
We finish this overview with a preservation theorem. 

Theorem 2.8. Suppose that〈Qa,'#a,丸 Ia<  8〉definesa symmetric itemtion, 
and G is V-generic for the itemtion. Moreover, assume that for every a < 8, 
]_ I卜aふ isweakly homogeneous and況 isrich enough to witness this.11 Let'f/ 
be an ordinal such that there exists a。<8 that for any a E (ao, 8) the following 
equality holds: 

15Gla 15Gla+1 
v'I) a = v'I) a+l• 

ISGいo+l
Then V, 竺=V'7 ao+i . In other words, if no sets of rank <TJ were added at 
successor steps, none were added at limit steps either. 

This theorem is in stark contrast to the familiar case in the usual context of 
iterated forcing: iterating, with finite support, forcings which are not c.c.c. will 
collapse cardinals; and iterating non-trivial forcings, even if they are c.c.c., will add 

Cohen reals at limit steps. But in the case of symmetric iterations, even if the 
forcings are non-trivial, as long as they are homogeneous and do not add reals, the 
limit steps will not add reals either. 
As a consequence, we can extend our apparatus now to an Ord-length iteration 
while preserving ZF in the resulting model. Moreover, the result holds for produc-

tive iterations with symmetrically generic filters, as one can state it in the language 
of forcing, rather than talking about V'7 of various models. See also§9.2 of [9]. 

2.4. Permutable families and scales. The key mechanism in the construction 
of the Bristol model is "decoding a long sequence from a short sequence". This can 

mean a sequence of length w1 from a Cohen real, or a sequence of length w43 from 

one of length W42, We use almost disjoint families in successor steps to repeatedly 
decode these sequences, and we use a particular type of scale to succeed at this 

task when we are at limit steps. This will be as good a place as any to remind the 

reader that we work in ZFC, especially when thinking about these combinatorial 
objects that are used here. 

Definition 2.9. Let K, be a regular cardinal, and fix a family A = { Aa I aくと}of 
unbounded subsets of K, such that for aく (3,sup(Aa n A刃<K,, For permutations 
7l': K, → K, and II: 応→ 炉 wesay that that 7l'implements II if 7r"Aa =* An(a) 
for all a<臼．

Here we use =* to mean equality up to a bounded subset of K,, Which K,, of 
course, will be clear from the context, so we will spare the reader from using the 

symbol =~, or worse. 
We are looking for an abstract property of an almost disjoint family which will 
ensure that it implements any bounded permutation of応， thatis any permutation 
of K,+ which is the identity on a tail can be implemented. 

Definition 2.10. Let K, be a regular cardinal, {Aa I a < K, 十｝こ [K,ドiscalled a 
permutable family if it is almost disjoint, that is for a =f (3, sup(Aa n A13) < K,, and 
for every I E [K,+]<氏+there is a pairwise disjoint family { B€ I~E I} such that 
B€ =* A€ and 

a E J¢==> Aa n LJ Be is unbounded in r;,. 
在 I

We call { Be I~E I} as in this definition a disjoint approximation, and in the 
case where BeこAe,we say it is a disjoint refinement. 

11We will say in this case that鉛 witnessesthe homogeneity of Q"'. 



10

ASAF KARAGILA 

Proposition 2.11. If A is a per-mutable family of subsets of a regular cardinal 1,,, 

then it implements every bounded permutation of戸

Proof. Let II be a bounded permutation of ,,,+, fix ry <討 suchthat II does not 

move any ordinals above ry. Next, set I = ry and let {Bi; I l < ry} be a disjoint 
refinement. Now let 1r be the function which is the order isomorphism from恥 to
B13 when II(a) = (3, and the identity elsewhere. Easily, 1r implements II. ロ

Having fixed a permutable family, if 1r: 1,, → 氏 implementsII, we will denote this 
byし(1r)= II. 

Proposition 2.12. Let 1,, be a regular cardinal, then a per-mutable family exists. 

Proof. Let〈TaI O! く記〉 bea C:::* -increasing family of subsets of 1,,. Define Aa as 
Ta+l ¥ Ta, then {Aa IO!<臼}is a permutable family. ロ

Remark 2.13. It should be pointed out that one can construct an increasing family 

of subsets from a permutable family. Recursively, set Ti。=A。,Ta+l = Ta U Aa, 
and for limit steps recursively construct Ta as the union of a disjoint refinement of 

{ A13 I f3 < a}, which exists by definition of a permutable family. As long as aく応
we can ensure that these disjoint refinements are also increasing in inclusion, which 

guarantees that Ta contains previous limit steps. 

Definition 2.14. Given a permutable family on a regular cardinal 1,,, the derived 
group is the group';§of all permutations of 1,, which implement a bounded permu-

tation of,,,+. The derived filter is the normal filter of subgroups on';§generated by 

fix(B), for a disjoint approximation B, where fix(B) = {1r E';§I 1r「LJB= id}. 

While these definitions are given for regular cardinals, we will only use them in 
the basis case and successor case. For the limit case, where 1,, is a limit cardinal, we 
need to use a slightly different machinery, as the goal is to coalesce the information 

from previous steps and use it as a kind of "short sequence". In some way, inacces-
sible cardinals are the "simpler case" compared to singular cardinals. Nevertheless, 
there is no need of separating the two. 

Definition 2.15. Let入bea limit cardinal, and let SC(入） denote {μ+ Iμ<入｝．
Let Ua I a <入+}be a scale12 in IT SC(入）c・f  . 1ven a sequence o permutations 

if=〈1r0I 0 E SC(入）〉 suchthat 1r0 is a permutation of 0, we say that if implements 
a function II : 入十→ 入+if for every a <入+and for every large enough 0, 

fn(a) (0) = 1r0f a(0). 

We call a scale pe可 utableif it implements every bounded permutation ofげ

As with the case of permutable families, we denote byし（元） the permutation II 
that is implemented by元
The fact that inaccessible cardinals are the "simpler case" can be trivially seen 

as a consequence of the following proposition, while remembering that working in 

V = L we always have the wanted cardinal arithmetic. 

Proposition 2.16. Suppose that入isan inaccessible cardinal and 2入＝入+,then 
there is a per-mutable scale on入_13 

This can be shown by a simple transfinite recursion, in a very similar fashion to 
the permutable family case. 

12We actually only need to have an increasing sequence, it is irrelevant that it is also bounding. 
13The assumption on 2入canbe completely removed by simply limiting ourselves to increasing 
sequences instead of scales. Nevertheless, as we are working under GCH anyway, this is just 
simpler. 
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Proposition 2.17. Suppose that入isa singular cardinal and□ L then there is a 
permutable scale on入．

The proof of this proposition can be found as Theorem 3.27 in [8]. The idea 
of the proof goes back to the Bristol group, and utilises the work of Cummings, 

Foreman, and Magidor in [2] where it is shown that閲 impliesthe existence of 
"better scales". The aforementioned Theorem 3.27 show that a better scale is in 

fact permutable. 
The key point in proving a better scale is a permutable scale is that given any 

IE[応］＜入， wecan find a function d: I→ SC(入） such that Ua"[d(a), >.)Ia EI} 
is a family of pairwise disjoint sets. The proof of Theorem 3.27 also shows that 

even if we are only allowing 1r0 to be a bounded permutation of 0, this is still 
enough to ensure that we can implement every bounded permutation of入+using a 

permutable scale. We say that a sequence of permutation groups of each 0 E SC(入）
is rich enough if we can require 1r0 to be in the relevant group when we find an 
implementing sequence. 

Definition 2.18. Let入bea limit cardinal, and for every 0 E SC(入）， let<§e be a 
rich enough group of permutations of 0. The derived group is the subgroup<§of the 

full support product ITeESC(入）<§e consisting of all sequences if =〈1r0I 0 E SC(入）〉
which implement a bounded permutation of入土

For T/く炉 andf E ITSC(入） we let K,,,,1 be the group 

｛そ E<§I l(ir)「T/= id and for all 0 E SC(入），1r0「f(0)=叫

The derived filter is the filter generated by { K,,,,1 I T/ <入+,jE ITSC(入）｝．

We can weaken the definition of K,,,,1 and replace T/ by a bounded subset of入九
i.e., IE [入汀＜入+,and replace f by a sequence of bounded sets of each 0. But as 
the definition is complicated enough as it is, it is easier to just use T/ and f as upper 
bounds. 

3. THE DECODING APPARATUS 

Assume V = L throughout this section. The Bristol model is constructed as a 
symmetric iteration, indeed a productive iteration. We will outline the construction 
of the different intermediate steps in this iteration, and the arguments needed for 
utilising the iterations apparatus. 

Definition 3.1. A Bristol sequence is a sequence indexed by the ordinals such that 

for a = 0 or a successor we have Aa = {Af I (< Wa+1} which is a permutable 

family on Wa, and if a is a limit ordinal then we have Fa = {ff I (< Wa+1} which 
is a permutable scale in the product IT SC(wa)-

Fix a Bristol sequence. By assuming V = L we not only have a Bristol sequence, 
indeed we have a canonical one, where we choose the <£-minimum permutable 
family or scale at each point. Our goal is to use these permutable objects and replace 

at each stage, a, a sequence of length Wa by one of length Wa+i• In particular the 
first step is to replace the Cohen real, which is a sequence of length w, by a sequence 

of length W1. But we want to be able and guarantee that the original sequence is 
not going to be definable from our longer sequence. 

In this sense, we want to decode from a Cohen real a sequence of length w1, 
which captures "some crucial bits" of the Cohen real, but not really all of it. Then 

we want to decode from this w1 sequence a new sequence of length w2, forget the 
one of length w1, and proceed. 
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3.1. Example: first steps. Let lP'be the Cohen forcing, and in this case we mean 
p E lP'is a function from a finite subset of w into 2. Let us omit the index from A。,
as we are only eoncerned with the first step at the moment, soふ denotesthe ath 
set in the first permutable family. We let I§and ff denote the derived group and 
filter from A. The action of I§。nlP'is the natural one: 

叫 1rn)= p(n). 

We denote by c the canonical name for the Cohen real. For Aこwlet lP'「A
denote the subforcing {p E lP'I dompこA},and let似 denotethe name 

｛ゆ，h〉Ip(n) = 1 /¥ domp <;;; A}. 

Of course, 切 isthe canonical name of the generic real added by lP'「A.We have now 
that 7rCA = C1r"A・In general we say that a name±for a set of ordinals is decent if 
every name appearing in it is of the form~for some~E Ord. We say that a name 
for a set of ordinals is an A-name if it is a lP'「A-name.

Proposition 3.2. Suppose thatわEHS and]. I卜出こ w,then there is some disjoint 

approximation B and a decent LJ B-nameむ suchthat ]_ Iトi;=む

Proof. Let B be a disjoint approximation such that fix(B)こsym(±)and defineむ
as 

む＝｛⑰，h〉pl卜nE :i; I¥ dampこLJB}.

It is clear that 11 I卜±.~ ±, to show equality it is enough to prove that if p I← n E±, 
thenp「LJBI卜nE±. Let qさp「LJB.
By the very definition of a disjoint approximation LJ B is co-infinite, so we may 

find a finite set E such that E n (LJ B U dom p) = 0 and IEI = I dom q ¥ LJ Bl. 
Then let 7r be a permutation which maps dom q ¥ LJ B to E, and it is the identity 
elsewhere. Being a finitary permutation it implements the identity function, so 
indeed 7r E'§, and by its very definition 7r E fix(B), so社=±.So if q had forced 
n ,j._出， wewould have 1rq Iト1rn,j._ 1rx, which is the same as 1rq I卜n,j._ぶ Alas,1rq 
and p are clearly compatible, and so this is impossible. ロ

We let G be a V-generic filter14 and let M denote the symmetric extension HS豆
as is standard, we will "omit the dot" to indicate the interpretation of a name, 

so c is going to be汐， etc.The following is a very easy corollary from the above 
proposition. 

Corollary 3.3. c ff-M. 口

This is where we start seeing the importance of the permutable family, as opposed 

to any almost disjoint family. If { Xa I aく叫}is an almost disjoint family, then 
{ c n Xa I a < wi} is a family of mutually generic Cohen reals, any finitely many of 
them are mutually generic over any other finite subfamily. But in our case, where 

the almost disjoint family is in fact a permutable one we get countable mutual 
genericity. Any countable subset of { c n Aa I aく叫 issimultaneously mutually 
generic over any other countable subset (provided they are pairwise disjoint). 
We can actually prove more. Nothing in the proof of Proposition 3.2 will change 

if we assume that±is a name of an arbitrary set of ordinals. This shows that every 

set of ordinals lies in an intermediate model given by c n LJ B for some disjoint 
approximation. Another way to see this fact is to note that L[c] is, after all, only 
a Cohen extension by a single real. So every set of ordinals is constructible from a 

single real. 

Corollary 3.4. M F ,AC. 
14 Or£-generic filter, to be explicit 
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Proof. Suppose that M 巨AC,then there is a set of ordinals A which codes炉 (e.g.
by stacking the real numbers one after another, or by the usual coding of a set into a 
set of ordinals). Therefore there is r E M such that炉＝記[r].By Proposition 3.2 

we see this is impossible, indeed, if B is a disjoint approximation for which r has a 

LJ B-name, and Aa is such that Aa n LJ Bis finite, then c n Aa (/: L[r]. ロ

Of course, we can prove directly that罠M cannot be well-ordered in M, and this 
argument can be found in the proof of Theorem 2. 7 in [8]. 

We can see Proposition 3.2 as somehow indicating not only that the reals of 

M are generated by countable parts of A, but in fact if〈TaI 0: く叫 isa tower 
generated by A, then we actually have that股M is the increasing union of酎 [cnT礼

This was the original approach of the Bristol group. 

At this point, one might expect that the decoded sequence is〈Cn Aa I 0: < W1〉
or somehow〈cn Ta I a: < w1). But of course, this is not the case. For starters, 
we want to somehow "fuzzy out" some of the information as to guarantee that c is 
not constructible from the sequence. So instead of cnAa, we will look at股L[cnA礼

But more importantly, the decoded sequence is not even in M. Indeed, if we want 
this sequence to play the role of the Cohen real in the next step, that means that 
it needs to be forced into M instead. 
Let us begin by understanding酎 [cnAa].In what way does this set "fuzzy out" 

some information? Well, for one, c n Aa is not the obvious real from which we 
construct this model. Indeed, any finite modification would work, and many more. 
In fact, any 7r E <,1 for whichし(7r)(a:)= a: will satisfy that 7rCAa is a name generating 

the same set of reals, as it is c n Aa up to a permutation of Aa and a finite set. 
We say that a name xis an almost A-name if there exists B such that A=• B 
and出isa B-name. We now define 

応＝｛士 Ixis a decent almost Aa-namet. 

Proposition 3.5. For every 7r E <,1, 逸 =R心）(a)・In particular, Ra E HS for 
all a:, and {応 Ia: く叫• E HS as well. 

Proof. Observe that 7r"JP'「A=lP'「7r"A.Therefore ifし(7r)(a:)= f3 we have that 
ず'Aa=• A13, and so an almost Aa-name is moved to an almost A13-name, so 
』応 =Rし(1r)(a)as wanted. We now have that {A・ a} 1s a disjoint approx1mat1on 
for which fix({ふ})~sym(尾）， and thus witnessing that応 EHS, and indeed 
<,§= sym({Ra I a: く叫}•) as wanted. ロ

Similar arguments as we have seen so far also prove the following statement. 

Proposition 3.6. 心 Ia<  w1〉・(/:HS, but for every countable I E [叫くw,nL, 
<RalaEl>• E HS. ロ

And here we arrive to the key point. Let {! denote the sequence〈Rala:<wり
and let i2 denote its name. We will also write {!J and釘 whenI~W1 for the 
restriction of the sequence to I, similar to CA, Indeed, {! is going to be the decoded 
sequence, and it is of course going to be M-generic, but we need to find a suitable 

partial order. Proposition 3.6 provides us with a good clue: every initial segment 
of this sequence is in fact in M, so we can "safely" approximate this sequence. 

It will be somewhat more convenient to use subsets of w1, as we did with the 
Cohen forcing, rather than proper initial segments. This makes it easier to talk 
about A-names and almost A-names. And again for convenience (and so we can 

claim productivity, of course), we are also going to limit ourselves to subsets of w1 
which are already in L. 

Proposition 3.7. Let Q denote {7rむ I7r E <,1,J E [凸]<w,}•. Then Q E HS, and 
inde孤 1卜HSi2 is HS-generic. 
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In other words, fJ is M-generic for Q. The idea behind Q is that we want the 
smallest "reasonable" set which contains our generic filter (i.e. partial approxima-

tions of fJ), and the easiest way to do that is to simply apply all permutations and 
obtain a set. But the true intuition behind Q, and really behind the whole decoding 
apparatus, comes from understanding 1f(JJ・
The model M knows of the set R = { Ra I aく切},it just does not know a 
well-ordering of this set. And we are trying to remedy that. As we know already 
every 7r E <§implements a permutation of w1, which induces a permutation of R 
moving countably many points. So 1r shuffles R and thus modifies the range of 

釘.But R is an extremely impoverished set as far as M is coneerned. This is not 
particularly important for the construction, and can be skipped entirely, but it is 

an interesting fact. 

p ropos1t1on 3.8. M 巨Ris a strongly l{1 -amorphous set. That is, R cannot be 
written as a union of two uncountable sets, and eve可 uncountablepa仕itionof R 
has countably many non-singleton cells. 

Proof. Suppose that X, Y E HS and p II-HS、'X,Y~.k and are uncountable". Let 
B be a disjoint approximation such that fix(B)~sym(.X) n sym(Y) and such that 
dompこLJB. By uncountability, we ean extend p to some q for whieh there are 
a, f3 such that: 

HS ・
(1) q I卜 RaE X and RfJ E Y. 
(2) Aa n LJ B and AfJ n LJ B are finite. 

By enlarging one of the sets in B, if necessary, we ean also assume that dom qこLJB
as well. We can now find a permutation 1r E fix(B) such thatし(1r)is the 2-cycle 
switching a and (3. 
Applying 1r to the first property of q we have that 1rq I卜HS7f応 E1r.X,1r応E1rY. 
But since 1r E fix(B) we have that 1rq = q and 1r.X = X and 1rY = Y. This means 
that q I卜応 EXand似 EY. In particular q forces that X and Y are not disjoint. 
Next we want to prove that every partition of R is almost entirely singletons. 
We will only sketch the idea behind the argument. If S E HS and p I卜HS 、、Sisa 
partition of R into uncountably many cells", let B be an approximation such that 

fix(B)こsym(S).Pick a, f3 as above, so that we may switch between them without 
interfering with B, and we can implement the 2-cycle (a (3) without changing any 
given condition. This means that any point that was in the same cell as a must 

have moved to the cell containing (3. But we only moved two points, so a and f3 
must have been isolated as singletons. And therefore the only non-singleton cells 

come from a partition of B itself. ロ

Remark 3.9. The above implies that every permutation of R in M only moves 
countably many points, of course, as the orbits define a partition. Some of these 

are new, as they can be encoded by some generic real, but this is irrelevant. We can 
prove that every permutation of R in M only moves countably many points w_ith a 
direct argument in the style of Theorem 2.2: given a~ame for a permutation f and 
Ba disjoint approximation such that fix(B)こsym(J),the c.c.c. co~dition ensures 
that there is o such that for any a for which Aa n LJ B is infinite, R0 is not in the 
same orbit as Ra-But now we can utilise the same strategy as we did before and 
move a to some other ordinal with a similar property, and therefore showing that 

either f is the identity on a cocountable set, or it is constant there. 

Getting back to the matter at hand, we want to prove that fJ is M-generic. 
Namely, if DこQis a dense subset and D E M, we want to prove that there is 
some a < w1 such that fJa ED. In [8] we prove this by proving a technical lemma 
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about names of dense open sets, Lemma 2.12.15 In the paper we use this lemma 

also as a means for proving that <Q isびーdistributive,and therefore does not add 
any new reals to the model (and as a corollary, it does not force AC back into the 
universe somehow), which also finishes the proof that (! is indeed the sequence we 
are looking for. 
We will prove the genericity of(! using a simplified version of Lemma 2.12, and 

provide a separate argument for the distributivity. 

p ropos1tion 3.10. (! is M-generic. In other words, if .iJ E HS and p I卜‘、.iJis a 
dense open subset of Q ", then there is some 1) such that p I卜釣 ED.

Proof. Let D be a name as above, and let B be a disjoint approximation such that 
fix(B)こsym(.D).Let p If-".Dis a dense open subset ofむ'.Let a be large enough 
such that if A(n U B is infinite, then~< a. Our strategy is to find "enough" 
extensions of如 sothat one of them will be both釣， andin .iJ. 
First we prove the following claim: suppose that qさpand q Iト7r{JAE .iJ, where 
aこAandし(71")「a= id. In other words, 7r{JA is an extension of如 whichlies in 
.iJ. Then q I卜釦 E.iJ. Of course, this is true because there is some TE fix(B) such 
that rq = q and l(r) = l(7r)ー 1.

The first property, of course, is trivial. The second one is also easy to obtain 
because 7r implemented the identity up to a, and therefore l(7r)ー1will also be the 

identity up to a, and thus we can implement it using an automorphism in fix(B). 
This completes the proof of the claim since 

Tq = q I卜六釦＝婦）oi(,r)"A =釦 ETD=D.

In turn, this is enough to prove the genericity of (!: find a maximal antichain below 

p of conditions which decide some 7r如 asabove, and by openness we can assume 
each such A is in fact an ordinal. Let 7J be the supremum of this countable set of 
ordinals, and we have that p I卜釣 ED. ロ

The final claim is that <Q does not add new reals to M. This, as we remarked, 
ensures that M[(!]ヂL[c].It has an added effect that <Q is not adding any new sets 
of ordinals, or any countable sequences of ground model objects. In [8] the proof 
utilised a stronger version of the above proof which lets us intersect a countable 

sequence of dense open sets. Here we take a slightly different approach. 16 

p ropos1tion 3.11. M F "<Q is び— distributive''. Namely, given〈DnIn E w〉EM
such that四 chDn is a dense open subset of <Q, then nnEw Dn is dense. 

Proof. In L[c], <Q is naturally isomorphic to Add(w1, l)L. In L this forcing is u-
closed, and so in L[c] it is still distributive. If〈DnIn E w〉isa sequence of dense 
open sets, then its intersection is still dense in L[c], and therefore in M. ロ

3.2. Outline of successor steps. The first two steps are fairly indicative of the 

standard successor step. The main change, of course, is that we need to understand 
what replaces艮， L,and c. We have a hint as to what replaces c, namely, the 
sequence (! that we ended up with after forcing with <Q. We also have an idea on 
what to replace股 with,that would be P(股）， andL is to be replaced by M itself. 
We can make this much clearer if we recast the example above by replacing股

with Vw+l・We can also replace c with a sequence of elements of Vw, of course, 
but this seems to needlessly complicate things. After all, the case of w is separate 

anyway. 

15There is a minor mistake in the statement of the original lemma, see subsection 5.1 for details 
and corrections. 
16The approach we take here is mentioned in a remark at the end of§2 of [8]. 
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For a more uniform approach, we denote by Ma the ath step in the construction, 
which is a model of ZF intermediate between Land L[c]. We will also write Qa to 
denote the generic sequence forふ， theath forcing. So Q。isCohen forcing and 
Qo is c itself. 
At each successor step we have Ma+l defined from {la, which was the Ma-generic 

sequence for Qa. We will assume that while Qa tf. Ma+l, for every e < Wa+l, 
(la「AfE Ma+i, where Af is the eth member of the permutable family we fixed in 
advance. Moreover, for every IE [wa+iJ<wa+1 n L, 〈Qa「AfI e E 1〉isin M01+1・
We now want to define Qa+l and釦+1.For this we replace記 [cnA,]that we 

had in the first step with V 
Ma+1[!2a「A'[]
w+a+2 , let us denote this as R, for now. The rest 

is more or less the same as above, relying, of course, on the recursive fact that any 

previous M13 were defined much in the same way as we are defining Qa+i, 釦+1,

and M01+2-
Let Q01+1 denote the set of approximations of釦+1=〈R,I e < Wa+i〉whose
domains are in L. We are being vague, of course, as to what counts as "approxima-

tion" in this context. The idea is that we may permute the different R, amongst 
themselves using a permutation of Wa+i which is coming from L. 
The lemmas in the general case are exactly the same as we had before. The 

genericity of Qa+i is proved by the same argument as Proposition 3.10, and while 
the distributivity argument is also similar, it is worth writing down. 

p ropos1tion 3.12. Ma F瓜 1 is :SIVaMa+i I-distributive. In particular, no new 
sets of rank a + 1 are added. 

Proof. As in Proposition 3.11, L[c] F Qa+l竺 Add(wa+1,ll, the latter of which 
is :S~a-distributive in L[c]. Suppose now that {Dx I x E Va} E Ma+l is a family 
of dense open subsets of Qa+l. By the c.c.c. of the Cohen forcing, and the fact we 

Ma+l only add a single real, V01 has the same cardinality as Vf, which by GCH is巡

Therefore n{ Dx I X E VaMa+l} is dense in L C and thus in Ma+l・
Suppose f is a② +1-name in Ma+l anl ! lf-lQla+i j: Va→ Ma+l• Set Dx as 
{q':Sq I q'decides f(x)}, then every Dx is dense and open below q. By the density 

of their intersection, q has an extension q'E「l{DxIx E V01}, which has to decide 
the entire function j. In particular, no new subsets of Va are added. ロ

Finally, we define Ma+2 as the symmetric extension obtained by applying the 
derived group and filter using the permutable family Aa+l• If we now consider 

V 
Ma+ill2a+l「A□1
w+a+2 , this set is Ma+2・Indeed, every proper initial segment of Qa+2 is 
in Ma+2, where Qa+2 is the sequence of these Vw+a+2, and it has length Wa+2・We 
can now show that it is Ma+2-generic, etc., and thus all shall prosper. 
The successor case can be found in [8] as§4.4, as well as§4. 7 and§4.10 for 
successor of limit iterands. We are not separating the successor of limit steps in 

this text as the idea is the same with very minor variations, so as far as outlines 
go, there is essentially no difference. 

3.3. Outline of limit steps. The limit step is divided into two parts. We have 
to contend with the iteration at a limit step, i.e. the finite support limit of the 

previous steps, and we have to deal with the limit step itself. An observant reader 
will notice that we did not utilise the full power of the framework of iterating 
symmetric extensions until now. Indeed, as far as successor steps are concerned any 

automorphism coming from coordinates before a itself will implement the identity 

function on the (a+ l)th iterand, rendering it moot. 
It is here, at the limit, where we need to utilise the machinery as a whole. In fact, 
this machinery will do most of the heavy lifting at this stage. By Proposition 3.12 
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we have that the rank initial segments of the universe are stabilising, indeed for any 
(3 > a we have vMa+l = V叫w+a+l w+a+l . The work left at this stage 1s makmg sure that 

the generic sequences we collected thus far are symmetrically generic, and setting 
up the stage for the limit step iterand. So it is a good idea to understand the limit 
step as a whole before proceeding to the details. 

The main idea is that limit steps coalesce the information we have up to that 
point. Arriving to the limit is easy, as we said, the machinery of productive itera-

tions is working for us there. But how do we proceed now? We are limited by two 
factors that we need to ensure continue to hold when we deal with the ath step: 

(1) Vw+a is stable. That is, no new sets of low rank are added, and 
(2) whatever we do is coherent with the other limit steps. 

One simple way of ensuring this is by taking products of previous successor steps. 
This way, if aく (3are two limit ordinals, then Qa is going to be, in some sense, a 

rank initial segment of QfJ. But we can think about this from a different angle. 

At each step, we gathered VwH of various intermediate models, for~< a, 
our limit ordinal. But these are smoothed out, in a sense, as we progress up the 

M,+2 M,+1 hierarchy, as each V contains each V . But what if we could pick just one w+~+l w+~ 
sequence, and remember it? In that case we are not going to add bounded sets to 
Vw+a, at least not if we are being careful, and instead we only add this sequence. 
This idea should seem somewhat familiar to readers of all walks of set theory. After 
all, if we want to add a new subset to~w, it is easy to add Cohen subsets to each 
ぬ first,and then choose a point from each one, creating a new cofinal sequence.17 
Similar ideas, in one way or another, show up through Prikry-style forcings as well. 
The coherence of limit steps has another very important use for the limit iterand. 
One of the subtle, but important properties we used in the successor steps is upward 

homogeneity. 

Definition 3.13. We say that a two-step iteration lP'* Q is upwards homogeneous 

if wheneverゆ直〉 andゆ，q'〉aretwo conditions, there is an automorphism 1r of lP' 
that respects Q and such that 1rp = p and p II-1rq = q'. In other words, we can 
move conditions in Q by automorphisms of JP'. In the context of iterating symmetric 
extensions we require that 1r comes from the relevant automorphism group. 

So we want for the limit step that the iteration lP'a can move about conditions in 

ふ.If lP'°'is a finite support iteration, then eitherふ needsto have some finitary 
flavour to its conditions, or somewhere along the iteration we had to condense the 
conditions from finitary to infinitary. Indeed, this is the very meaning of "coalesc-
ing" the successor steps. 
To sum up, at the limit step of the iteration we use the properties of the iteration 

so far to ensure that the rank initial segments of the models stabilise, and indeed 
that the sequence of generic sequences is symmetrically generic for the iteration. 
We then want to have a forcing such that the sequences which lie in the product 

of the successor-step generics combine to form a generic for it, here the permutable 

scales will come in naturally, as we are concerned with products of increasingly 
longer sequences modulo the bounded ideal. 

We return to the context of the Bristol model's construction. We denote by lP'a 
the iteration up to a and by怠 theath iterand, as we did before, and for now we 
will assume that those iterands were defined also for limit steps. If this proves to 

be somewhat confusing, the section can be read twice, first assuming a= w. 

Fact 3.14. For every a, lP'a * Qa is upward homogeneous. 

17When forcing like this in the context of ZFC these cofinal sequences are added automatically, 
of course, but if one does a symmetric iteration, the cofinal sequences are not added. Then one 
can consider such a forcing in a more material sense 
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We have seen this for the case of a being O or a successor⑬ We will see the rest 
of the cases in this section as we progress through it. But for now it is easier to 
take this as a working assumption. 

p ropos1t1on 3.15. Let a be a limit ordinal, then〈f}fJI /3 < a〉issymmetrically 
L-generic for lP'a. 

This is essentially Proposition 4.4 (a= w) and Proposition 4.15 (a an arbitrary 
limit ordinal) in [8]. We will prove this statement in subsection 5.2, as the original 
proof had a minor gap that needs to be corrected anyway. 
But this means that we can understand the limit iterand fairly well now. We 

know that for (3 < a V応 v止= and that not only we have a model of ZF , w+fJ+l w+fJ+l' 
which lies within L[c], but that it is in fact an iteration of symmetric extensions, 
which means that we understand exactly the objects which lie within it and the 
truth value of statements about these objects from a forcing-theoretic point of view. 

We are now free to examine the iterand怠
As we reiterate time and time again, we want to ensure that no sets of rank w + a 
are added. In the successor steps we did that by making sure thatふ issufficiently 
distributive. For the limit step this will pose a problem. If we are to continue with 

our successor steps, then the (a+l)th step needs to have a sequence of length Wa+l・
But without adding any sequences of length Wa, this would mean that the sequence 
must have "mostly existed" already. So the forcing cannot be <wa-distributive, let 

alone~Vw+a I-distributive. In fact, if our plan is to add sequences of length a of 
sets of the form Vw+fJ of some inner model, then at stages where cf(a) = w we must 
have added an w-sequence. 

The solution, as it turns out, is to not be distributive at all, but ensure that after 
applying the symmetric part of the step (rather than just the generic extension) we 

managed to remove any new set in Vw+a. So even if we do not have a distributive 
forcing, we at least preserve the rank initial segments of the universe. 

We define f2a, where a is a limit, as a "copy of IT SC(wa?". This means that for 
every f E IT SC(wa)L we define f2a,f to be the sequence〈ef)+1U(f3+ 1)) I /3 < a〉,
and f2a is defined as〈f2a,fI f E IT SC(wa)り．
How should we defineふ， then?The idea is always "bounded approximations", 
but having the virtue of being a "two-dimensional object" this means that bound-
edness has two sides to it. Let us first deal with the one-dimensional counterparts: 

f2a,f. 
If A is a subset of a, we write f2a,f「A=〈師+iU(/3+ 1) I (3 EA〉,and so our 
recursive hypothesis tell us that f2a,f E Ma for every f, and this lets us defineふ，f
as the approximations of f2a,f• More rigorously, recall that we have defined the sym-
metric iteration lP'"" along with the direct limit of the generic semidirect products, 

Ya• Then心，fis the forcing ordered by reverse inclusion on the interpretation of 

{J謹a,f「AI sup A < a, Ji/ Eぬr.
For E C::: IT SC(wa) we may now define f2a「E=〈f2a,fI f EE〉,and so if Eis 
bounded in the product, i.e. there is f E IT SC(wa) such that for all g E E and for 
all (3 < a, g((3 + 1) < J(/3 + 1), and A is a bounded subset of a, our conditions 
are going to be approximations of f2a, up to permutations of course, of the form 

〈f2a,J「AlfEE〉,which we denote by f2a「(E,A). And so Q"'is given by the name ． 
{Jふ「 (E,A) E, A are bounded and Ji/ E Ya} . 

p ropos1tion 3.16. JP'"'* Qa is upwards homogeneous. 

18To be absolutely correct, we only talked about successors of O or other successor ordinals, 
but the successor of a limit will be just the same as before. 
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We do not prove this statement here, but the idea is to simply utilise the upwards 
homogeneity of the previous steps and "correct" the coordinates one by one. One 

might ask how do we deal with the case where a> w, as a condition has seemingly 
infinitely many non-trivial coordinates. And the answer, as we repeatedly mention 
here, is utilising the previous limit cases where we condense this infinite amount of 

information, also in the form of Ii§"'being a subgroup of the full support product 

ITf3<a'i1(3+1・The complete proof can be found as Propositions 4.5 (for a= w) and 

4.15 in [8]. The action of況 iscoordinatewise, and it is important to stress at this 
point that we have this action where the initial segments of (]a are "actual objects 
inMぶ',so this is not applying automorphisms of a forcing, but rather applying 
permutations of each Wf3十1・

p ropos1tion 3.17. (]a is Ma-generic forふ．

This again follows the same pattern as the successor steps, although here there 

is a notable complication in the case where a> w. We will outline the proof. 

Proof. Let .iJ E IS"'be a name for a dense open subset of広， andlet月bean 
excellent support witnessing that .iJ E IS"'. For each f3 < a, Hf3 is a group of either 
the form fix(Bf3) when f3 is O or successor, or K限 ffwhen (3 is itself a limit. We 
can use these to define bounded sets E and A such that whenever (]a「(E,A)is 
extended to a condition in .iJ, we may permute this extension using the upwards 
homogeneity without changing .iJ. 
In the case where a = w, the set E is simple. For each n < w we let氏 be
a disjoint approximation such that fix(Bn) = Hn, then E = IT n<w dom瓜 where
dom瓦=J such that Bn = {B~I l E J}.19 Let A be the set {n < W I Hn-/偽｝，
which is also bounded by the virtue of H being excellent, and we have ourselves 

the condition (Jw「(E,A).
In the case where a > w we need to take into consideration some limit point 

o < w, such that either o + w = a, or o is the smallest limit ordinal such that H is 

trivial above o. We call such o the condensation point of H. So above o there can be 
at most finitely many non-trivial coordinates, and only in the case where o = a+w. 

We then let Ef3 for f3 < o be decided by H8 = K贋 f,by taking Ef3 = fゆ）， and
above owe do as with the case of w. 

Now we may proceed as before, using the fact that any extension of (]a「(E,A)
would have the form Jテ(}a,「(E',A'), where 11"(3 will necessarily have 11"(3「Ef3= id, 
so we may find the needed automorphisms in且tocomplete the proof as in the 
successor case. ロ

Now that we only need to take care of the preservation of Vw~~. Indeed, M贔叫
contains the sequences (](3+1 for f3 < a, all of which have rank smaller than w + a. 
Luckily, the symmetries ofふ willhelp us get rid of these unwelcome sets. 20 

Definition 3.18. Working in Ma, if出isa如 namewe say that it is bounded by 

/ E IT SC(waf if whenever Jil(J"'「(E,A)IトiJE±, then we may replace E by 
Enf↓, where f↓ = {g E IT SC(wa)L I V/3, g(/3) < f(/3)}. Similarly, if (3 <awe say 
that x is bounded by f3 if we can replace A by An (3. 

Theorem 3.19. Suppose that出EM"'isa② -name such that every name appear-

ing in x is y for some y E M"'. 
(1) If x E HS少。 andK1J,1こsym(x),thenわisbounded by f. 

19 In the original paper the proof of a= w is Lemma 4.7, and there is a minor mistake in the 
proof: Bn should be domBn-1• Lemma 4.20, which is the general claim, has a correct proof. 
20This also highlights the importance of the assumptions in Theorem 2.8 being only about the 
symmetric extensions having the same Ve,. 
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(2) If Iトrank(吟＜心十a,then出isbounded by some (3 < a. 

In combination we have that if允isa symmetric name for a set of small rank, 
then all of its elements are decided by conditions with a uniform bound, meaning允
is equal to an object in Ma. The proof of (1) is the standard homogeneity argument, 
and we have used it before in Theorem 2.2, so we will only outline the proof of (2). 

Proof. Suppose thatわEISa+1, we denote by [出]the projection of the name to I Sa. 
That is, [叫 isa name in ISa which is interpreted in Ma as a name in HS灼 By
the assumption that each name appearing in±is of the form y for some y E Ma, 
we may assume that [y], which appears in [針 (inthe broad sense of the term) is a 
name in 1513 for (3 such that w + (3 is an upper bound on the forced rank of±. 
Let (3 < a be large enough such that H is trivial above (3, where H witnesses 
that位]E IS"'. Now we can use automorphisms which only move coordinates above 
(3 to move any names of conditions, JflQ"'「(E,A), by changing their "content above 
(3" to any value. Thus, we may conclude that we may reduce A to An (3. ロ

The complete proof of the theorem appears as Lemma 4.10 and Lemma 4.27 in 
[8]. This almost completes our decoding apparatus. We only need to worry about 

the Qa+l now. 
Ma[lla.rl 

We define R~fore < Wa+i to be Vw+a+l€ . That is, we use {]a,Jf as the "guide" 
for a new sequence in Vw+a+l・Those who kept track can guess now that Qa+l is 
<R~I e < Wa+i〉.We utilise the fact that the scale is permutable to ensure that any 
bounded part will be in Ma+l, as well as the rest of the permutability apparatus 
to ensure the upwards homogeneity. 
This is also the point where we see why the definition of <O!a works in general, 

despite JP'"'being a finite support iteration. The Qa,f are initial segments of those 

{}f3,J* that come in the future, and even if cf(a) > w, we still end up with what we 
wanted to have. 
With this we finish the discussion on the decoding apparatus. This is the main 

technical part of the construction. It is our sword and shield in our journey down-
wards. Now that we have that, we may venture deeper into the Hadean adventure 

that is the Bristol model. 

4. CERBERUS, THE THREE-HEADED GUARD OF THE UNDERWORLD 

Much like Cerberus, the construction of the Bristol model can be seen as a 
three-headed dog, guarding the realm of the underworld of models of ZF. The 

three heads of Cerberus represent the three causes of strife: nature, cause, and 
accident. The three heads of the Bristol model can be seen as representing three 
typical approaches to its construction: nature, cause, and accident. All lead us to 

the same construction, and indeed when getting down to brass tacks, the details 
become suspiciously similar in each approach. But the presentation of one may be 
more appealing to some readers over another. 

Nature is the way in which the original group in Bristol went about to define the 
model: defining the von Neumann hierarchy by hand, and defining a model L(X) 

where X is a class of sets in the Cohen extension. Cause is the way in which [8] 
presents the construction: defining an iteration of symmetric extensions, and finding 
a symmetrically generic filter at each step of the way, thus constructing an iteration 

and the von Neumann hierarchy of the Bristol model in tandem. Finally, Accident is 
the way in which we define a productive iteration of symmetric extensions, we study 
this iteration in an abstract manner, and then we find that by "complete accident" 

we can find all the symmetrically generic filters inside the Cohen extension. 
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Fix a Bristol sequence, a permutable familyふ={ Al I e < Wa+i} for a = 0 
or a successor, and a permutable scale Fa = {ft I e < Wa+d for Cl! limit. We will 
define M, the Bristol model, in three different, yet equivalent ways. We will argue 
that it is a model of ZF + Vx(V -I L(x)). 

4.1. Nature. In here we will define the Bristol model one step at a time by defining 
its von Neumann hierarchy in L[c]. For this purpose it would be easier at times 
to use an increasing sequence modulo bounded sets, rather than the permutable 
families. Since the two are equivalent, we let {T{'I e < Wa+d denote a sequence 
obtained fromふ

M We define the ea and V in tandem, and we will omit the M from the su-w+a 
perscript where possible, as the definitions will be complicated enough. Let (Jo = c 
and, as V M w is just V!: = Lw, it is defined. Suppose that for a, (}a and Vw+a were 
defined. 
If a is O or a successor ordinal, define 

(1) Vw+a+l = LJ V L(Vw+a,Qa「T,t)w+a+l 
~<Wa+l 
L(Vw+mQ。「A't)

(2) (}a+l =〈Vw+a+l e <叫+1〉・
If a is a limit ordinal, we define Va = LJfJ<a Vw+fJ+i, and we define ea =□fJ<a郎+1・
And as before we write (}a,f to indicate the "thread" of the function f in this 
product. To define the next step we need an analogue of the T{', we write百万 to

denote the sequence of V 
L(Vw+f3,Qf3「T加）
w+fJ+l for j3く Cl!.

(3) 

(4) 

And we now define 

u 
L(Vw+a ,/2a,Ja) 

Vw+a+l = V s 
w+a+l , 

く<wa+l

(!a+l =〈v竺:~a+l,/!a,Jfl e <叫+1〉・
Finally, M = UaEOrd Vw~a+I. The handwritten notes passed on to us by some 
of the members of the Bristol group indicate that the original line of thought was 

about炉 and疇）圧 ratherthan Vw+I and Vw+2・The arguments, moreover, as 

to why Vw+I = V 
L(Vw+l,(/1「Tf)
w+l , i.e. why no reals are added when defining P(~)凹

was not written down in these notes. Instead it merely suggests "condensation". 
While restoring the original arguments is certainly beyond us, these would be 
equivalent, more or less, to the arguments we presented at the first step of section 3. 

4.2. Cause. In here we will define the Bristol model in tandem: define a symmetric 
extension, find it a generic in L[c], define a symmetric extension again, repeat ad 
ordinal um. 
This definition was used in [8], and you can very clearly see that this is the 
definition that we have in mind, as it very much dominates the approach given in 
section 3. As such, we really have done all the work ahead of time. 
We define Ma, (la as in the decoding apparatus, i.e. as the generic objects for the 

symmetric iteration. We now define M simply as UaEOrd恥=UaEOrd凡巴';,+'.

4.3. Accident. In here we will first define a class-forcing, and then argue that we 
can just happen to find symmetrically generic filters in L[c]. 
Despite being the guiding view on the construction of the Bristol model, the 
actual argument for M F ZF in [8] is the one rising from this approach, as it is less 
"ad-hoc" and more structural and general. This is also the reason why the proof 
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of the distributivity of successor steps in the original paper was proved directly, 
rather than the approach used in this paper, which is more in line with "Cause". 

We first define the iteration. Let lP'。={]}andQ。=Add(w, 1), ~。 and§j。 are
the derived group and filter. Finally, i!o is the canonical name for the Cohen real. 

Suppose that lP'" is the finite support iteration of the symmetric extensions de— 
fined so far. In the ease where a= (3 + 1, we define <Cl!a as the name 

｛ 
． 

I 
. V[!!/3「Aり
. 

子〈Vw+a~EI〉 Iii E嘉 IE[wa]<wa} 
Where V ・V[x] w+a d enotes the name of the rank imtial segment of the extension of 15/3 
by the set x. We then define如 asthe name for the generic of <Cl!a. 
If a is a limit ordinal, we define凡 asthe finite support iteration. We next 
defineふ inthe same spirit. For f E IT SC(wa+1) we define 

<CJ!a,J = {Ji/〈[!(3+1(!(/3+1))l/3EA〉IIii Eふ，supA< a}", 
and we then defineふ byadding the additional dimension of a bounded subset of 
IT SC(wa)-As before, 鉛 and ク~are the derived group and filter. Finally, 如 is

the name of the generic filter. Moving on, the definition <Cl!a+1 and i!a+1 is in line 
with what we have done so far. 
The properties of the decoding apparatus imply the distributivity of each iterand. 

We need to be a bit more eareful here, as we are not allowed to argue in L[c], 
instead we carry on a recursive hypothesis that for successor steps lP'a satisfies a 

chain condition that allows us to prove thatふ willbe isomorphic to Add(wa, ll. 
The conditions of Theorem 2.8 are therefore satisfied. This implies that if G is 

any symmetrically L-generie for JP', the class-length iteration, then 15°F ZF, at 
the very least. 

By reeursion we can now show that each如 hasa symmetric interpretation inside 
L[c], and therefore we may find an interpretation of the model which is intermediate 
between Land L[c]. 

4.4. The basic properties of the Bristol model. 

p ropos1t10n 4.1. Mp== ZF. 

Proof. We have two slightly different proofs here, the first we mentioned in the 
"Accident" approach, utilising Theorem 2.8.21 The second approach works well for 
"Nature" and "Cause". 

Since Mis very clearly a transitive subclass of L[c] that contains all the ordinals, 
it is enough to verify that it is closed under Godel operations and that it is almost 

universal to eonclude that it is a model of ZF. The first part is easy: if x, y E M, 
there is some Ma, or some large enough Vw+a in the "Nature" approach, such that 
x, y E Ma and therefore { x, y }, x x y, etc. are all in Ma and therefore in M. 
The second part is the fact mentioned at the end of "Nature" about condensation; 

or in the case of "Cause" this follows from the fact that for each a vMa = VM13 , w+a w+a 
for all a :::; (3, and therefore the model is almost universal. ロ

Proposition 4.2. Mp== Vx(V =I-L(x)). 

Proof. If x EM, then there is some a sueh that x E Ma, and therefore L(x)こMa.
But since Ma <;;; Ma+lこM,we have that L(x) =I-M. In the "Nature" approach 
we need to be slightly more eareful, as we have to verify that if x E Va, then 

Va+l tf. L(x). One way of doing this would be to argue that ea「Afare all generie 
over L(Va), and therefore cannot be elements of this model. ロ

21This is mentioned after Theorem 2.8, and proved as Theorem 9.4 in [9]. 
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We will see other ways of deducing Proposition 4.2 later on, in ways that will be 
significantly more informative and more general. 

5. ERRATA TO "THE ABYSS" 

Here we correct some minor gaps and mistakes in the original paper. These 

mistakes repeat, once with the cases of a = 0 and a = (3 + 2, and once with the 
cases of a = w and a general limit ordinal. 
We repeat the remark we made in footnote 19: in [8] the proof of Lemma 4.7, 
dealing with the genericity of (!w, contains a typo, whereas En is defined as LJ Bか
and it should have been defined as domBn-l・This is somewhat inconsequential, 
as the more general proof where a is a limit, in Lemma 4.20, is written correctly. 
We also point out that there is a minor mistake in the construction's induction 

hypothesis, where the requirement that lP'°'satisfies the~°'-c.c. will not hold for 
limit ordinals, only for O and successor ordinals. We can modify this by defining a 
notion of "symmetric chain condition",22 but this is an unnecessary complication. 
We simply do not use the chain condition assumption for limit iterands. 

5.1. Corrections to Lemma 2.12/4.1. ~emma 2.12 is read in the context of the 
first steps. Namely, lP'is Cohen forcing, IQ is the name of the forcing adding e1, 
denoted in that lemma byび. As such HS is the class of hereditarily symmetric 
names defined in the very first step. 

Lemma ([8], Lemma 2.12). Suppose that iJ E HS and p I卜DこQis a dense 
open set. There is some T) < W1 such that for every 7r and A such that p Iト'lfCTA~IJ 
and TJ~A, if T虹 isa condition such that p Iト'lfCT17= T仇， thenp I卜T虹 EDas 
well. 

This lemma was used twice. The first consequence is the genericity of e1, 23 and 
the second is to show that Q is u-distributive. The proof is very similar to the 
proof of Proposition 3.10. Nevertheless, when we have two permutations 7r and T, 
we want to move T so that it agrees with 7r. 

For this we need not only thatし(T)「A=し(7r)「A,but also that their inverses agree 
on A. In the case of the genericity of e1 we take 7r = id, in which case this property 
holds trivially. Indeed, this is the very strategy of the proof of Proposition 3.10. 
To prove that Q isびーdistributivewe interpret the lemma above as saying that 
for a c?ndition p E JP', there is an ordinal T/, su~h that deciding whether a condition 
from IQ, whose domain is at least T/, lies in D depends only on the permutation 
7r. We then util_ise the fact lP'is c.c.c. to show that this T) can be bound uniformly 
depending on D. Now, if Dn are names for a sequence of dense open sets, we 
can uniformly bound all of them by some T). Now if we take any condition whose 
domain is at least this T/, we may extend it into each Dn, but this means that such 
extension lies, in fact, in all the几 simultaneously,and therefore the intersection 
is also dense. 
Once we add the condition thatし(7r)-1「A=し(T)-1「A,the proof as written in [8] 
follows through. Alternatively, and perhaps more wisely, for proving the distribu-
tivity one should rely on the absoluteness proof that we used in this manuscript, 
which is also mentioned in the "Abyss". 

Lemma 4.1 is precisely the same, in the context of successor iterations. There is 
no need to repeat that which has been said. 

22 For example, <IP',C§,~〉has,;,—s.c.c. if every symmetrically dense open set contains a predense 
set of size <1<. 
23 Or u, in that context. 



24

ASAF KARAGILA 

5.2. Corrections to Proposition 4.4/4.15. These two propositions are dealing 
with limit iterations. They show that〈e13I /3 < a〉issymmetrically generic for lP'°" 
with Proposition 4.4 dealing with the case a=  w, which was treated separately in 
the paper. 

Proposition ([8], Proposition 4.4). Suppose that D~ll"w is a symmetrically 
dense open set, then there is a sequence〈f3nIn< W〉suchthat〈On「f3nIn< W〉ED.

In the paper the proof takes a symmetrically dense open set D, and an excellent 

support H witnessing that. We then generate some sequence of domains such that 

when we extend the condition〈{}f3「X13I /3 < a〉intoD, then we can "correct" it 
using automorphisms which lie in ii. Namely, each coordinate of ii is of the form 
fix(B13), and we take X13 to be supdomB13 + 1, and therefore our starting condition 
is〈{}f3「X13I /3 < a〉.
The idea is fine, and it is somehow intuitively clear what should happen. However 
the proof described above, taken from the "Abyss", will not work. The first hint is 
obvious: {}f3 has domain w13, and X13 is a bounded subset of w13十1-We can resolve 
this issue by considering {}f3+l「X13,but this raises the obvious question, what should 
we do with limit steps and with (Jo? 
Let us prove this proposition in its general form. 

Proposition 5.1 ([8] , Proposition 4.15). 〈e13I /3 < a〉issymmetrically L-
generic for lP'a. 

Proof. Let D be a symmetrically dense open set. Our goal is to find a condition of 

the form〈{}f3「X13I {3 < a〉,for appropriate X13, in D. 
Let H denote the excellent support witnessing that D is a symmetrically dense 
open set. For {3 < a let e/3+1 the ordinal defined by either, 

(1) when {3 is O or a successor let 813 be such that H13 = fix(B13), and define 
e/3+1 = supdomB13; 
(2) when {3 is a limit let e/3+1 be an ordinal e such that for some f E IT SC(w13), 

H13 =K~,ff3; 
(3) when H13 = <.113, set e/3+1 = 0. 

For a limit ordinal /3, let E13こITSC(w13) be defined by ITf3<a(ef3+1 + 1), and let 
A13 denote sup{ 1 < {3 I H"f+l #弘+1};if {3 is a limit ordinal such that几=<.§"/ 
for all 1~/3, set E13 = A13 = 0 .. Now define Y13 as O for {3 = 0, 知forsuccessors, 
and (E13, A13) for limit ordinals. 

The goal is to find the "domain" over which H must be the identity, and use 

that to start our journey into D. Let p be the condition〈{}f3「Y13l/3<a〉.By its 
very definition, pis not moved by any if EH. Using the density of D we can now 
extend p to a condition Po E D. Moreover, since D is in L, we may assume that 
the first coordinate of p0 agrees with (Jo, i.e. the Cohen real c, and by shrinking H。
if necessary, we may assume that Po(O) is not moved by automorphisms in H。•
Ifp。isnot compatible with〈{}f3I /3 < a〉,let {3 be the least coordinate witnessing 
that. By the choice of Y13 we can find if E H 1 /3, and if {3 is not a limit ordinal 
then we may assume if has a single non-trivial coordinate too, such that by taking 

P1 = filPo, the following hold: 

(1) supp(p0) = supp(p1), 

(2) Po「f3= Pl「{3,
(3) Pl (/3) is indeed compatible with {}f3-

The reason we can do that is exactly upwards homogeneity combined with our 
choice of p, which Po extended. As we did not increase the non-trivial coordinates 
when moving from p。top1, we may proceed by recursion and after finitely many 
steps the process must halt with some Pn E D. ロ
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Indeed, the main point is the fact that we may assume that the first coordinate, 
for which true genericity is already assumed, is compatible with the Cohen real, and 
then we can modify any further coordinates recursively using upward homogeneity, 
combined with the fact that we only need to change things outside of the domains 

we found, which means that the needed automorphisms can be found in且

6. DECONSTRUCTING CONSTRUCTIBILITY 

Now that we have constructed the Bristol model, and we have a good idea about 
how the construction works, we can ask the obvious question: do we really need 
V =Lin the ground model? The answer, of course, is not really. 
We have merely used three assumptions: GCH, ロAfor singular入， andglobal 
choice for fixing the Bristol sequence. Of those three, the last one can be easily 
dispensed, and we will discuss this in section 7. So we are left with only two 
assumptions which are compatible with a large range of models, including all known 
inner models from large cardinals below a subcompact. 
This raises an interesting question, of course. What kind of large cardinals can 
the Bristol model accommodate, assuming they existed in the ground model? 

Proposition 6.1. If A is a set of ordinals in the Bristol model, then there is a real 
number r such that A E V[r], and moreover r EV  or r is Cohen over V. 

Proof. Note that V[A] is a model of ZFC intermediate to V and V[c], and therefore 
V[A] is equivalent to some V[r]. ロ

This leads to an immediate corollary: if 1,, is a large cardinal defined by the 
existence (or lack thereof) of sets of ordinals, and this largeness is preserved by 
adding a Cohen real, then 1,, remains large in the Bristol model. 
For example, if 1,, is Mahlo, then the stationary set of regular cardinals remain 
stationary in M, and thus 1,, remains Mahlo. If we define a weakly compact cardinal 
by stating that every colouring of [附 in2 colours has a homogeneous subset, this 
too is given by sets of ordinals, and so it continues to hold in M. 
We will see in section 9 that this can be extended from sets of ordinals to sets of 
sets of ordinals, and so on, as long as we iterate power sets less than 1,, times, the 
largeness remains. So for example, any measurable on a ground model measurable 
cardinal will have a unique extension in the Bristol model. Strong cardinals, defined 
by extenders, are also preserved. 

6.1. Limitations. Despite this handsome accommodation of large cardinal as-
sumptions in the ground model, as well as in the Bristol model itself, we can 
put a stop to this. Indeed, if 1,, is a supercompact cardinal, then there is a notable 
shortage of口Asequences for singular入suchthat cf(入） < K, <入.We may ask 
ourselves, perhaps we can salvage permutable scales without having□ F 
Theorem 6.2 (The Bristol group). Suppose that 1,, is a supercompact cardinal 
and入>1,, > cf(入）. Then there are no perrnutable scales on IT SC(入）．

Recall that we are still working under the assumption of GCH. Removing it will 

require addingが <2凡 whichitself is a harmless assumption as it holds for all 
strong limit cardinals above 1,,. 

Proof. Let F = Ua I a<入+}be a scale in IT SC(入）， andlet 1r be a permutation 
of入九 not necessarily bounded, which is not implemented by any sequence of 
permutations, 元. Pick j: V→ W an elementary embedding with critical point 
1,, witnessing that 1,, is at least入+-supercompact, so in particular j (1,,) >入+.We 
denote by G = foa I a < j(い}the scale j(F), which is a scale in j(IT SC(入））
which is equal to IT SC(j(入））．
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Let v = sup j''入+,then v is closed under j (Jr), so we can let T denote j (Jr)「ッ，
which is a bounded permutation of j (応）．
Suppose that there was a sequence of permutationsデthatimplemented T, then 

for a<入+andμ<入， wehave 9j(a)(j(μ+)) = j(fa(μ ナ）） and T(j(a)) = j(1r(a)). 
Combining this with the assumption that i implements T, we get that 

乃(μ+)(j(fa(μ+)))= j(f1r(a)(正））．

We use this to define 1rμ+: 忙→ μ+. If乃(μ+)(j(())= j(() for some(, define 
咋+(() = (; otherwise四+(() = (. This is well-defined, since巧厨） is itself a 

permutation of j (μ 打， andso j(() < j(μ+). This is also a permutation by similar 
reasons. 
Finally, we claim that仔implementsJr. Fix a <入+,then for any large enough 
忙＜入， Tj(記）(j(f a(広））） = j(f,r(a)(忙））， whichmeans that we defined咋+to be 
exactly f1r(a)(忙）．
We have shown that if F can be used to implement all bounded permutations, 
then it can be used to implement all permutations, but that is definitely impossible 
on grounds of cardinal arithmetic. ロ

7. GAPS IN THE MULTIVERSE 

The Bristol model, as we said at first, is a particularly striking counterexample to 
our understanding of intermediate models when the axiom of choice is not assumed. 

Working in V's meta-theory, we can consider the collection of all intermediate 
models between V and V[c]. We remarked before, those models which satisfy ZFC 

are exactly V itself or Cohen extensions of the form V[r] for some r E記 [cl.

What about models of ZF? We have, of course, symmetric extensions. These 

were studied extensively by Grigorieff in [3], and later by Usuba in [19]. Grigorieff 
proved that if M is a model such that VこM こV[G],then Mis a symmetric 
extension given by the same forcing used to add G if and only if M = (HODvux) V[G] 
for some set x E V[G]. Usuba extended this and showed that in general, M is a 
symmetric extension of V if and only if M = V(x) for some set x. 
The construction of the Bristol model shows that there is indeed a difference 
between the two results. Indeed, by counting the number of possible automorphism 

groups and filters of groups we can see that there cannot be more than~3 distinct 
symmetric extensions of Add(w, 1) over L四 Yet,the construction of the Bristol 
model goes through a proper class of steps, and even if we did not formally prove 

that each separate one is of the form L(x), we may take L(Vo:M) as our models. By 

Usuba's result, these are all symmetric extensions of L, but of course most of them 
are not symmetric extensions where the forcing used is the Cohen forcing. 

So when we consider the multiverse of symmetric extensions of L, even those 
that are landlocked inside L[c], we seem to have two different options. But we want 
to study all intermediate models, and these include the Bristol model, which is very 
much not a symmetric extension of L, by any means, as Usuba's result indicate. 

So what can we say about the multiverse of ZF models? 
First, let us ask, how many Bristol models are there? Of course, there is the 

canonical one, given by the <£-minimal Bristol sequence. But there are certainly 
more. Simply by removing some of the sets or functions in any given point in the 

Bristol sequence we invariably create a new Bristol model. 

Proposition 7.1. Assuming GCH and that□ ; holds for all singular入， thereis a 
class farcing which does not add sets whose generic is a Bristol sequence. ロ

24We can improve this counting argument to show no more than~2, actually. 
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This is done, of course, by approximating the Bristol sequence with set-length 
options. This is also the way we can remove global choice from the assumptions. 

Indeed, if V was a model of ZFC, add a generic Bristol sequence, use it to define 
a Bristol model between V and V[c], where c is a Cohen real, and promptly forget 
about this generic sequence. 

As very clearly the Bristol model is definable from its Bristol sequence in V[c], 
this means that there may be undefinable Bristol models. And indeed, this can 
very much be the case. 

Theorem 7.2. Suppose that V is a countable tmnsitive model of ZFC + GCH十□；
for all singular cardinals A, and let c be a Cohen real over V. Then there are 
uncountably many Bristol models intermediate between V and V[c]. 

Proof. Given two Bristol sequences such that A。andA~are the two permutable 
families on w and such that U A。nU A~is finite, the two Bristol models are 
distinct. This can be easily arranged, for example taking A。toonly have subsets 
of even integers and A~only has subsets of odd integers. This can be extended to 
any other step in the Bristol sequence. We can now easily construct uncountably 

many distinct Bristol models by simply considering with each subset of Ord v how 

to modify a given, or indeed a generic, Bristol sequence. ロ

This is in stark contrast to the case of intermediate models of ZFC of which there 
are only not just countably many, but there is a set of all the necessary generators 

in V[c], and the same can be said about symmetric extensions given by the Cohen 
forcing itself, as Grigorieff's theorem shows. And while there is a proper class of 

symmetric extensions of V, it is still enumerated by the sets in V[c], making it 
countable. 

Therefore between V and V[c] most models are models of ZF, they are not 
symmetric extensions of V, and in fact they are not definable in V[c]. To make 
matters worse, inside each Bristol model, we can find a different real, and use that 
real to interpret the Bristol sequence. Just as well, we may also use one of the 

Qa+l「Afto interpret the Bristol model construction above a certain stage. 
Which truly indicates that the Bristol models are intertwined through this mul-

tiverse of models. But to truly appreciate the Bristol model(s), and to understand 
a bit more its internal structure, we need to have a refined sense of choicelessness. 

8. KINNA-WAGNER PRINCIPLES 

The axiom of choice can be simply stated as "every set can be injected into an 

ordinal", or in other words, "every set is equipotent with a set ordinals". This, in 

conjunction with the following theorem, makes a nice way of understanding models 
of ZFC. 

Theorem (Balcar-Vopenka). Suppose that Mand N are two models of ZF with 

the same sets of ordinals. If MF  ZFC, then M = N. 

Commonly this is stated when M and N are both models of ZFC, but that is in 
fact unnecessary. The proof relies on the fact that a relation on a set of ordinals can 

be coded as a set of ordinals. But can we extend the idea of this characterisation? 
Yes, yes we can. 

Definition 8.1. We say that A is an a-set of ordinals, or simply "a-set", if there 
is an ordinal 1) such that A <;;; 炉 (1)).

Definition 8.2. Kinna-Wagner Principle for a, denoted by KWP a, is the state-
ment that every set is equipotent with an a-set. We write KWP to meanヨaKWP°'.
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For a = 0 this is simply AC. The principle for a = 1 was defined by Kinna and 
Wagner, although formulated differently using selection functions, and was studied 
extensively. One of the immediate results is that KWP1 implies that every set can 
be linearly ordered, but as the work of Pincus shows in [15], it is stronger and in 
fact independent of the Boolean Prime Ideal theorem (which also implies every set 
can be linearly ordered). 
These general principles were defined by Monro in [12] for a < w, and later 
extended by the author in [9]. Monro extended the result of Balcar and Vopenka, 
and this result can be further extended as well. 

Theorem 8.3 (The Generalised Balcar-Vopenka-Monro Theorem). 

Suppose that M and N are models of ZF with the same a-sets. If M F KWP "'' 
then M = N. 

Proof. Note that for every a, we can code relations on a-sets by using a-sets in a 
robust and definable way by extending Godel's pairing function. So we can simply 
repeat the proof of Balcar-Vopenka. If x EM, we can encode tcl({x}) and its 
membership relation as an a-set, X. So XE  N, and by decoding the membership 
relation and applying Mostowski's collapse lemma, x EN. Therefore M こN.
In the other direction, suppose that V, 戸=V,t, then we can encode it as an 
a-set in M n N. Now given any xこv1)in N, i.e. X E v~ 幻， bylooking at the 
a-set encoding V'7, we can identify the subset corresponding to x, in N. But as M 
and N share the same a-sets, this implies that this subset is in M as well, and we 
can therefore find x E M. Now by transfinite induction, V, 戸=V,沢forall rJ, and 
equality ensues. ロ

Monro proved in [12] that KWPn+l→ KWP n for all n. This result was extended 
to show that KWPw --,4 KWPn for all n by the author in [9], and was later extended 
as well by Shani in [18] to show that for all a< w1, KWP0+1→ KWPa. 

Definition 8.4. Small Violation of Choice holds if there exists a set A such that 
for any set x there is an ordinal rJ and a surjection f: rJ x A→ x. We write SVC(A) 
to specify this set A, or SVC to meanヨASVC(A).

This axiom is due to Blass in [1], and it turns out to play an important role in 
the study of symmetric extensions. 

Proposition 8.5. Suppose that SVC(A) holds, if A is equipotent with an a-set, 

then KWP a+1 holds. 

Proof. We may assume that A is an a-set itself, and so if f: rJ x A→ x is a 
surjection, by coding we may replace rJ x A by an a-set as well, say Aa. Now the 
function mapping y Ex to YJ = {a E Aa I f(a) = y} is injective, and each YJ is an 
a-set. Therefore x is equipotent to the (a + 1)-set {y f I y E x}. ロ

Blass proved in [1] that SVC is equivalent to the statement "The axiom of choice 
is forceable [by a set forcing]", and that SVC holds in every symmetric extension. 
Usuba showed in [19] that the latter implication can be reversed. Namely, V F SVC 
if and only if V is a symmetric extension of a model of ZFC. 
Before we return to study the Bristol model, let us study Kinna-Wagner Prin-
ciples a bit more in depth. 

Theorem 8.6. Suppose that V F KWPa, if V[G] is a generic extension, then 
V[G] F KWPa•, where a*= sup{(]+ 2 I f3 < a}.25 

25 In other words, a* is the successor of a when a itself is a successor, or a itself otherwise. 
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Proof. For every x E V[G] there is a name出inV, so x「G={〈P,リ〉 Ej; Ip E G} 
in V[G], and the interpretation map is a surjection onto x, which we can extend to 

a surjection from x itself. Therefore every set in V[G] is the surjective image of a 
set in V. 
If a < a* the above completes the proof, as we may assume that x was an 
a-set, and conclude that x is an (a+ 1)-set. For a = 0 or a limit ordinal, we use 
Lemma 8.7. ロ

Lemma 8.7. Let A be an a-set for a=  0 or a limit ordinal. If f: A→ x is a 
surjection, then there exists an a-set B which is equipotent with x. 

Proof. For a = 0, A is a set of ordinals, so we may simple choose the least ordinal 
from the pre-image of each y Ex. Suppose that a is a limit ordinal, and define for 

(3 < a, A13 = { a E A I a is a /3-set }. For every y E x, let /3y be the least (3 such that 
for some a E A13, f(a) = y. 
Now define By= {a E A13Y I f(a) = y}, this is a (/3y + 1)-set, and y =J y'implies 
By =J By,. Therefore B = { By I y E x} is an a-set equipotent with x. ロ

On the other hand, ground models need not satisfy the same KWP"'as their 
generic extension: as we have seen in the construction of the Bristol model, L[c] 

has a proper class of ground models, L(V"'M), and as we will see in the next section, 
the various KWP"'fails as we go up the hierarchy. 
The next obvious question is whether or not Theorem 8.6 can be improved. 
Unfortunately, it cannot. The Cohen model famously satisfies KWP1,26 but as 

Monro demonstrated in [13], there is a generic extension of the Cohen model in 
which there exists an amorphous set, which cannot be linearly ordered, in particular, 
KWP1 must fail in that generic extension. Nevertheless, by the theorem above, 
KWP2 must hold. This leads us to the following conjecture.27 

Conjecture 8.8 (The a* Conjecture). Suppose that KWP a• holds in every generic 
extension of V, then KWP"'must hold in V. 

It is also easy to see that if M F収 WP,then also any generic extension of 
M must satisfy this. Which points out to a particularly poignant feature of a 
generic multiverse, and indeed a symmetric multiverse翌KWPhold or fails uni-
formly throughout the entire multiverse. 

Conjecture 8.9 (The Kinna-Wagner Conjecture). Suppose that V F KWP and 
G is a V-generic filter. If M is an intermediate model between V and V[G] and 
MF  KWP, then M = V(x) for some set x. 

The Bristol model was an exercise in finding an intermediate model which is 
not constructible from a set. And we conjecture that having any such model, 

intermediate to a generic extension, will fail KWP, and vice versa: any intermediate 
model of KWP is constructible from a set over the ground model. 
It may also be the case that KWP implies ground model definability, which is 
a notoriously difficult problem in ZF. Usuba proved that under certain conditions 
ground models are definable in ZF, but currently the only known models to satisfy 
these conditions are models satisfying SVC. Nevertheless, as a-sets can be used to 

characterise a model of ZF in the presence of KWP "''it stands to reason that it 
may play a role in ground model definability as well. 

26An implicit proof can be found as Lemma 5.25 in [7]. 
27 These are not directly related to the Bristol model, so we include them here instead of 
section 10 
28 Allowing symmetric extensions and grounds. See [19] for more information. 
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We can also define SVCa to mean that we replace the ordinal, T/, by an a-set. 
And in that case we can easily see that SVC°'is equivalent to "KWP a• is forceable". 
And one is now left wondering if SVC°'is equivalent to being a symmetric extension 
of a model satisfying KWP". 
One can also take a different approach and define SVCM, for a class M, where 
we may replace the ordinal T/ by a set from M, so SVC = SVC。rdand SVC" is a 
shorthand for SVC炉 (Ord)・Forthis to be truly useful, we need to modify KWP" so 
that 0-sets are subsets of M. These ideas may play a role in the ultimate answers 
regarding ground model definability in ZF, and we hope this discussion will help to 
inspire some of the readers to think about that. 

Question 8.10. Is ground model definability equivalent to KWP? 

Note that this question is meaningful since as we observed, KWP is absolute 
through the generic, and indeed the symmetric, multiverse. 

9. CHOICE PRINCIPLES IN BRISTOL 

We want to investigate the failure of the axiom of choice in the Bristol model, 
M, and provide alternative proofs to the key property of the Bristol model, namely 

Vx(V i= L(x)). 

Proposition 9.1 ([8], Theorem 5.5). Let M denote the Bristol model, and Ma be 
the ath model in the construction. Suppose that A E M is an a-set, then A E Ma+l・

We will not prove this proposition here, but the idea extends the homogeneity 
argument used in Proposition 3.2. Indeed, L(げ） contains all the a-sets of M. a+l 

Corollary 9.2. If (3 > a, then M13 p= ,KWPa. In particular, MF  ,KWP. 

Proof. M, M13 and Ma+l have the same a-sets. If one of them would satisfy KWP°" 
by The Generalised Balcar-Vopenka-Monro Theorem, M = M13 = Ma+l• ロ

Corollary 9.3. M 巨,SVC,and consequently MI= Vx(V i= L(x)), as well as "the 
axiom of choice is not forceable {by a set forcing)'; ロ

It follows from this that at least for a proper class AこOrd,if aく (3are both 
in A, then KWP13→ KWP a. But we want to understand the gradation, or rather 
the degradation, of KWP through the construction. 

Proposition 9.4. M1 F ,KWP1い BPI

L[cnA~] 
Proof. We proved that R, the set of Re = V fore < w1, is~1-amorphous w+l 

in M1 in Proposition 3.8, and the same argument shows that it cannot be linearly 
ordered. In particular, it cannot be equipotent to any 1-set and it also witnesses 
that BPI fails. 
Briefly, the argument starts by taking a name-< E 151 and some p I卜IS、‘〈R,平 is
a linearly ordered set". Let B be a disjoint approximation such that fix(B)こsym(R)
and dompこLJB. We pick a, (3¢dom B and distinct, and we let q ::::; p decide, 
without loss of generality, Ra -<応.But now we can find 7r such thatし(1r)= (a (3) 
and 1rq = q. ロ

This is a remarkable point, as the elements of R themselves can be well-ordered 
separately. So you may think we can replace them by 0-sets, but the truth is that 
we cannot do that uniformly, and this forces us to treat them as 1-sets instead. 

p ropos1t10n 9.5. M2 F ,BPI. 
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Proof. We show that R still cannot be linearly ordered when passing to M2. Of 
course the forcing that led us there, Q1, linearly orders (and in fact well-orders) 
R. But it is easy to see that this well-order is promptly discarded, and instead we 

only remember bits and pieces of it in the form of (Ji 「 A~. To show that there is 
no linear ordering in M2 we need to use the full power of the symmetric iteration. 
We are going to start with a rather naive attempt, which may not work, but we 
can identify the problem and circumvent it. 

Suppose that -< E 152 is such that〈p,q〉号、女 linearlyordersか. Let B。
and氏 bedisjoint approximations such that〈fix(B。)，fix(B1)〉isa support of -<. 
Let a, (3 <凸 besuch that a, (3~domB。 ULJ B1 and moreover凡訊/3are not 
mentioned in q. 

Let似，り'〉 bea condition extending〈p,q〉suchthat似，り〉噂尾-<R13. We 
would like to apply upwards homogeneity and consider 1r E fix(Bo) which imple-

ments (a (3) while also not moving p'. But we have to contend with the fact that 1rが
may have moved. L郎ckily,w~know exactly where it moved to: 1rq simple permutes 
the range of q, so if Ra and R13 appear inり， whichis the likely case, then we simply 
need to switch them back using some u E fix(B1), that is an automorphism~f 釘
and that will be enough, since automorphisms of (Q1 do not change凡 andR13.
Alas, we have a problem. For u to exist, we need to make sure that応 andR13 
appear inりincoordinates which are not in LJ Bぃotherwisewe cannot move these 
coordinates at all. So this nai_ve apprC?ach cannot work. 
Luckily, we assumed that Ra and R13 are not mentioned in our original q. So to 

findり， firstadd both of these in coordinates that are not in LJ 81, and if this was 
not enough to decide how -< will order them we can extend further to findり'.In 
other words, we may assume without loss of generality that q'mentions応 and.R13
in coordinates which are eligible to _be switched from within fix(B凸

IS ・
Therefore, if似り〉 1り Ra-< R13, then also〈p',り〉 1噂 R13-< Ra. Therefore 
似，り〉 cannotforce -< to be a linear ordering, which is a contradiction, since it 
extends a cond1t10n which did force just that. ロ

One may think that this is enough to prove that there are sets which cannot be 

linearly ordered in the Bristol model, as we just exhibited that the second symmetric 
extension will not linearly order R either. Alas, we already concluded that R is a 

2-set, so a linear ordering of R will also be a 2-set. But we know that 2-sets are 
only determined in M3. But luckily, we are not very far behind completing this 
part of the journey. 

Theorem 9.6. M F ,BPI. 

Proof. Suppose that仇い〉 E氏 isa condition that for some -< E 153 forces that -< 
is a linear order of .R. We can actually run the proof of Proposition 9.5 again. First 
of all, 1r will not affect the condition extending r at all, but more importantly, u 
can be chosen as a permutation moving only two points which means it implements 

the identity. So it also will not modify the condition extendingた
And so as long as we were careful to choose the extensionがina way that allows 
u to be taken from fix(B1), the argument is not affected. Therefore we showed that 

M3 F "R cannot be linearly ordered", and therefore M does as well. ロ

10. OPEN QUESTIONS RELATED TO THE BRISTOL MODEL 

There is still so much to learn about the Bristol model, both in the specific 
context of L, as well as many natural questions that come up from generalisations 
and details in the proof. We cannot possibly include all of these, but we will give four 
families of questions which are interconnected, but also seem to have independent 

interest. 
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10.1. The Bristol models in the multiverse. 

Question 10.1. Is there a condition characterising the equivalence classes on Bris-
tol sequences (definable or otherwise) based on the Bristol model they generate 
using a fixed Cohen real? 

Question 10.2. Is the theory of any two Bristol models the same? Does the theory 
depend on the sequence or its properties? 

Question 10.3. Are there any non-trivial grounds of any Bristol model? 

Question 10.4. Is there a Bristol model which is definable in its generic extensions, 
or maybe is there one that is not definable in some of its generic extensions? 

Question 10.5. Is there a generic extension of a Bristol model which itself is a 

Bristol model? 

Question 10.6. Is there a maximal Bristol model, namely, is there a Bristol model 

M~L[c] such that for any x E L[c] ¥ M, M(x) = L[c]? 

Question 10.7. Is it true in general that for x E L[c], either L(x) = L[c] or there 
is a Bristol model M such that x E M? 

10.2. Large cardinals in the Bristol model. 

Question 10.8. We saw that measurable cardinals remain measurable. Do they 
remain critical cardinals in the sense of [5]? What about weakly critical cardinals? 

Question 10.9. Principles like□ :;_ are considered to witness failure of compactness. 
Suppose that入issingular and no permutable scale exists on IT SC(入）. Can this 
compactness be harnessed to restart the Bristol model construction? (Note that 
a positive answer would indicate that Woodin's Axiom of Choice Conjecture is 
possibly false, which may imply also the eventual failure of the HOD Conjecture. 
As such the answer to this question is most likely negative, and a positive answer 

would be extremely hard to prove.) 

Question 10.10. Suppose that elementary embeddings can be lifted and Woodin 
cardinals are preserved. Starting from strong enough hypotheses, can we construct 
Bristol model-like objects that satisfy AD? 

10.3. Other type of Bristol models. 

Question 10.11. Can we start the construction of the Bristol model with a dif-

ferent type of real? Clearly not every real is useful, minimal reals do not have 
intermediate models, for example. But what about reals that admit sufficiently 
many automorphisms and intermediate models such as random reals? What about 

"Cohen + condition" type of reals (Hechler, Mathias, etc.)? Will this also impact 
the type of forcing we need to do in the following steps (namely, will that force us 
to use something which is not isomorphic to Add(wa, l)L in successor steps)? 

Question 10.12. Can we start the construction with a Prikry-like forcings instead 
of a Cohen forcing? 

Question 10.13. While there is no good definition for iteration of symmetric 

extensions with countable support, it is imaginable that for productive iterations 
such as the one used in the Bristol model this is doable by hand. What would 

this be? Can we have an w1-Bristol model starting with an£-generic sequence for 
Add(w1, 1) for example? 
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10.4. Weak choice principles. 

Question 10.14. Does DC hold in the Bristol model? 

Question 10.15. Does w have free ultrafilters in the Bristol model? 

Question 10.16. Does Ma  F KWP "'*? 

Question 10.17. Can any choice principles be forced over the Bristol model? 

Question 10.18. Is countable choice true in the Bristol model? If so, is ACwo, 
the axiom of choice for families that can be well-ordered, true? (Note that this will 

provide a positive answer about DC, as well as the lifting of elementary embeddings 

for measurable cardinals.) 

Question 10.19. Say that A is x-amo叫 ousif it cannot be well-ordered, and it 
cannot be written as the union of two sets that are not well-orderable. That is, for 

some K, A is 屈—amorphous. Are there any x-amorphous sets in the Bristol model? 
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