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Abstract

This is a lecture notes style paper about nice names, constructed via antichains,
and their combinatorics. Also, we propose a simpler vision of completion of posets.
These topics ease the transition from the forcing theorem to more advanced topics
like forcing iterations.

1 Introduction

This text presents the author’s vision about nice names (particularly of functions between
ground model objects) and their use to calculate cardinalities in forcing generic extensions.
The notion of (maximal) antichain is essential to construct these objects and to understand
their combinatorics. Also, an alternative simpler definition of completion of a poset is
proposed, which turn out to be useful when relating the forcing relation of a poset with
its completion.

The topics proposed here ease the transition, in the study of forcing theory, from
the forcing theorem to more advanced topics. Thereafter, this text only requires the
knowledge of the Forcing Theorem 1.1 (and its proof) as in e.g. [Kun80, Kunl1]. For the
section about completions, we also assume some knowledge about (complete) Boolean
algebras, e.g. [BM77]. At the end some facts about two steps iteration are included,
which the author learned from professor Brendle’s 2010 seminar “How to force it”.

Notation

Throughout all the text, we work inside a countable transitive model V' of ZF (or ZFC,
depending on what is indicated in each result or section), unless otherwise indicated. A
poset (also called forcing notion, or just a forcing) is a pair (P, <) where < is a reflexive
and transitive relation on PP. In contrast with most set theory texts, we do not assume
that P has a maximum condition 1.

Let P be a poset. For p,q € P, ¢ < p is often read ¢ is stronger than p. The relation
p L g denotes that p and g are incompatible, that is, =Ir € P(r <par <gq),and p || ¢
denotes that they are compatible.

Recall that 7 is a P-name if 7 is a relation and V(o,p) € 7(0 is a P-name and p € P).
Denote by VT the class of P-names in V.



A filter G on P (usually living outside V') is P-generic over V if it intersects every
dense set D € V in P. For 7 € V¥ define

7[G] == {o[G] : Ip € G((0.p) € P)}

and V[G] := {7[G] : 7 € VF}. We usually refer to V as the ground model, and to V[G] as
a P-generic extension of V. When we say that ¢ is a formula in the forcing language of P

we mean that ¢ has the form ¢(7g, ..., 7,_1) for some P-names 7, . .., 7, (in the ground
model) and some formula p(zg, ..., 2z,_1). We usually abbreviate the list 7o, ..., 7,_1 by
T.

Concerning the forcing relation, IFp ¢ means that p IFp ¢ for all p € P. Recall:

Theorem 1.1 (The Forcing Theorem). Let ¢(xq,...,2,—1) be a formula. Assume that
V is a countable transitive model of ZF, P € V and 79, ...,Tn_1 € VE. Then:

(a) Definability Lemma. Whenever p € P, p It ¢(70,...,70_1) iff, for any P-generic
G over V, if p € G then ¢V (7[G], ..., Tna[G]).

(b) Truth Lemma. For any P-generic G over V,
QDV[G] (T()[GL Ce ,Tn_l[G]) Zﬁ Elp S G(p H_V (10(7'07 RN Tn—l))~

Recall that, whenever G is P-generic over V', V[G] is a transitive model of ZF extending
V such that V' and V]G] have the same ordinals. Even more, V' = AC (the axiom of
choice) implies V[G] = AC.

Results without proof in this paper can be consulted in the references, or are left to
the reader. Details in some proofs are omitted as well.

2 Nice names

In this section we work in ZF, unless otherwise stated, and fix an arbitrary forcing notion
P. Since we do not assume that P have a maximum condition 1, for x € V we define the
canonical name of x by

Z:={(2,p): 2 € x and p € P}.

We also define the canonical name of the P-generic set as Gp = {(p,p) : p € P}. Tt is
not hard to check that #[G] = z and Gp|G] = G for any P-generic G over V. Those are
the first examples of nice names.

Like # and Gp, it is very practical to work with well defined names for certain type
of objects. As an example, we look at a simple definition for names of unordered pairs,
ordered pairs, and union of sets.

Definition 2.1. Let 7,0 be P-names. Define the P-names
up(r,o) ={(r,p) :pePYU{(o,p) : p € P},

op(r,0) :=up(up(r,7),up(r, o)),
un(r) ={(m,7r):r€P rI(o,p) € 7Ig € P((1,q) €0 and r < p,q)}.

Note that these notions are absolute for transitive models of ZF.

Lemma 2.2. If 7,0 € V¥ then
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(a) Ik up(r,0) = {r,0}. (b) IFop(r,o) = (1,0). (c) IFun(r) =Jr.
The following type of sets are essential for forcing combinatorics.
Definition 2.3. Let C C P and p, € P.
1) Cis open (in P) if Vp € CVq < p(q € C).

2) C'is an antichain (in P)if Vp,qe C(p#q=p L q).

4) C'is predense below po if Vp < poIg € C(p || q)-

5) C'is a maximal antichain if C'is a predense antichain.

(1)
(2)
(3) C'is predense (in P) if Vp € P3q € C(p || q).
(4)
()
(6)

6) C'is a maximal antichain below py if it is an antichain predense below py.

Note that these notions are absolute for transitive models of ZF (even equivalent to Ag-
formulas).

Below we state very easy facts about these concepts.
Lemma 2.4. Let py € P and let ¢ be a formula in the forcing language (of P).
(a) The set D, :={p e P :pl- ¢} is open.
(b) Any dense set (below pg) is predense (below py ).
(c) Any mazimal antichain (below py) is predense (below py).
(d) A subset of P is open dense (below py) iff it is open predense (below py ).
(e) po IF ¢ iff D, is predense below py. Likewise, I ¢ iff D, is predense.

(f) A C P is a maximal antichain iff A is an antichain and, for any antichain A" in P,
if AC A then A=A

The existence of maximal antichains can be proved by Zorn’s Lemma.

Lemma 2.5 (ZFC). Let D C P be dense. If C C D is an antichain then there exists a
maximal antichain A C D in P such that C' C A.

Antichains are very useful to define names thanks to the following property.
Lemma 2.6. Assume that G C P is a filter and A C P is an antichain. Then |GNA| < 1.
Proof. If p,q € GN A then p || ¢, but since A is an antichain, p = q. ]

The following lemma describes useful characterizations of generic sets.

Lemma 2.7. Let M be a transitive model of ZF with P € M, and let G C P be a filter
(usually outside M ). Then the following statements are equivalent.

(i) G is P-generic over M.



(ii) For any open dense D € M (in ), GND #0.

(iii) For any predense D € M (inP), GND #.
FEven more, (iii) = (iv) where

() For any mazimal antichain A€ M (inP), GNA # 0,
and () = (i) is valid when M = AC.

In the case of (iv), GN A # () actually means that |G N A| = 1 by Lemma 2.6. This is
useful to define nice names, according to the following tool.

Lemma 2.8. InV, let A be an antichain and h : A — V¥, Define an(h) := un(t) where
7= {(h(p),p) : p € A}. Then:

(a) For any p € A, plFan(h) = h(p).

(b) If Ais a mazimal antichain (below py), ©(z,xg, ..., Tn_1) 18 a formula, oo, ...,0n_1 €
VP and Vp € A(p I+ p(h(p),5)), then I p(an(h),5) (respectively py I+ p(an(h),5)).

Proof. By Lemma 2.2(c), to prove (a) it is enough to show that p Ik 7 = {h(p)} for any
p € A. We show this by using the Forcing Theorem. Fix p € A and let G be an arbitrary
P-generic over V with p € G. Note that 7[G] = {h(r)[G] : r € AN G}. By Lemma 2.6,
|GNA| <1, but since p e GNA, GNA={p}, so 7[G] = {h(p)|G]}. Therefore, by the
Definability Lemma, p I 7 = {h(p)}, so p IF an(h) = 7 = h(p).

To see (b), we have by (a) that p IF ¢(an(h),5) for any p € A, so {p € P : p Ik
w(an(h),d)} is predense. Hence I ¢(an(h), ) by Lemma 2.4(e). The “below p,” fact is
similar. O

Now we are ready to introduce the following very useful notions of nice names.

Definition 2.9. Asin Lemma 2.8, whenever h is a function such that dom# is an antichain
in P and h(p) is a P-name for all p € domh, we denote

an(h) :=un({(h(p),p) : p € domh}).
Fix sets B and C.

(1) Say that & is a nice name of a member of C if & = an(h) for some function h into
domC = {y : y € C} such that domh C P is a maximal antichain.

Denote by nice(C') = nicep(C') the collection of all nice names of members of C'.

(2) When H is a function from B into the class of P-names, denote
fu(H) = {(op(#, H(x)),p) : v € B, p € P},

(3) Say that f is a nice name of a function from B into C if f = fn(H) for some function
H : B — nice(C'). Denote ncf(B, C) = nefp(B, ) the collection of all nice names of
functions from B into C.
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Lemma 2.10. If B,H €V and H is as in Definition 2.9(2) then IF “n(H) is a function,
dom(fn(H)) = B” and, for any x € B, IF in(H)(z) = H(x).

Proof. Let G be P-generic over V. Set f := fn(H)[G]. Then [ = {(x, H(z)[G]) : © € B},
which is clearly a function with domain B such that f(z) = H(x)[G] for any z € B. O

As expected, these nice names corresponds to objects they are actually describing
(members of C' and functions from B into C').

Corollary 2.11. Let B,C € V.
(a) If & € V is a nice name of a member of C then IF & € C.
(b) If f € V is a nice name of a function from B into C, then+ f: B — C.

Proof. Let h : domh — domC' be as in Definition 2.9(1) such that & = an(h). For any
p € domh it is clear that p IF h(p) € C. Hence, by Lemma 2.8(b), I & € C. This shows

(). . :
To see (b), assume that f = fn(H) where H : B — nice(C'). By Lemma 2.10, I-*f is

a function with domain B” such that Vz € B(l- f(z) = H(z)). If 2 € B then, by (a),

F H(z) € C, thus IFf : B — C”. O

Lemma 2.12. Let p(y, 7o, ...,7,1) be a formula. In'V, let 1o,..., 7,1 € VF and let K
be a class of P-names. If

Vp e P((pF Jzp(2,7)) = ¢ < pIp € K(q I+ p(p.7)))
then the following set is open dense:

D:={reP:3pe K(rlkep(p,7))vriF=3zp(z,7)}
Proof. Tt is clear that D is open. Let p € P. If p ¥ —3zp(z,7) then p' IF Jzp(z,7) for
some p’ < p. So, by the hypothesis, there is some ¢ < p’ in D. O

Theorem 2.13 (ZFC). In'V, with the same hypothesis as in Lemma 2.12, if K # () then
there is some maximal antichain A C P and some h : A — K such that

IFo(an(h),7) < Jzp(z, 7).

Proof. Choose some 0y € K, and let D be as in Lemma 2.12. By Lemma 2.5, there is
some maximal antichain A C D in P. Define h : A — K as follows: for p € A, when
p - =3zp(z, T) set h(p) := oo; otherwise, Ip € K(p IF ¢(p,T)) because p € D, so choose
some h(p) € K such that p I o(h(p),7)). By Lemma 2.8, h is as required. O

By application of the previous theorem to K = V¥, we obtain the well-known

Theorem 2.14 (Maximal Principle (ZFC)). Let o(y, o, ..., 2y—1) be a formula. In'V,
if Toy -« s Tno1 € V¥ then there is some o € V¥ such that I+ o(0,7) < Fzp(z, 7).

Remark 2.15. In ZF, the maximal principle is equivalent to AC. Let A be a set such
that VYa,b € A(a # 0 A (a # b=anb=0)). Define P = JA ordered by ¢ < p iff
Jda € A(p,q € a). Use the maximal principle to find a P-name p such that IF p € Gp.
Define c:={qeP:IreP(rikp=¢q)},soVaec A(lanc| =1).



The following result is the reason we call these objects “nice names”.
Theorem 2.16 (ZFC). In'V, let B and C be sets, p € P and o € VE. Then:
(a) If pIF o € C then there is some nice name & of a member of C' such that p - o = i.

() Ifpl-o: B — C' then there is some nice name f of a function from B into C' such
that pl- o= f.

Both results are also valid when omitting p (e.g. if IF o € C then... such that - o = x).
Proof. Work in V. For (a), note that

vp e P((p'IF32(2€Cnz=0)) = 3g<pIpedomC(ql- “peC np=0)).

Hence, by application of Theorem 2.13 to K = domC' (domC' # ) because p IF o € C),
we obtain a function i : A — domC with A maximal antichain in P such that

- an(h) =0 < 0 € C.

Hence p IF & = o where & := an(h) € nice(C). ) )
For (b), assume that p IF o0 : B — C. Fix b € B and set ¢(y,b) :“o : B — C and
y = o(b)”. Note that

vp' € P((p' IF Fze(z, b)) = 3¢ < p'Ip € domC(q IF p(p. b))

so, by application of Theorem 2.13 to K = domC, we obtain a function h; : 4, — domC'
with A, maximal antichain in P such that

Fo:B— C = an(h) = o(b).

Set H(b) := an(hy). It is clear that H : B — nice(C), and that f := fn(H) is as required
by Lemma 2.10. O

3 Combinatorics of names

In this section we work in ZFC, unless otherwise stated. Fix an arbitrary forcing notion
P. Recall:

Definition 3.1. Let « be a cardinal. Say that P has the k-chain condition, abbreviated
k-cc, if every antichain in P has size < k.

Say that IP has the countable chain condition, abbreviated ccc, if it has the N;-cc, that
is, if every antichain in PP is countable.

It is well-known that s-cc posets preserve cofinalities (and cardinalities) above k.
Although these proofs are in [Kun80, Kunll], we present shorter proofs using the tools
of the previous section.

Lemma 3.2. In V, let k be a cardinal and assume that P has the k-cc. Let p € P,
&€ VP, and let B and C be sets.
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(a) If pIF @ € C then there is some K € [C]<* such that pIF & € K.

(b) If p I & : B — C then there is some F : B — [C]<* such that, for any b € B,

pl-z(b) € F(b)".
These results are also valid when omitting p.

Proof. For (a), by Theorem 2.16(a) we may assume that & is a nice name of a member
of C, that is, # = an(h) where h : A — domC and A is a maximal antichain in P. Let
K := ranh. Since P has the r-cc, |K| < |A| < k. On the other hand, for any ¢ € A,
qIF @ = h(q) € K, hence IF & € K by Lemma 2.8(b).

For (b), by Theorem 2.16(b) we may assume that & is a nice name of a function from
Binto C, that is, © = fn(H) for some H : B — nice(C). Fix b € B. By (a), there is some
F(b) € [C]<* such that I @#(b) = H(b) € F(b)", which yields the desired function F. O
Theorem 3.3. Let k be an infinite cardinal and assume that P has the k-cc. Then P
preserves reqular cardinals > k. In particular, if P has the ccc then it preserves all regular
cardinals.

Proof. Let A > k be a regular cardinal. It is sufficient to show that
IF Vo < AVf : o — A3B < A(ranf C ).

Let p € P and assume that d,f € VP such that p IF“a < A and j © a4 — A7, Then,
there are ¢ < p and a < X such that ¢ IF @ = &. It is enough to show that there is some
B < X such that ¢ IF ranf C 3. By Lemma 3.2(b), there is some function F': o — [A\]<"
such that, for any £ < «, ¢ IF f(é) € F(§)". Since A is regular and |[F(§)| < k < A, we
have that sup(F(€)) < A. Define f*: a — A by f*(&€) := sup(F(€)). Again, because A
is regular, there is some 8 < A\ such that f*(§) < g for any { < a, so F(§) € 8. This

implies I- F(€)" C j3, so ¢ IF f(é) < . Therefore, ¢ IF ranf C j. |

To calculate cardinal exponentiation in generic extensions, that is, the size of ||, by
Theorem 2.16 we can estimate it by the number of nice names of functions kK — A we
have. The following results gives a bound of this number.

Theorem 3.4. Let B and C be sets, and let k be an infinite cardinal. If P has the k-cc
then

(a) [nicep(C)| < [P[=~-[C]=". (b) |ncfp(B,C)| < ([P - |C|<)E.
Proof. For (a), let A:={A C P : Ais a maximal antichain}, so
nice(C) = {an(h) : h: A — domC » A € A}.

Hence
Inice(C)] < [{h: A — domC : A€ A}| =

U 1l

AcA

Since P has the #-cc, A C [P]<", so |A| < |P|<". On the other hand, for any A € A,
[AC| = |Ol < |C|<*. Therefore

[nice(C)| <

U |Ac|] < || - [C]%* < [PI<* - |C]<~.
Ac A



To see (b), note that ncf(B,C) = {fn(H) : H € Pnice(C)}, so
Incf(B, C)| < |nice(C)|'B1,
and the result follows by (a). O

To finish this section, we show the use of the maximal principle (Theorem 2.14) to
obtain nice names for members of Q[G] for an arbitrary @ € VF.

Lemma 3.5. InV, if Q € V¥ then there is a cardinal p such that |- |Q| < |fi|.

Proof. Set ¢(z,Q) :“z is a cardinal and |Q| = 2” and K := {& : & is a cardinal}. Note
that

¥p € P((p - 320(2,Q)) = Jq < pIp € K(q - ¢(p. Q)
so, by Theorem 2.13, there is some h : A — K with A maximal antichain in P such that

- Q| = an(h).

For each p € A there is a (unique) cardinal j, such that h(p) = f1,. Set p := sup,c 4 tip,
which is as required. O

Theorem 3.6. InV let k be an infinite cardinal, assume that P has the k-cc, QeVP u
is a cardinal and |- 0 < |Q| < |i]. Then there is a set (Q)p of P-names of size <|P|<#-p<"
such that

(a) ¥4 € (Qe(F ¢ € Q),
(b) wheneverp € P, o € VP andp I+ o € Q, there is some ¢ € (Q)p such that pI- o = g.

Proof. By the maximal principle (Theorem 2.14) there is some P-name f such that IFf :
i — @ is onto”. Using the same principle again, there is a function H : nice(p) — VF
such that, for any & € nice(), |- f(&) = H(&). Set (Q)p := ranH. Hence [(Q)p| <
[nice(p)| < |P|<" - p<" by Lemma 3.4.

Item (a) is clear. For (b), assume that p I ¢ € Q. By Theorem 2.13 applied to
¢(2,0) “2 € i and f(2) = 0” and K = domyi, there is some h : A — K with A a
maximal antichain in P such that

- fan(h)) =0 < 0 € Q.

Clearly, ¢ := an(h) is in nice(p) and p I+ o = f(&). Hence ¢ := H(c) is as desired. O

4 Completions via subsets and antichains

In this section we work in ZF, unless otherwise indicated, and we fix two arbitrary posets
P and Q. We first review the basic notions of complete and dense embeddings between
posets.

Definition 4.1. Let ¢ : P — Q.

(1) The map i is a complete embedding if it fulfils:
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(i) Vp,p' € P(p' <p p = i(p') <q i(p)),
(i) Vp,p' € P(p Lp p' = i(p) Lq i(p))),

(iii) for any ¢ € Q there is some p € P such that Vp' <p p(i(p’) ||q ¢). Such a p is
called a reduction of q.

(2) The map i is a dense embedding if it satisfies (i), (ii) above, and
(iii’) ran(7) is dense in Q.
We associate with 7 the transformation i* : VP — V@ defined by recursion as
i*(r) :=={@"(0),i(p)) : (0.p) €T}
Note that:
Lemma 4.2. Leti: P — Q.
(a) Ifi is a dense embedding, then it is a complete embedding.

(b) i is a complete embedding iff i satisfies (i), (ii) and, for any predense D C P, i[D] is
predense in Q.

The importance of these type of embeddings is illustrated in the following result.

Theorem 4.3. Assume thati: P — Q is a complete embedding and H is Q-generic over
V. Then

(a) G = i '[H] is P-generic over V and V|G] C V[H]. FEven more, if i is a dense
embedding in V', then V|G] = V[H].

(b) If T € VE and o := i*(7) then o[H] = 7]G].

(c) IfpeP, 1o,...,7m1 € VE and ¢(xg,...,x,_1) is an absolute formula between tran-
sitive models of ZF (or ZFC when V = AC), then

plE (o, oy ma1) iff i(p) Ik ©(i*(10), ... i (Th1)).

(d) If i is a dense embedding, then (c) is valid without the absoluteness requirement for
®.

(e) If i is a dense embedding and G' is P-generic over V', then
H = i{G) = {r e Q: 3g € i[G)(q < )}

is Q-generic over V and V[H'| = V[G']. Even more, i(i '[H]) = H and i '[i{G")] =
G'.



When we look at a Boolean algebra B as a poset, we must exclude its minimum
element Op. So, when we deal with B in the context of forcing, we are actually looking
at B\ {Op}. For example, when we say that “i : P — B is a complete embedding” we
mean that “i : P — B~ {0p} is a complete embedding”.

Recall that a completion of P is a complete Boolean algebra B such that there is a
dense embedding 7 : P — B. It is known that any poset has a completion, and that it
is unique modulo isomorphism. The typical completion ro(PP) of a poset P is defined as
the set of regular open sets in the topology of P whose base is {O(p) : p € P}, where
O(p) :={r € P:r < p}.! Recall that, given a topological space X, U is regular open in
X iff U = int(cl(U)).

Lemma 4.4. Let A C P. Then:
(a) p € int(cl(A)) iff A is dense below p.
(b) A is regular open iff, for anyp € P, p € A & A is dense below p.

Proof. Tt is enough to show (a). Assume p € int(cl(A4)), that is, O(p) C cl(A). If ¢ < p
then ¢ € cl(A), so [¢] M A # 0, that is, Ir < ¢(r € A). Hence A is dense below p.

For the converse, assume that A is dense below p. It is enough to show that O(p) C
cl(A). Let ¢ < p, so there is some r € A with r < ¢, that is, O(¢) N A # ). Since every
open neighborhood of ¢ contains O(q), we conclude that ¢ € cl(A). O

We present an alternative way to define the completion of a poset, which is more
natural and also more practical when using completions.

Definition 4.5. Let p,q € P, 7 C P(P) and let A, B be subsets of P. Define:
(1) A< Biff (6) ~A:={peP:{p} Lp A}.

e <pleBWla. 1) NF={peP X € F({p) <3 X))
that is, B is predense below any p € A. (8) AAB = A{A, B}
(2)
(9) Define the poset Pw(PP) := P(P) ~ {0}
(3)
(4)
()

A=}, Biff A<}, Band B <}, A.
p <p q iff {p} < {q}. ordered by <

4) p=%qiff p<§ q and q <} p.
P=p P =rd 1=pP (10) Say that P is separative if, for any p, q €

5) Alp Biff Vpe AVqg € B(p L q). P, g <ppiff ¢ <pp.
The subindex P is omitted when clear from the context.

For example, any Boolean algebra is separative, that is, if B is a Boolean algebra and
b,/ € B, then v/ < b iff Va e B\ {0p}(a <V = a Ab+#Op).

Below we list some properties of the order <* and the operations defined above. The
proof is left as exercise for the reader.

Lemma 4.6. Let A, B,C € P(P) and F C P(P).

Mn fact, C' C P is open in this topology iff it is open in the sense of Definition 2.3(1).
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(a) If AC B then A <* B. (g9) 0 <*A, and A=*0 iff A=0.
(b) A<* BiffVpe A({p} <* B). (h) ANB="0 iff AL B.
(¢) [A<*Band B<*C then A<*C. () VA€ F(A<TUF).
() AL-A (j) IfVA € F(A<* B) then JF <* B.
(e) A<*P, and A =* P iff A is predense (k) vA e F(NF <" A).

wn P (1) If VA € F(B <* A) then B <* \ F.
(f) AU~A =*P. (m) ANUF ="Uxer ANX.

There properties indicate that, under <*, P(P) becomes a complete Boolean algebra
modulo the equivalence relation =*. We show that this is a completion of P.

Definition 4.7. Let Bp := P(P)/ =* ordered by [A] < [B] iff A <* B, where [A] denotes
the =*-equivalence class of A.

Theorem 4.8. The partial order Bp is a complete Boolean algebra and mp : Pw(IP) — Bp,
mp(A) := [4], is a dense embedding.

The previous result actually shows that Bp is a completion of Pw(P). Since P densely
embeds into Pw(PP), Bp is a completion of P.

Lemma 4.9. Let A, B € Pw(P)
(a) A and B are incompatible in Pw(P) iff A L B (as in Definition 4.5(5)).
(b) Pw(P) is separative.

(¢) The map tp : P — Pw(P), vp(p) := {p} is a dense embedding. In particular hp =
7poip : P — Bp \A{[0]} is a dense embedding.

Proof. For (a), first assume that A and B are compatible in Pw(IP), that is, there is some
C € Pw(P) such that C' <* A and C' <* B. Since C # (), choose some ¢ € C. Then ¢ || p
for some p € A, so choose some r < p,q. Now, since C' <* B and r < ¢, r || p’ for some
9 € B. Hence Ip € A3p' € B(p || p').

To see the converse, assume that Ip € AJq € B(p || ¢), so there is some r < p,q. It is
easy to see that {r} <* A and {r} <* B.

To see (b), assume that every Z <* A is compatible with B. It is enough to show that
A<*B. Let p€ Aand p/ <p. It is clear that {p'} <* A, so {p'} is compatible with B,
that is, by (a) p’ is compatible with some ¢ € B.

For (c): it is clear that, for p,q € P, ¢ < p implies {¢} <* {p} and, according to (a),
p Lp g implies {p} Lpwp) {¢}. Also, rani* is dense in Pw(P) because p € A implies
{p} <* A O

Our results also allow to show that ro(IP), with the order C, is a completion of P.
Theorem 4.10. Assume that U C P is regular open.
(a) If U C P is reqular open, then U <*U' < U C U'.



(b) For any A C P there is a unique reqular open U' C P such that A =*U".
In particular, the map mp [ro(P) : (ro(P),C) — Bp is an isomorphism.

In the previous sections we showed how the combinatorics of antichains is very helpful
in the practice of forcing. In connection to this, it is important to know that Bp can be
determined by antichains as follows.

Theorem 4.11 (ZFC). For any C' € Bp there is an antichain A in P such that C' = [A].

Proof. Assume that C' = [X] for some X C P. Note that int(X) :={¢eP:3p € X(¢ <
p)}. Tt is clear that X =* int(X). By Zorn’s Lemma, find a maximal A with respect to
the following properties:

(i) A Cint(X),
(i) A is an antichain in P.
It is not hard to see that A =* int(X). O
As a consequence, we can easily estimate the size of the completion of a poset.
Corollary 4.12 (ZFC). If k is an infinite cardinal and P is k-cc, then |Bp| < |P|<".
Proof. Clear because |Bp| = [{[A] : A antichain in P}| < |[P]<"]. O

In the practice, it is very common to deal with the notion of ||| for a formula ¢ in
the forcing language of a complete Boolean algebra. More precisely, if B is a complete
Boolean algebra and ¢ is a formula in the forcing language of 13,2

lloll == \/{3;’ eB:zlp ¢}

Here ||¢|| is not just a supremum but a maximum, that is, for any « € B, x kg ¢ iff

z < o]l
Discussions about ||| are much more clear and practical when working with Pw(IP)
and Bp instead.

Definition 4.13. Let ¢(7) be a formula in the forcing language of P. Recall from
Lemma 2.4 the open set D7) = {p € P : p IFp ¢(7)}. Define [|p(7)|| = [Dye)]
(equivalece class in Bp).

Lemma 4.14. Let p € P, A € Pw(P), and o(T) a formula in the forcing language of P.
(a) A <* Dy iff Vp € A(p IF ¢(7)).

(b) pIFo(7) iff {p} <* Dyis-

(¢) AlFpwy o(tp(T0), - - tp(Tn-1)) iff A <" Dyir).

(@) ()|l = V{z € Bp : z kg, o(hp(10), .., hp(Ta 1))}

2The statement Op |- ¢ is considered true, always. This is because, in connection with the forcing
theorem, no B \ {0 }-generic filter contains Op.
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Proof. For (a), A <* Dy iff D) is predense below p for all p € A, but this is equivalent
to “p I @(7) for all p € A” by Lemma 2.4(e). Item (b) is immediate from (a).

For (c), since {up(p) : p € A} is dense below A in Pw(P),

Alrpywy (tp(10), - - tp(Taz1)) € Vp € A(tp(p) Ikpwe) ©(tp(T0), - - - tp(Tn-1)))-
Hence, by Lemma 4.3, this is equivalent to Vp € A(p IF ¢(7)), so the result follows by (a).
Item (d) is a direct consequence of (¢) and Lemma 4.3. O

As an example, we show with our notation that random forcing is “w-bounding.

Example 4.15 (ZFC). Let P be random forcing, that is, P is the set of Borel subsets
of [0,1] with positive Lebesgue measure, ordered by C. We show that P is “w-bounding,
that is, for any p € P and any P-name z, if p IF & : w — w, then there is some r < p and
y € “w (in the ground model) such that r |- Vn < w(@(n) < g(n)).

Denote the Lebesgue measure by Lb. First note that random forcing is ccc. Assume
{pa < w1} € P. We can find an uncountable S C w; and an n < w such that Leb(p,) >
— forall @ € S. If {p, < w;} were an antichain then, by taking any F C S of size n+2

we would have
|F|
Leb( l |pa> = E Leb(pa) > nil > 1,

acl acF

which contradicts that (J,cppa € [0,1].

Random forcing is very special when dealing with its completion. For any X € Pw(P)
there is some px € P such that X =* {px}. Indeed, by Lemma 4.11, there is some
antichain A C P such that A =* X, and A is countable because P is cce. Hence px :=J A
is Borel of positive measure (A is non-empty by Lemma 4.6(g)), so px € P is as desired.

For n,k € w, define A, := D,y s ={q € P:ql-i(i) = k} and set p, . := pa,,, s0
A =* {pnx}. Also, by Lemma 4.14, for any q € P, ¢ IF @(n) = k iff ¢ <* Dni-

On the other hand, C,, := {pnx : k < w} is a maximal antichain in P, which implies
that g, := |J C,, has measure 1 (we left these details to the reader), so ¢ := (), __ ¢n also
has measure 1.

Let p' := pNgq. It is clear that Lb(p’) = Lb(p). Also, for any n < w there is some
y(n) < w such that

n<w

Lb <p' N U pnk> < 27 FALh(p).
k>y(n)
Let 7= p' N, <, Up<ym) Pk 1t is clear that it is Borel and r C p/, also

n<w

Lb(p' ~7r) < Lb< U U v mpn,k)) < %Lb(Pl)

n<w k>y(n)

sor € P. For n < w, since r is incompatible with p,,;, for all & > y(n), r <* ngy(”) Dnks
thus 7 IF 2(n) < y(n)

To finish this section, we present some facts about liftings of complete embeddings.
The proofs are left to the reader. The commutative diagram below illustrates the idea of
these results.
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P / ! x Q

Lemma 4.16. Assume that F': Pw(P) — Pw(Q) is a map. Stipulate F(0) := 0. Then:
(a) F is a complete embedding iff, for any A, B € P(P) and F C P,
(i) A<* B iff F(A) < F(B),
(i) F(UF) =" UF[F],
(iii) F(~A) =" ~F(A).

(b) If F and G : Pw(P) — Pw(Q) are complete embeddings and ¥p € P(F({p}) =*
G({p})), then VA € Pw(P)(F(A) =* G(A)).

(c) F is a dense embedding iff (a)(i) holds for all A,B C P and VY C Q3IX C P(Y =*
F(X)).

(d) There is at most one map FT : Bp — Bgq satisfying F™ omp = wg o F, and it exists
iff VA, B C P(A =* B = F(A) =" F(B)), in which case F*([A]) = [F(A)] for any
ACP.

(e) If T can be defined then the following statements are equivalent.

(i) F is a complete embedding.
(ii) F* is a complete embedding of posets.

(iii) F* is a complete embedding of Boolean algebras, that is, for any x,y € Bp and
F Q IB]P.‘

o <y iff F'(z) < F'(y),
o FHVF) =V FIF,
o Ff(~x)=~F*(x).
(f) If F* can be defined then the following statements are equivalent.

(i) F is a dense embedding.
(it) F* is a dense embedding.

(i11) F* is an isomorphism.

Theorem 4.17. Let f : P — Q be a complete embedding. Define F' : P(P) — P(Q) by
F(A) := f[A]. Then

(a) FIPw(P) is a complete embedding into Pw(Q) and F owp =1qo f.
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(b) If f is a dense embedding the so is F.
(c) The function F* : Bp — Bq of Theorem 4.16 can be defined.

(d) F* is the unique complete embedding H : Bp — Bgq satisfying H o hp = hgo f.

5 A comment on two step iterations

Fix a poset P and a P-name of a poset Q. The two step iteration of P with Qis a
poset that generates the same generic extension obtained by going to a Q[G]-generic
extension from a P-generic extension V[G]. The natural idea is to define this poset as
{(p,q) e P x VP : pl- ¢ € Q} ordered by
(. d) < (@) iff p’ <pandp' k¢ <q.

The problem is that this collection is not a set in V. One solution, as in Kunen’s
book [Kun80], is to define P x Q := {(p,q) € P x dom(Q) : p IF ¢ € Q} with the
same order, which is dense in the class above.

Another approach in ZFC uses combinatorics of antichains. By Lemma 3.5 and The-

orem 3.6, since P is max{No, |P|}*-cc, we obtain a set of P-names (Q)p such that
(1) Vi € (Qr(F ¢ € Q)
(IT) whenever p € P, 0 € V¥ and p IF 0 € Q, there is some ¢ € (Q)]p such that
plFo=qg.
So we can define P+'Q := P x (Q>1p with the same order as P+ Q. This is a valid approach
because:

Lemma 5.1. There is a dense embedding f : P+ Q — P ' Q.

Proof. For (p,§) € P« @Q, by (II) we can find some ¢ € (Q)p such that p IF ¢ = ¢’. Set
f(p,q) == (p,q). Tt is easy to see that [ is as required. ]

The notion IP % Q can be problematic when dealing with countable support iterations,
for which IP %’ Q is more suitable. On the other hand, the disadvantage of P «’ @ is that
it could be too big: by Lemma 3.6,

Lemma 5.2. If P is k-cc (with r infinite), p is a cardinal and IFp Q| < |, then
[P+ Qf < [P|<% - .
It is possible to refine P %' () even more. Define the equivalence relation on <Q>]p by

g~ q:’ iff I- ¢ = ¢’. So we can define |Q] as a selector of all the equivalence classes, and
P % Q can be restricted to P x |Q], which is dense in P «" Q.
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