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Faculty of Science, Shizuoka University. 

Abstract 

This is a lecture notes style paper about nice names, constructed via antichains, 
and their combinatorics. Also, we propose a simpler vision of completion of posets. 
These topics ease the transition from the forcing theorem to more advanced topics 
like forcing iterations. 

1 Introduction 

This text presents the author's vision about nice names (particularly of functions between 
ground model objects) and their use to calculate cardinalities in forcing generic extensions. 

The notion of (maximal) antichain is essential to construct these objects and to understand 
their combinatorics. Also, an alternative simpler definition of completion of a poset is 

proposed, which turn out to be useful when relating the forcing relation of a poset with 
its completion. 
The topics proposed here ease the transition, in the study of forcing theory, from 

the forcing theorem to more advanced topics. Thereafter, this text only requires the 
knowledge of the Forcing Theorem 1.1 (and its proof) as in e.g. [Kun80, Kunll]. For the 
section about completions, we also assume some knowledge about (complete) Boolean 
algebras, e.g. [BM77]. At the end some facts about two steps iteration are included, 
which the author learned from professor Brendle's 2010 seminar "How to force it". 

Notation 

Throughout all the text, we work inside a countable transitive model V of ZF (or ZFC, 
depending on what is indicated in each result or section), unless otherwise indicated. A 

poset (also called forcing notion, or just a forcing) is a pair〈JP,:S〉where:S is a reflexive 
and transitive relation on JP. In contrast with most set theory texts, we do not assume 
that JP has a maximum condition ] . 

Let JP be a poset. For p, q E JP, q :S p is often read q is stronger than p. The relation 
p上qdenotes that p and q are incompatible, that is, ---, ヨrE JP(rさp/¥ r :S q), and p 11 q 
denotes that they are compatible. 
Recall that Tis a JP-name if Tis a relation and ¥/(r,,p) E T(r, is a JP-name and p E JP). 
Denote by VIP the class of JP-names in V. 
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A filter G on JP (usually living outside V) is JP-generic over V if it intersects every 
dense set D E V in JP. For T E VIP define 

T[G] := {a-[G]: :3p E G((び，p)E JP)} 

and V[G] := {T[G]: TE VJP}. We usually refer to Vas the ground model, and to V[G] as 
a JP-generic extension of V. When we say that if) is a formula in the forcing language of JP 
we mean that if) has the form ifJ(To, ... , Tn-i) for some JP-names To, ... , Tn-l (in the ground 
model) and some formula ifJ(x0, ... , x正 1).We usually abbreviate the list To, ... , Tn-l by 
テ．

Concerning the forcing relation, IトJPi/J means that p I卜JPi/J for all p E JP. Recall: 

Theorem 1.1 (The Forcing Theorem). Let ifJ(x0, ... , Xn-i) be a formula. Assume that 

V is a countable transitive model of ZF, JP E V and To, ... , Tn-l E VJP. Then: 

(a) Definability Lemma. Whenever p E JP, p IトifJ(To,... , Tn-1) iff, for any JP-generic 
G over V, if p E G thenゃV[Gl(To[G],... ,Tn_i[G]). 

(b} Truth Lemma. For any JP-generic G over V, 

(/JV[Gl(To[G], ... , Tn-1[G]) i.ffヨpE G(p I← V ifJ(To, ・ ・ ・, Tn-1)). 

Recall that, whenever G is JP-generic over V, V[G] is a transitive model of ZF extending 
V such that V and V[G] have the same ordinals. Even more, V p== AC (the axiom of 
choice) implies V[G] F AC. 
Results without proof in this paper can be consulted in the references, or are left to 
the reader. Details in some proofs are omitted as well. 

2 Nice names 

In this section we work in ZF, unless otherwise stated, and fix an arbitrary forcing notion 
JP. Since we do not assume that JP have a maximum condition ] , for x E V we define the 

canonical name of x by 

ぁ：＝｛（ゑ，p): z Ex and p E JP}. 

We also define the canonical name of the JP-generic set as GIP := {(p,p) : p E JP}. It is 
not hard to check that詠[G]= x and GJP[G] = G for any JP-generic Gover V. Those are 
the first exampl~s of nice names. 
Like x and GIP, it is very practical to work with well defined names for certain type 
of objects. As an example, we look at a simple definition for names of unordered pairs, 
ordered pairs, and union of sets. 

Definition 2.1. Let T, O" be JP-names. Define the JP-names 

up(T, O") := {(T,p): p E JP} U {(O",p): p E JP}, 
op(T, O") := up(up(T, T), up(T, び）），
un(T) := {(1r,r): r E JP 11ヨ(O",p)ETヨqE JP((1r, q) E O" and r:::; 化q)}.

Note that these notions are absolute for transitive models of ZF. 

Lemma 2.2. If T O" E VIP then 
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(a) I卜up(T,u) = {T, u}. (b) I卜op(T,u) = (T, u). (c) I卜un(T)= LJT. 

The following type of sets are essential for forcing combinatorics. 

Defimt1on 2.3. Let C <;::; IP and p0 E IP. 

(1) C is open (in IP) if Vp E C¥:/qさp(qEC). 

(2) C is an antichain (in IP) if Vp, q E C(p =J q⇒ p上q).

(3) C is predense (in IP) if Vp E IPヨqE C(p II q). 

(4) C is predense below p0 if Vp S PoヨqE C(p II q). 

(5) C is a maximal antichain if C is a predense antichain. 

(6) C is a maximal antichain below p。ifit is an antichain predense below p0・
Note that these notions are absolute for transitive models of ZF (even equivalent to△。―
formulas). 

Below we state very easy facts about these concepts. 

Lemma 2.4. Let p0 E IP and let cp be a formula in the forcing language (of IP). 

(a) The set D"':= {p E IP: p Iトcp}is open. 

(b) Any dense set (below p0) is predense (below p0). 

(c) Any maximal antichain (below p0) is predense (below p0). 

(d) A subset of IP is open dense (below p0) iff it is open predense (below p0). 

(e) Po廿cpiff D,p is predense below p0. Likewise, Iトcpiff D,p is predense. 

(f) A <;::; IP is a maximal antichain iff A is an antichain and, for any antichain A'in IP, 
if AこA'thenA=  A' 

The existence of maximal antichains can be proved by Zorn's Lemma. 

Lemma 2.5 (ZFC). Let D <;::; IP be dense. If C <;::; D is an antichain then there exists a 
maximal antichain A <;::; D in IP such that C <;::; A. 

Antichains are very useful to define names thanks to the following property. 

Lemma 2.6. Assume that GこIPis a filter and AこIPis an antichain. Then IGnAI S 1. 

Proof. If p, q E G n A then p II q, but since A is an皿 tichain,p = q. 仁l

The following lemma describes useful characterizations of generic sets. 

Lemma 2.7. Let M be a transitive model of ZF with JP EM, and let GこJPbe a filter 
(usually outside M). Then the following statements are equivalent. 

(i) G is JP-generic over M. 
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(ii) For any open dense D E M (in JP), G n Dヂ0.

(iii) For any predense D E M (in JP), G n Dヂ0.

Even more, (iii)⇒ (iv) where 

(iv) For any maximal antichain A EM  (in JP), G n Aヂ0,

and (iv)⇒ (i) is valid when Mp== AC. 

In the case of (iv), G n A=/-0 actually means that IG n Al = 1 by Lemma 2.6. This is 
useful to define nice names, according to the following tool. 

Lemma 2.8. In V, let A be an antichain and h: A→ VIP. Define an(h) := un(T) where 
T := {(h(p),p): p EA}. Then: 

(a) ForanypEA,pl卜an(h)= h(p). 

(b) If A is a maximal antichain (below) Po , r_p(z, xo, ... , Xn-1) is a formula, C5o, ... , C5n-1 E 
VIP and ¥:/p E A(p Iトr_p(h(p),a-)), then Iトr_p(an(h),u)(respectively p。廿 r_p(an(h),a-)). 

Proof. By Lemma 2.2(c), to prove (a) it is enough to show that p I卜T= {h(p)} for any 
p E A. We show this by using the Forcing Theorem. Fix p E A and let G be an arbitrary 
JP-generic over V with p E G. Note that T[G] = {h(r)[G] : r EA n G}. By Lemma 2.6, 
IGnAIさ1,but since p E G n A, G n A=  {p}, so T[G] = {h(p)[G]}. Therefore, by the 

Definability Lemma, p If-T = {h(p)}, sop If-an(h) = LJT = h(p). 
To see (b), we have by (a) that p Iトr_p(an(h),行） for any p E A, so {p E JP : p I卜
r_p(an(h), a-)} is predense. Hence Iトr_p(an(h),a-) by Lemma 2.4(e). The "below p0" fact is 
similar. ロ

Now we are ready to introduce the following very useful notions of nice names. 

Definition 2.9. As in Lemma 2.8, whenever his a function such that domh is an antichain 
in JP and h(p) is a JP-name for all p E domh, we denote 

an(h) := un({(h(p),p): p E domh}). 

Fix sets B and C. 

(1) Say that允isa nice name of a member of C if出=an(h) for some function h into 
domC = {り： y E C} such that domh C JP is a m訟 imalantichain. 

Denote by nice(C) = niceJP(C) the collection of all nice names of members of C. 

(2) When His a function from B into the class of JP-names, denote 

fn(H) := {(op(x,H(x)),p): XE B, p E JP}. 

(3) Say that j is a nice name of a function from B into C if j = fn(H) for some function 
H:B→ nice(C). Denote ncf(B, C) = ncfJP(B, C) the collection of all nice names of 
functions from B into C. 
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Lemma 2.10. If B, HE  V and H is as in Definition 2.9(2) then I卜''fn(H)is a function, 
dom(fn(H)) = B" and, for any x EB, Iトfn(H)(x)= H(x). 

Proof. Let G be JP-generic over V. Set f := fn(H)[G]. Then f = {(x,H(x)[G]): x EB}, 
which is clearly a function with domain B such that f(x) = H(x)[G] for any x EB. ロ

As expected, these nice names corresponds to objects they are act叫 lydescribing 

(members of C and functions from B into C). 

Corollary 2.11. Let B, CE V. 

(a) If x EV  is a nice name of a member of C then I卜±EC.

(b) If j EV is a nice name of a function from B into C, then I卜j:iJ→ 6. 

Proof. Let h : domh→ domC be as in Definition 2.9(1) such that :i; = an(h). For any 
p E domh it is clear that p I卜h(p)EC. Hence, by Lemma 2.8(b), I卜出 EC. This shows 
(a). 
To see (b), assume that j = fn(H) where H: B→ nice(C). By Lemma 2.10, I戸jis 
a function with domain B" such that'vx E B(I卜j(x)= H(x)). If x E B then, by (a), 
1卜H(x)EC, thus I卜寸： B→ び． ロ

Lemma 2.12. Let <p(y, x0, ... , Xn-i) be a formula. In V, let To, ... , Tn-l E VIP and let K 
be a class of JP-names. If 

'vp E JP((p Iトヨz<p(z,テ）） ⇒ヨq:::;pヨpE K(q Iト<p(p,デ）））

then the following set is open dense: 

D := {r E JP: ヨpE K(r Iト<p(p,テ）） v r I卜丑zゃ(z,テ）｝

Proof. It is clear that D is open. Let p E JP. If p炉--,ヨz<p(z,テ） then p'If-ヨz<p(z,テ） for 
some p':::; p. So, by the hypothesis, there is some qさp'inD. ロ

Theorem 2.13 (ZFC). In V, with the same hypothesis as in Lemma 2.12, if K -/c 0 then 
there is some maximal antichain A C:: JP and some h : A→ K such that 

I← r_p(an(h), テ）⇔ ヨzr_p(z,テ）．

Proof. Choose someび0E K, and let D be as in Lemma 2.12. By Lemma 2.5, there is 
some maximal antichain A C D in JP. Define h : A→ K as follows: for p E A, when 
p If-→ zr_p(z, テ） set h(p) :=び0;otherwise, ヨpE K(p If-r_p(p, テ）） because p E D, so choose 
some h(p) E K such that p I卜r_p(h(p),テ））. By Lemma 2.8, h is as required. ロ

By application of the previous theorem to K = VIP, we obtain the well-known 

Theorem 2.14 (Maximal Principle (ZFC)). Let r_p(y, x0, ... , Xn-i) be a formula. In V, 
if To, ... , Tn-l E VIP then there is some CJ E VIP such that Iトr_p(u,デ）⇔ ヨ匹(z,テ）．

Remark 2.15. In ZF, the maximal principle is equivalent to AC. Let A be a set such 
that Va, b E A(aヂ0/¥ (aヂb⇒an b = 0)). Define JP = LJA ordered by qさpiff 
ヨaE A(p, q E a). Use the maximal principle to find a JP-name p such that If-p E GIP. 
Define c := {q E JP: ヨrE JP(r I卜p= q)}, so Va E A(la n cl = 1). 
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The following result is the reason we call these objects "nice names". 

Theorem 2.16 (ZFC). In V, let B and C be sets, p E JP and er E VIP. Then: 

(a) If p IトerE C then there is some nice name允ofa member of C such that p IトCl=わ．

(b) If p Iトer:f3→ C then there is some nice name j of a function from B into C such 
that p IトCl=j. 

Both results are also valid when omitting p (e.g. if IトerEC then…such that IトCl=x). 

Proof. Work in V. For (a), note that 

Vp'E JP ((p'If-ヨz(zECAz=cr))⇒ヨq:::;p'ヨpE domC(q I卜"pE C I¥ p = er")) . 

Hence, by application of Theorem 2.13 to K = dome (dome -=J 0 because p IトerE e), 
we obtain a function h : A→ dome with A maximal antichain in JP such that 

1卜an(h)= er⇔ er Ee. 

Hence p I卜x= er where x := an(h).E nic~(C). 
For (b), assume that p If-er : B→ C. Fix b E Band set r.p(y, b) :'、er:f3→ e and 
y = cr(b)". Note that 

Vp'E JP((p'Iトヨzr.p(尋）） ⇒ヨq臼p'ヨpE dome(q I卜r.p(p,b)) 

so, by application of Theorem 2.13 to K = dome, we obtain a function hb: Ab→ dome 
with Ab maximal antichain in JP such that 

If-Cl : B→ C⇒ an(hり=cr(b). 

Set H(b) := an(h砂 Itis clear that H : B→ nice(C), and that j := fn(H) is as required 
by Lemma 2.10. ロ

3 Combinatorics of names 

In this section we work in ZFC, unless otherwise stated. Fix an arbitrary forcing notion 
JP. Recall: 

Definition 3.1. Let "'be a cardinal. Say that JP has the "'—chain condition, abbreviated 
炉 cc,if every antichain in JP has sizeく紅

Say that JP has the countable chain condition, abbreviated ccc, if it has the Ni-cc, that 
is, if every antichain in JP is countable. 

It is well-known that K,-cc posets preserve cofinalities (and cardinalities) above応
Although these proofs are in [Kun80, Kunll], we present shorter proofs using the tools 
of the previous section. 

Lemma 3.2. In V, let "'be a cardinal and assume that JP has the K,-Cc. Let p E JP, 
允EVIP, and let B and C be sets. 
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(a) If p Iト:i;EC then there is some KE  [CJ<>< such that p Iト:i;E f<. 

(b) If p I卜x:f3→ 6 then there is some F : B→ [CJ<>< such that, for any b E B, 
pl卜x(b)E F(b)ツ・

These results are also valid when omitting p. 

Proof. For (a), by Theorem 2.16(a) we may assume that :i; is a nice name of a member 
of C, that is, :i; = an(h) where h : A→ domC and A is a maximal anti chain in JP. Let 
K := ranh. Since JP has the K-cc, IKI :S IAI < K. On the other hand, for any q E A, 
qi卜x= h(q) Ek, hence If-x Ek  by Lemma 2.8(b). 
For (b), by Theorem 2.16(b) we may assume that :i; is a nice name of a function from 
B into C, that is, :i; = fn(H) for some H: B→ nice(C). Fix b EB. By (a), there is some 
F(b) E [C]く"suchthat I卜x(b)= H(b) E F(b)", which yields the desired function F. ロ

Theorem 3.3. Let K be an infinite cardinal and assume that JP has the K-cc. Then JP 
preserves regular cardinals;::: K. In particular, if JP has the ccc then it preserves all regular 
cardinals. 

Proof. Let入;:::K be a regular cardi叫 Itis sufficient to show that 

1卜如＜厨： a→ 犀＜入(ranfこ(3).

Let p E JP and assume that a, f E VIP such that p If-噴＜入 andf : a→ X'. Then, 
there are q :S p and aく入 suchthat q I卜a= a. It is enough to show that there is some 
(3 <入 suchthat q If-ranj~ ~- By Lemma 3.2(b), there is some function F: a→ ［入]<><
such that, for any t; < a, q I卜i(l)E F(t;)". Since入isregular and IF (!;)I < K :S入， we
have that sup(F(t;)) <入.Define f* : a→ 入byJ*(t;) := sup(F(t;)). Again, because入
is regular, there is Jome (3 <入 suchthat J*(t;) < (3 for~ny { < a, so F(t;)こ(3.This 
implies If-F(t;)"~(3, so q I卜殿） < f Therefore, q If-ranf~(3. ロ

To calculate cardinal exponentiation in generic extensions, that is, the size of IバI,by 
Theorem 2.16 we can estimate it by the number of nice names of functions K→ 入we
have. The following results gives a bound of this number. 

Theorem 3.4. Let B and C be sets, and let K be an infinite cardinal. If JP has the K-cc 
then 

(a) lniceJP(C)IさIJPI<"・101<". (b) lncf!P(B, C)I :S (IJPI<"・ICl<")IBI_ 

Proof. For (a), let A:= {AこJP:Aisam訟 imalantichain}, so 

nice(C) = {an(h): h: A→ domC /¥ A EA}. 

Hence 

lnice(C)I ::; l{h: A→ dome: A E A}I = u IACI 
AEA 

Since JP has the r;, —cc, As;;; [JP]文 soIAI ::; IJPI<". On the other hand, for any A E A, 
IACI = ICIIAI ::; ICI<". Therefore 

lnice(C)I::; LJ IACI ::; IA・ICI<"::; IJPI<"・ICI臼
AEA 
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To see (b), note that ncf(B, C) = {fn(H): HE  Bnice(C)}, so 

lncf(B,C)I::::; lnice(C)IIBI, 

and the result follows by (a). 仁l

To finish this section, we show the use of the maximal principle (Theorem 2.14) to 
obtain nice names for members of Q[G] for an arbitrary Q E VIP. 

Lemma 3.5. In V, if Q E VIP then there is a cardinalμsuch that I卜IQI::; IP,I. 

Proof. Set (f)(z, Q) :"z is a cardinal and IQI = z" and K := {k: K, is a cardinal}. Note 
that 

VpElP((pl←ヨZ(f)(z,Q))⇒ヨq'.SpヨpE K(q Iト1P(P,Q))) 

so, by Theorem 2.13, there is some h: A→ K with A maximal antichain in JP such that 

|卜 IQI= an(h). 

For each p EA there is a (unique) cardinalμP such that h(p) =四 Setμ:=suppEA伽
which is as required. ロ

Theorem 3.6. In V let K, be an infinite cardinal, assuryie that JP has the K, —cc, Q E VIP,μ 
is a cardinal and I卜0< IQI :S IP,I. Then there is a set〈Q〉IPof JP-names of sizeさIJPI<"・μ<"
such that 

(a)¥:/りE〈Q〉IP(I卜qE Q), 

(b) whenever p E JP, びEVIP and p I卜び EQ, there is someりE〈Q〉IPsuch that p I卜び=q. 

Proof.. By the maximal principle (Theorem 2.14) there is some JP-name j such that I戸j:
μ → Q is onto". Using the same pr!nciple again, there is a function H : nice(μ)→ VIP 
such that, for any a E nice(μ), I卜J(a)= H(a). Set〈Q〉IP: = ranH. Hence I〈Q〉IPI :S 
lnice(μ)IさIJPI<"・μ く"by Lemma 3.4. 
Item (a) is clear. _For (b), assume that p I卜uE Q. By Theorem 2.13 applied to 

叩，u): "z Eμand J(z) = u" and K = domμ, there is some h : A→ K with A a 
maximal antichain in JP such that 

1卜j(an(h))= CY⇔ CY E Q. 

Clearly, a:= an(h) is in nice(μ) and p I卜び＝加） • Hence q := H(a) is as desired. ロ

4 Completions via subsets and antichains 

In this section we work in ZF, unless otherwise indicated, and we fix two arbitrary posets 
JP and Q. We first review the basic notions of complete and dense embeddings between 
posets. 

Definition 4.1. Let i : JP→ Q. 

(1) The map i is a complete embedding if it fulfils: 
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(i) ¥Ip, p'E JP(p'~IP p⇒ i(p')~Q i(p)), 

(ii) ¥Ip, p'E lP(p上IPp'⇒ i(p)団 i(p'))'
(iii) for any q E Q there is some p E JP such that'<Ip'~IP p(i(p') IIQ q). Such a pis 
called a reduction of q. 

(2) The map i is a dense embedding if it satisfies (i), (ii) above, and 

(iii') ran(i) is dense in Q. 

We associate with i the transformation i* : VIP→ VQ defined by recursion as 

が(T):= {(i*(a-), i(p)): (び，p)ET} 

Note that: 

Lemma 4.2. Let i : JP→ Q. 

(a) If i is a dense embedding, then it is a complete embedding. 

(b) i is a complete embedding iff i satisfies (i), (ii) and, for any predense D <:;;; JP, i[D] is 
predense in Q. 

The importance of these type of embeddings is illustrated in the following result. 

Theorem 4.3. Assume that i : JP→ Q is a complete embedding and H is Q-generic over 
V. Then 

(a) G := i-1[H] is JP-generic over V and V[G] <:;;; V[H]. Even more, if i is a dense 
embedding in V, then V[G] = V[H]. 

(b) If TE VIP andび：= i*(T) then a-[H] = T[G]. 

(c) If p E JP, To, ... , Tn-1 E VIP and cp(xo, ... , Xn-1) is an absolute formula between tran-
sitive models of ZF (or ZFC when V巨AC),then 

pl← cp(To, ... , Tn-1) iff i(p) Iトcp(が(To),... , i*(Tn-1)). 

(d) If i is a dense embedding, then (c) is valid without the absoluteness requirement for 

'P・ 

(e) If i is a dense embedding and G'is JP-generic over V, then 

H':=i〈G〉={r E Q: ヨqE i[G](qさr)}

is Q-generic over V and V[H'] = V[G']. Even more, i〈i-1[H]〉=H and i-1[i〈G'〉]=
G'. 
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When we look at a Boolean algebra lB as a poset, we must exclude its minimum 

element 018. So, when we deal with lB in the context of forcing, we are actually looking 
at lB'--{018}. For example, when we say that "i : JP→ lB is a complete embedding" we 
mean that "i : JP→ lB'--{018} is a complete embedding". 
Recall that a completion of JP is a complete Boolean algebra lB such that there is a 
dense embedding i : JP→ lB. It is known that any poset has a completion, and that it 
is unique modulo isomorphism. The typical completion ro(JP) of a poset JP is defined as 
the set of regular open sets in the topology of JP whose base is { 0 (p) : p E JP}, where 
O(p) := {r E JP: r :s; p}.1 Recall that, given a topological space X, U is regular open in 
X iff U = int(cl(U)). 

Lemma 4.4. Let A t:;;; JP. Then: 

(a) p E int(cl(A)) iff A is dense below p. 

(b) A is regular open iff, for any p E JP, p E A⇔ A is dense below p. 

Proof. It is enough to show (a). Assume p E int(cl(A)), that is, O(p)こcl(A).If q :s; p 
then q E cl(A), so [q] n A =J 0, that is, ヨr'.Sq(r E A). Hence A is dense below p. 
For the converse, assume that A is dense below p. It is enough to show that O(p) t:;;; 
cl(A). Let q'.Sp, so there is some r EA with r :Sq, that is, O(q) n Aヂ0.Since every 
open neighborhood of q contains O(q), we conclude that q E cl(A). ロ

We present an alternative way to define the completion of a poset, which is more 
natural and also more practical when using completions. 

Definition 4.5. Let p, q E JP, Ft:;;; P(JP) and let A, B be subsets of JP. Define: 

(1) A荘 Biff 

'vp E A'vp''.SpヨqE B(p'II q), 

that is, B is predense below any p E A. 

(2) A =p B iff Aさ;B and B :S; A. 

(3) p :S; q iff {p}荘 {q}.

(4) p =p q iff p荘 qand q荘 p.

(5) A ..lJP B iff'vp E A'vq E B(p ..l q). 

(6) ~A:={pElP:{p}丑 A}.

(7) /¥F := {p E JP: ¥/XE F({p}名 X)}.

(8) A AB:= /¥{A, B}. 

(9) Define the poset Pw(JP) := P(JP)'--{0} 
ordered by :Sp 

(10) Say that JP is separative if, for any p, q E 

JP, q :Sp p iff q :SJP p・

The subindex JP is omitted when clear from the context. 

For example, any Boolean algebra is separative, that is, if lB is a Boolean algebra and 

b, b'E 18, then b'さbiff Va E lB, {018}(a::; b'⇒ a I¥ b-=/-018). 
Below we list some properties of the order ::;* and the operations defined above. The 
proof is left as exercise for the reader. 

Lemma 4.6. Let A, B, CE P(JP) and F~P(JP). 

1 In fact, C <:;; JP is open in this topology iff it is open in the sense of Definition 2.3(1). 
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(a) If A~B then A~* B. (g) 0~* A, and A=* 0 iff A=  0. 

{b) A~* B iff¥:/p E A({p}ざ B). (h)A/¥B=*0ijJA..lB. 

(c) If A<* Band B <* C then A<* C. (i) ¥:/A E F(A~* LJF). 

(d) A ..l ~A. (j) If¥:/A E F(Aぐ B)then LJFぐ B.

(e) A <* JP, and A =* JP iff A is predense 
(k) ¥:/A E F(/\F~* A). 

in JP. (l) IJ¥:/A E F(B~* A) then B~* /¥F. 

(f) A U ~ A =* JP. (m) A I¥ LJ:F =* Uxa A八X.

There properties indicate that, under さ•, P(JP) becomes a complete Boolean algebra 
modulo the equivalence relation =*. We show that this is a completion of JP. 

Definition 4.7. Let JBIP := P(JP)/ =* ordered by [A]さ[B]iff Aぐ B,where [A] denotes 
the =* -equivalence class of A. 

Theorem 4.8. The partial order JBIP is a complete Boolean algebra and託： Pw(JP)→ JBIP, 
7rJP(A) := [A], is a dense embedding. 

The previous result actually shows that JBIP is a completion of Pw(JP). Since JP densely 
embeds into Pw(JP), JBIP is a completion of JP. 

Lemma 4.9. Let A, B E Pw(JP) 

(a) A and B are incompatible in Pw(JP) if! A ..l B (as in Definition 4-5(5)). 

{b) Pw(JP) is separative. 

(c) The map lJP : JP→ Pw(JP), ゅ(p):= {p} is a dense embedding. In particular h!P := 
7f]P 0 しIP: JP→ JBJP , {[0]} is a dense embedding. 

Proof. For (a), first assume that A and Bare compatible in Pw(JP), that is, there is some 
C E Pw(JP) such that Cさ*A and C :S:* B. Since Cヂ0,choose some q EC. Then q 11 p 
for some p E A, so choose some r :S: p, q. Now, since C :S:* B and r :S: q, r II p'for some 
p'EB. HenceヨpEAヨp'EB(p II p'). 
To see the converse, assume thatヨpEAヨqE B(p II q), so there is some rさp,q. It is 
easy to see that {r} :S:* A and {r} :S:* B. 
To see (b), assume that every Z :S:* A is compatible with B. It is enough to show that 

A :S* B. Let p E A and p':S: p. It is clear that {p'} :S:* A, so {p'} is compatible with B, 
that is, by (a) p'is compatible with some q E B. 

For (c): it is clear that, for p, q E JP, q :S p implies { q} さ•• {p} and, according to (a), 
p ..l!P q implies {p} ..lPw(IP) { q}. Also, rani* is dense in Pw(JP) because p E A implies 

{p}ぐ A. ロ

Our results also allow to show that ro(JP), with the order~'is a completion of JP. 

Theorem 4.10. Assume that U~JP is regular open. 

(a) If U'こJPis regular open, then Uさ*U'⇔ UこU'.
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(b) For any AこJPthere is a unique regular open U'~JP such that A =* U'. 

In particular, the map 7fJP「ro(JP): 〈ro(JP),~ 〉→ JBJP is an isomorphism. 

In the previous sections we showed how the combinatorics of antichains is very helpful 
in the practice of forcing. In connection to this, it is important to know that JBJP can be 
determined by antichains as follows. 

Theorem 4.11 (ZFC). For any CE JBIP there is an antichain A in JP such that C = [A]. 

Proof. Assume that C = [X] for some X~JP. Note that int(X) := {q E JP: ヨpEX(q::;
p)}. It is clear that X =* int(X). By Zorn's Lemma, find a maximal A with respect to 
the following properties: 

(i) Aこint(X),

(ii) A is an antichain in JP. 

It is not hard to see that A=* int(X). 

As a consequence, we can easily estimate the size of the completion of a poset. 

Corollary 4.12 (ZFC). If氏 isan infinite cardinal and JP is Ii-cc, then IIBJPI S IJPI<凡

Proof. Clear because IIBIPI = l{[A] : A antichain in JP}I S l[JP]<門．

仁l

仁l

In the practice, it is very common to deal with the notion of ll</JII for a formula <p in 
the forcing language of a complete Boolean algebra. More precisely, if lB is a complete 
Boolean algebra and <p is a formula in the forcing language of 18,2 

ll'PII := V{x E lB: x Iト1Bcp }. 

Here 11叫Iis not just a supremum but a maximum, that is, for any x E IB, x I卜18cp iff 
X::; ll'PII-
Discussions about ll'PII are much more clear and practical when working with Pw(JP) 
and IBIP instead. 

Definition 4.13. Let cp(テ） be a formula in the forcing language of JP. Recall from 
Lemma 2.4 the open set D臼：= {p E JP : p IトIPcp(f-)}. Define llcp(テ）II:= [D的）］
(equivalece class in IBIP). 

Lemma 4.14. Let p E JP, A E Pw(JP), and cp(テ） a formula in the forcing language of JP. 

(a)A::;*D叫） iff "Ip E A(p Iトcp(テ））．

{b) p Iトcp(テ） iff {p}ぐ D臼）・

{c) A I卜Pw(IP)cp(l砂o),...'心(Tn-I))iff Aぐ D叩）・

{d) llcp(テ）II = V { X E ]BIP : X I卜lBIPcp(h砂o),... , h砂n-1))}

2The statement 018 II-<p is considered true, always. This is because, in connection with the forcing 
theorem, no lB'--{ 018 }-generic filter contains 018・
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Proof. For (a), Aぐ Drp(テ)iff D可） is predense below p for all p E A, but this is equivalent 
to "p I卜cp(テ） for all p EA" by Lemma 2.4(e). Item (b) is immediate from (a). 
For (c), since {ゃ(p): p EA} is dense below A in Pw(JP), 

A廿―Pw(IP)cp(i;(To), ・ ・ ・, じ~(Tn-1)) ⇔ 'v'p E A(iJP(P) I日Pw(IP)cp(ら(To),... , し;(Tn-1))).

Hence, by Lemma 4.3, this is equivalent to'v'p E A(p Iトcp(テ））， sothe result follows by (a). 
Item (d) is a direct consequence of (c) and Lemma 4.3. ロ

As an example, we show with our notation that random forcing is ww-bounding. 

Example 4.15 (ZFC). Let JP be random forcing, that is, JP is the set of Borel subsets 
of [O, 1] with positive Lebesgue measure, ordered by~- We show that JP is ww-bounding, 
that is, for any p E JP and any JP-name允， ifp I卜允： W→ w, then there is some r :::; p and 
y E ww (in the ground model) such that r Iト¥:/n< w(わ(n):::;y(n)). 
Denote the Lebesgue measure by Lb. First note that random forcing is ccc. Assume 

｛四<w1}~JP. We can find an uncountable Sこ凸 andan n < w such that Leb(pa)~ 
1 for all a E S. If {p°'< w1} were an antichain then, by taking any FこSof size n+ 2 
n+l 

we would have 

Leb(LJ Pa)= LLeb(pa)~nl:ll > 1, 
aEF aEF 

which contradicts that UaEF Paこ[O,1]. 
Random forcing is very special when dealing with its completion. For any X E Pw(JP) 

there is some Px E JP such that X =* {Px}. Indeed, by Lemma 4.11, there is some 
antichain AこJPsuch that A=* X, and A is countable because JP is ccc. Hence Px := LJ A 
is Borel of positive measure (A is non-empty by Lemma 4.6(g)), so Px E JP is as desired. 

For n, k E w, define An,k := D網）=k = { q E JP : q I卜出(n)= k} and set Pn,k := PAn,k'so 

An,k =* {Pnょ}.Also, by Lemma 4.14, for any q E JP, q I卜x(n)=kiffqざ Pn,k・
On the other hand, Cn := {pn,k : k < w} is a maximal antichain in JP, which implies 

that qn := LJ Cn has measure 1 (we left these details to the reader), so q := nn<w qn also 
has measure 1. 
Let p':= p n q. It is clear that Lb(p') = Lb(p). Also, for any n < w there is some 

y(n) < w such that 

Lb(p'n LJ 四，K く 2―(n+2J1b(p')..,,,,.,) 
Let r := p'n n n<w LJks;y(n) Pn,k・It is clear that it is Borel and rこp',also 

Lb(p'"r)さLb(U U (p'n Pn,k)) さ ~Lb(p')
n<w k>y(n) 

so r E JP. For n < w, since r is incompatible with Pn,k for all k > y(n), rぐ U国 (n)Pn,k,
thus r I 卜 x(n)~y(nt

To finish this section, we present some facts about liftings of complete embeddings. 
The proofs are left to the reader. The commutative diagram below illustrates the idea of 
these results. 
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Lemma 4.16. Assume that F: Pw(JP)→ Pw(Q) is a map. Stipulate F(0) := 0. Then: 

(a) F is a complete embedding iff, for any A, BE P(JP) and FこE

(i} A ::=;• B iff F(A)ぐ F(B),

(ii} F(LJ F) =* LJ F防],
(iii} F(~A) =* ~F(A). 

(b) If F and G : Pw(JP)→ Pw(Q) are complete embeddings and'vp E JP(F({p}) =* 
G({p})), then VA E Pw(JP)(F(A) =* G(A)). 

(c) F is a dense embedding iff (a}(i} holds for all A, BこJPand'vY こ QヨX~JP(Y=*
F(X)). 

(d) There is at most one map p+ : IBIP→ 恥 satisfyingp+。咋＝匹 oF, and it exists 
ifj¥/A, BこJP(A=* B⇒ F(A) =* F(B)), in which case F+([A]) = [F(A)] for any 
AこJP.

(e) If p+ can be defined then the following statements are equivalent. 

(i) F is a complete embedding. 

(ii) p+ is a complete embedding of posets. 

(iii) p+ is a complete embedding of Boolean algebras, that is, for any x, y E IBIP and 
F<;;; ]BIP; 

• Xさyiff F+(x) ::::; F+(y), 

• p+ (VF) = V p+防],
• F+(~x) = ~F+(x). 

(f) If p+ can be defined then the following statements are equivalent. 

(i) F is a dense embedding. 

(ii) p+ is a dense embedding. 

(iii) p+ is an isomorphism. 

Theorem 4.17. Let f : JP→ Q be a complete embedding. Define F : P(JP)→ P(Q) by 
F(A) := f [A]. Then 

(a) FWw(lP) is a complete embedding into Pw(Q) and F o lJP =心゜f.
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(b) If f is a dense embedding the so is F. 

(c) The function p+ : IBJP→ IBIQ of Theorem 4.16 can be defined. 

(d) p+ is the unique complete embedding H: IBJP→ IBIQ satisfying H o hlP = hlQ o f. 

5 A comment on two step iterations 

Fix a poset JP and a JP-name of a poset Q. The two step iteration of JP with Q is a 

poset that generates the same generic extension obtained by going to a Q[G]-generic 
extension from a JP-generic_ extension V[G]. The natural idea is to define this poset as 

伽，り） E JP x vlP: P 1卜り EQ} ordered by 

(p''q')~(p, q) iff p'さpand p'I卜りI~ り．

The problem is that this collect_ion is not a set in V. ~ne solution, as. in Kunen's 
book [Kun80], is to define JP * Q := {(p, q) E JP x dom(Q) : p I卜り EQ} with the 
same order, which is dense in the class above. 
Another approach in ZFC uses combinatorics of antichains. By Lemma 3.5 and The-

orem 3.6, since JP is max{N。,IJPl}+-cc, we obtain a set of JP-names〈Q〉JPsuch that 

(I) 1::/りE〈如(1卜qE Q), 

(II) whenever p E JP, CJ E VJP and p IトCJ E Q, there is someりE〈Q〉IPsuch that 
plト(J= q. 

So we can define JP*'Q := JP x〈Q〉JPwith the same order as JP* Q. This is a valid approach 
because: 

Lemma 5.1. There is a dense embedding f: JP* Q→ JP*'Q. 
Proof. For (p, り） E JP * Q, by (II) we can find some q'E〈Q〉JPsuch that p I卜q= q'. Set 
f(p, り）：= (p, り） • It is easy to see that f is as required. ロ

The notion JP * Q can be problematic when dealing with countable support iterations, 
for which JP *'Q is more suitable. On the other hand, the disadvantage of JP *'Q is that 
it could be too big: by Lemma 3.6, 

Lemma 5.2. If JP is 1,,-cc (with 1,, infinite), μis a cardinal and IトJP IQI~lµI, then 
IJP *'QI~IJPI<"'· μ く八

It is possible to refine JP *'Q even more. Define the equivalence relation on〈Q〉IPby 
q ~り iffI卜q=り'.So we can define l Q」asa selector of all the equivalence classes, and 
JP *'Q can be restricted to JP x l Q」,which is dense in JP *'Q. 
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