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CONVERGENCE OF MEASURES ON  BOOLEAN ALGEBRAS AND 

CARDINAL CHARACTERISTICS OF THE CONTINUUM 

DAMIAN SOBOTA 

ABSTRACT. This is a concise survey of the author's results concerning relations between cardi-
nal ch紅 acteristicsof the continuum and convergence of sequences of finitely additive me邸 ureson 
Boolean algebr邸．

1. INTRODUCTION 

Let us start with establishing basic notions from measure theory. Recall that every Boolean 

algebra A is isomorphic to the Boolean algebra of clopen subsets of its Stone space St(A) and a totally 
disconnected compact Hausdorff space is extremely disconnected if and only if its algebra of clopen 
subsets is complete. Every (finitely additive finite signed) measureμon a Boolean algebra A may be 
uniquely extended to a (regular Borel 17-additive finite signed) measureμon the Stone space St(A). 

A sequence〈μn:n E W〉ofmeasures on a Boolean algebra A is bounded if sup AEA supnEw加(A)I< 
oo, and it is pointwise null ifμn(A)→ 0 for every A E A. We also say that a sequence〈μn:n E w〉
of measures on a Boolean algebra A is weakly* null if it is bounded and pointwise null, and that 
〈μn: n E w〉isweakly null if'fin(B)→ 0 for every Borel subset B of the space St(A). Naturally, 
every weakly null sequence is weakly* null and every weakly* null sequence is pointwise null, but 

the converse may not hold in either case---e.g. if the Stone space of a Boolean algebra contains a 
non-trivial convergent sequence, then there is a sequence of measures which is weakly* null but not 
weakly null as well as there is a sequence which is pointwise null but not weakly* null. 

Nikodym [34] however proved that if a Boolean algebra A is び—complete, then every pointwise null 
sequence of me邸 ureson A is weakly* null (cf. also [12]). The result turned out to be fundamental 
in modern vector me邸 uretheory, see e.g. [16] and [15]. Besides び—complete Boolean algebras many 
other classes of Boolean algebras were proved to have the same property-we will present several 
examples in Section 2. Let us thus introduce the following name. 

Definition 1.1. A Boolean algebra A has the Nikodym pr-ope仕yif every pointwise null sequence of 
measures on A is weakly* null. 

Similarly, Grothendieck [24] proved that if a Boolean algebra A is び—complete, then every weakly* 
null sequence of finitely additive measures on A is automatically weakly null. The result have found 
many applications and generalizations in the context of Banach spaces and vector measure the~ry, 
see e.g. [14] and [15]. Later, many other classes of Boolean algebras were also recognized as havmg 

the same property, c.f. Section 2. Analogously to the case of the Nikodym property, we introduce 
the following name. 

Definition 1.2. A Boolean algebra A has the Gmthendieck pmper-ty if every weakly* null sequence 
of me邸 ureson A is weakly null. 

It is not an easy task to find any example of a Boolean algebra having only one of the properties. 
Schachermayer [36] proved that the Jordan algebra .J, i.e. the Boolean algebra of Jordan measurable 
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subsets of the unit interval [O, 1], has the Nikodym property but lacks the Grothendieck property. 
For similar results, see e.g. [23] and [2]. On the other hand, assuming the Continuum Hypothesis, 
Talagrand [46] constructed a Boolean algebra with the Grothendieck property but without the 
Nikodym property. The existence of such an algebra in ZFC only is an open question. 

In this concise survey we present several selected results concerning another problem which ap-
peared also very much set-theoretic in nature. Namely, we will focus on the issue whether there 

exists an infinite Boolean algebra with any of the two properties and of cardinality strictly less than 
the continuum c. It appears that the answer depends strongly on a current set-theoretic setting, in 
particular, on values of several classical cardinal characteristics of the continuum. To describe the 
situation better we will introduce two new cardinal characteristics nit and gt, show their relations 
with the standard ones (e.g. those appearing in Cichon's diagram or van Douwen's diagram) and 
study their values in various forcing extensions. We finish the paper with the list of open problems. 

1.1. Acknowledgment. The author would like to thank Lyubomyr Zdomskyy for the collabo-

ration during which some of the results presented in this survey were obtained. 

1.2. Preliminaries. Our notation and terminology is standard and similar to those of the classical 
books of Bartoszynski and Judah [4], Halmos [26], Givant and Halmos [22] and Diestel [15]. Regard-

ing Cichori's and van Douwen's diagrams, we follow Blass'survey [7] with one exception: we denote 
the O'-ideals of meager and Lebesgue null subsets of the Cantor space 2w by M and N, respectively. 
For information on the values of the classical cardinal characteristics of the continuum in various 
models of set theory, we refer the reader again to [7, Section 11.9]. 

Towards the end of the paper we also make the following reasonable assumption: 

All the considered Boolean algebras and compact spaces are assumed to be infinite. 

2. (NON)-0'-COMPLETE BOOLEAN ALGEBRAS 

Let A be a Boolean algebra and I a set of indices. A sequence〈a;EA: i EI〉isan antichain in 
A if a; I¥ aj = 0 for every i i= j E I. Recall that a Boolean algebra A is O'-complete if every antichain 

〈an: n E w〉inA has supremum V an in A. As stated in Introduction, every O'-complete nEw 

Boolean algebra has both the Nikodym property as well as the Grothendieck property. These two 
results have been generalized by many authors who introduced various properties of Boolean algebras 
weaker than the O'-completeness but still implying both of the properties. Those new properties may 

be divided into two main groups, completeness properties and separation properties (also known 
as interpolation properties). To the first group belong those properties which give supremas of 
some subantichains of given antichains (much like in the case of the O'-completeness), and to the 
second one— those which give upper bounds (so not necessarily supremas) of subantichains of given 
antichains and additionally the upper bounds are disjoint from the rest of the antichains. Usually, 
every completeness property has a corresponding weaker interpolation property. 

The main completeness properties are the property {E) (Schachermayer [36]), the Up-Down Semi-
Completeness (in short UDSC; Dashiell [13]), the Subsequential Completeness Property (SCP; Hay-
don [27]), and the Weak Subsequential Completeness Property (WSCP; Aizpuru [l]). To the group of 

separation/interpolation properties belong primarily the Interpolation Property (or the property (I); 
Seever [37]), the property {f) (Molt6 [33]), the Subsequential Interpolation Property (SIP; Freniche 
[18]), the Weak Subsequential Interpolation Property (WSIP; Freniche [19]), and the Subsequential 
Separation Property (SSP; Haydon [28]). It is known that all the listed properties but the WSCP, 
WSIP and SSP imply both the Nikodym and Grothendieck properties regarding the latter three 
they yield certainly the Grothendieck property and it is unknown if they give also the Nikodym 
property. To give the reader at least a flavour of those all properties let us provide the definitions 



52

CONVERGENCE OF MEASURES AND CARDINAL CHARACTERISTICS 

of the SCP and SSP, both due to Haydon for the definitions and other information concerning the 
remaining ones we refer the reader to the proper sources. 

Definition 2.1 (Haydon [27]). A Boolean algebra A has the Subsequential Completeness Prnpe廿y
(SCP) if and only if for every infinite countable antichain〈an:nEw〉inA there is an infinite set 

M C:: w such that the supremum V nEM仰 isin A. 

Haydon constructed a special Boolean algebra with the SCP in order to obtain the first known 
example of a non-reflexive Grothendieck Banach space without any embedded copy of the space C00. 

Definition 2.2 (Haydon [28]). A Boolean algebra A has the Subsequential Separation Pmpe巾y
(SSP) if and only if for every infinite countable antichain〈an:nEw〉inA there are an infinite set 

M C:: w and an element a E A such that a2n :','. a and a2n+1 I¥ a = 0 for every n E M. 

It is immediate that び—completeness ⇒ SCP⇒ SSP. Koszmider and Shelah [31] introduced yet 
another even weaker separation property of Boolean algebras. Their notion turned out to be crucial 
for our further research. 

Definition 2.3 (Koszmider and Shelah [31]). A Boolean algebra A has the Weak Subsequential 
Separation Property (WSSP) if and only if for every infinite countable antichain〈an:nEw〉inA 
there is an element a E A such that both of the sets 

{ n E w : an'.'c'. a} and { n E w : an I¥ a = 0} 

are infinite. 

The WSSP implies the Grothendieck property for non-negative measures, i.e. if〈μn:n E W〉isa 
weakly* convergent sequence of non-negative finitely additive measures on a Boolean algebra with 

the WSSP, then〈μn: n E W〉isweakly convergent ([31, Proposition 2.4]). The full Grothendieck 
property may not hold there is a Boolean algebra with the WSSP but without the Grothendieck 
property (and without the Nikodym property; see [31, Proposition 2.5]). 

Recall that a subset I of a Boolean algebra A is independent if for every disjoint finite non-empty 
sets F, G C:: エwehave: 

(/¥ a) /¥ (/¥ -a) =J 0 
aEF aEG 

Koszmider and Shelah proved the following fundamental theorem. 

Theorem 2.4 (Koszmider and Shelah [31, Theorem 1.4]). If a Boolean algebra A has the WSSP, 

then A contains an independent family of size c. 

It follows immediately that every Boolean algebra with the WSSP has cardinality 2:: c. All the 
properties introduced earlier in this section imply the WSSP, so in particular if a Boolean algebra 

A has any of those properties, then IAI 2:: c, too. Since no other essentially different algebraic 
or structural properties of Boolean algebras forcing the Nikodym or Grothendieck property were 
commonly known in the beginning of the 21st century, the following question appeared to be natural. 

Question 2.5. Is it consistent that there exists a Boolean algebra A of size strictly less than c and 
with the Gmthendieck pmpe汎yor the Nikodym pmpe叩

Since the Stone space of every countable Boolean algebra has a countable base and thus is metriz-

able, it follows that a Boolean algebra with either the Nikodym property or the Grothendieck 
property cannot be countable— otherwise its Stone space would contain a non-trivial convergent 

sequence, which is, as we already know from Introduction, impossible. 
As we will see in the next section, the question though has a positive answer. 
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3. FIRST CONSISTENCY RESULTS 

I3rech [10] provided the first positive answer to Question 2.5. Namely, she proved that in the 
side-by-side Sacks model there is a Boolean algebra with the Grothendieck property and of size w1 
whereas the continuum may be arbitrarily large. In fact, her result is a preservation-like result. 

Theorem 3.1 (Brech [10]). Let K, be a regular cardinal in a model V of set theory and let§(K,) 
denote the countable support K,-product of Sacks forcing. Let A E V be a Boolean algebra. If A is 
グ—complete in V, then for every§(/'(,)-generic filter G over V the algebra A has the Grothendieck 
property in V[G]. 

Recall that if§denotes the Sacks forcing, then for a cardinal number K, the sid砂 y-sideSacks 

forcing§(K,) is defined as follows: p E§(K,) if and only if p E§ 氏 andthe set supp(p) = {~< K,: p(~) f= 
ls} is countable; the ordering on§is defined coordinatewise, i.e. for p, q E§(K,) we have p~q if 
p(~) さ q(~) for every~< K,. §(氏） does not collapse w1 and if K, is a regular cardinal in a ground 
model V, then c = K, in any§(/'(,)-extension of V. For more details on the side-by-side Sacks forcing, 

see e.g. Baumgartner [5]. 

Corollary 3.2. Let V be a model of set theory satisfying the Continuum Hypothesis, i.e. V p= c = w1・

If K, is a regular cardinal in V such that K, 2: 四 andV'is an§(/'(,)-generic extension of V, then, in 

V', 叫）v has the Grothendieck property and I炉(w)門＝叫<C = K,. 

Brech's result has an important and weighty meaning. So far, by Theorem 2.4 of Koszmider 
and Shelah, every known algebraic property of Boolean algebras, introduced in order to obtain a 

characterization of the Grothendieck property or at least to move closer towards obtaining such a 
characterization, had implied also that a Boolean algebra having this property must have cardinality 
at least c. Brech's result shows that such an approach cannot be effective-— every characterization 
of the Grothendieck property must be more intricate and sophisticated (than merely dealing with 
antichains and its subantichans) in order to work also for Boolean algebras of size strictly less than 
c. 

Theorem 3.1 inspired the author and Zdomskyy to prove a similar result for the Nikodym property. 

Theorem 3.3 (Sobota and Zdomskyy [43]). Let K, be a regular cardinal in a model V of set theory 
and let§(K,) denote the countable support K,-product of Sacks forcing. Let A E V be a Boolean 
algebra. If A is u-complete in V, then for every§(K,)-generic filter G over V the algebra A has the 
Nikodym property in V[G]. 

In particular, if K, 2: 四 isa regular cardinal in V, a model of set theory satisfying the Continuum 

Hypothesis, and V'is an§(K,)-generic extension of V, then, in V', 炉(w) has the Nikodym property 

and Iゅ(w)門＝切<C = K,. 

Since no countable Boolean algebra has the Grothendieck or Nikodym property and in any model 
of set theory there is always a Boolean algebra of size c and having either of the properties, namely 

ゅ(w),Theorems 3.1 and 3.3 suggest that it is reasonable to introduce the following two cardinal 
characteristics of the continuum. 

Definition 3.4. The Nikodym number nit is the smallest cardinality of a Boolean algebra with the 
Nikodym property. 

Definition 3.5. The Grothendieck number gt is the smallest cardinality of a Boolean algebra with 
the Grothendieck property. 

It follows that w1~gt, nit~c. Theorems 3.1 and 3.3 may be now stated simply as follows. 
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Corollary 3.6. If V is a model satisfying the Continuum Hypothesis and K, E V is a cardinal, then 
nit= gt= w1 in any§(/'(,)-generic extension of V. 

In the next sections we will study the lower and upper bounds for nit and gt as well as we present 
consistency results concerning these cardinal characteristics. In particular, we show that consistently 

叫 <nit=gt< c. 

4. LOWER BOUNDS FOR nit AND gt 

We start the section with the following definition. Let K denote the class of all compact totally-
disconnected Hausdorff spaces which do not contain any non-trivial convergent sequences. 

Definition 4.1. The convergence number 3 is the smallest possible weight w(K) of a space K Eに
that is, 3 = min { w(K): KE  K}.1 

Since~(w) E K and every second countable compact space is metrizable (and hence it contains 
non-trivial convergent sequences), we have切：：：：：： 3 :::::: c. 

Recall that if a Boolean algebra A has the Nikodym or Grothendieck property, then its Stone space 
St(A) does not have any non-trivial convergent sequences, i.e. St(A) E K. It follows immediately 
that 3 :S: nit and 3 :S: gt, thus if a cardinal characteristics is a low図 bound£〇rふthen社お also。ne
for nit and gt. 

Recall that a family F <:;; [w『issplitting if for A E [平 thereis B E F such that both A n B and 
A¥ B are infinite. The splitting number s is the minimal cardinality of a splitting family. Booth [8] 
provided the following characterization of s in terms of sequentially compact spaces: 

s = min { w(K): K is a compact, not sequentially compact space}. 

If K is a compact space such that w(K) < s, then it is sequentially compact and hence it contains 
a non-trivial convergent sequence. Thus, s :S: 3 and h叩⑬ s::::; n比虹

Now, recall that the covering number cov(M) of M denotes the minimal cardinality of a family 

of meager subsets of the Cantor space 2w covering the whole space, i.e. cov(M) = min { IFI: F <:;; 
Mand UF =炉}.It is an easy fact that if a compact space K is scattered (i.e. each closed 
subset of K has an isolated point in the topology inherited from K), then K contains a non-trivial 
convergent sequence. In [20] Geschke proved that if a compact space K is non-scattered and such 

that w(K) < cov(M), then there exist a (closed) perfect subset L of K and a point x E L such 
that x is a魯 pointin L, i.e. there is a family { Gn: n E w} of open subsets of L such that 
日=nnEw Gn. It yields that there is a non-trivial sequence in L convergent to X. It follows that 
cov(M) :S: 3 and hence cov(M) :S: nit, gt. 

Let us note here that the convergence number 3 was studied also by Brian and Dow in [9], where 
it was proved, i.a., that if K, is a cardinal number satisfying the condition: 

max (b, non(N)) :S: K, = cof ([炉ぷ），

then 3 ::::; K,. Here b denotes the bounding number, i.e., the minimal cardinality of a subfamily of ww 

which is unbounded in the sense of the orderぐ definedas follows: given f, g E w竺f:S:・gif and 
only if f(n) ::::; g(n) for almost all n E w. The uniformity number of N, denoted by non(N), is the 
minimal cardinality of a subset Xこ2wsuch that X <t N. Finally, for every cardinal K, by ([年，こ）
we denote the family of all countable subsets of氏 orderedby the inclusion <:;; and by cof ([平，<:;;)
we mean the smallest cardinality of a subfamily F <:;; [K, 『whichis cofinal in the sense of<:;;. Basic 

information concerning the number cof ([吋t,<:;;) one can find in [4, Section 1.3.B]―e.g, we always 

1 The letter 3, i.e. Gothic z, comes from the Polish word zbie加 oscmeaning convergence. 
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have cof ([i,;,t, ~) 2': i,;, and there are such numbers i,;, for which we have cof ([吋ド，こ） >,,,,,but 

cof ([w叫“，こ） = Wn for every n E w. 
The bounding number b plays here also a special role for the Nikodym number nit. Namely, using 

the celebrated Josefson-Nissenzweig theorem (see e.g. Diestel [15, Chapter XII]), one can prove 
that if a Boolean algebra has cardinality strictly smaller than b, then it does not have the Nikodym 
property see Sobota [41, Proposition 3.2]. Thus, the following corollary holds. 

Corollary 4.2. max (b,s, cov(M)) <::'. nit. 

However, we do not know whether the inequality b <::'. gt holds in ZFC, cf. Section 8. 

Corollary 4.3. max (s, cov(M)) <::'. gt. 

Both Corollaries 4.2 and 4.3 imply that under Martin's axiom nit = gt = c. 

5. UPPER BOUNDS FOR nit AND gt 

Since p(w) has both the Nikodym and Grothendieck properties, nit <::'. c and gt <::'. c. Obtaining 
upper bounds for both the characteristics stronger than c is however a much more intricate issue 
than that of finding lower bounds, since no simple condition for Boolean algebras implying any of 

the properties and possibly satisfied by algebras of cardinality strictly smaller than c is known. For 
instance, the び—completeness---or any of the properties introduced in Section 2―of a given Boolean 
algebra implies by Theorem 2.4 that the algebra has immediately the cardinality at least c. Yet 
we present here the author's results asserting that under some natural conditions concerning the 

cofinality cof(N) of Lebesgue null ideal N (like, e.g., cof(N) = Wn for some n E w), it is possible to 
obtain the inequalities nit<::'. cof(N) and gt<::'. cof(N). 

Recall first that the cofinality cof(N) of the Lebesgue null ideal N is the minimal cardinality of 
a family FこN such that for every A E N there is B E F such that AこB. In Section 4 we 
presented the theorem of Brian and Dow stating that if max (b, non(N)) <::'. i,;, = cof ([年，こ） for 
some "', then 3 <::'. "'・A similar theorem was obtained earlier by the author relating nit and cof(N). 

Theorem 5.1 (Sobota [41]). If i,;, is such a cardinal number that cof(N) <::'. i,;, = cof ([i,;, 「)， then
there exists a Boolean algebra A such that IAI = i,;, and A has the Nikodym property. In particular, 

nit <::: "'・ 

Corollary 5.2. If cof(N) = 叫 <c, then nit =叫<c, too. More generally, if cof(N) = Wn for 
some n E w, then nit<::'. cof(N). 

Let us elaborate more on the above results. The main idea of the proof of Theorem 5.1 is similar to 
the one presented by Darst [12] who proved that CT-complete Boolean algebras do have the Nikodym 
property, i.e. to assume that a given び—complete Boolean algebra A does not have the property, so 
there is a "bad" sequence〈μn:n E w〉ofmeasures on A (that is, pointwise null but not bounded), 

to construct then a special antichain in A related to〈μn: n E w〉andby taking its supremum 

to obtain an element in A on which〈μn: n E W〉isnot convergent, which ultimately yields a 
contradiction. In the proof of Theorem 5.1 we follow a similar way, i.e., we construct inductively 
an increasing w1 -sequence of Boolean subalgebras of p(i,;,) of size i,;, in such a way that in each step 
we "kill" bad sequences of measures on Boolean subalgebras from the previous steps, i.e. those 

sequences which could possibly contradict the Nikodym property of the final algebra. To do this, 
in each step we construct a special family of antichains of elements from the previous subalgebras 
and attach their carefully chosen supremas. Naturally, in each step we have to ensure that the 
constructed families of antichains and their supremas are not too big, i.e., they have cardinality 
at most "'・We do this actually separately from the main proof by introducing and studying two 
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new properties of [wt and Fr(w), the free Boolean algebra on countably many generators, which 
would give us such "small" families of antichains and supremas. This two new properties lead us to 
two new cardinal characteristics of the continuum, which we call the anti-Nikodym number and the 

Nikodym extracting number, denoted by na and ne, respectively. Since the definitions of na and ne 
are rather technical and long, we refer the reader to [41] for more details. It is worth here however 
to mention that those two characteristics satisfy the following inequalities: b ::; na ::; cof(N) ([41, 
Corollary 6.7]) and cov(M) ::; ne::; () ([41, Corollary 6.16]). Recall that the dominating number i) is 
the minimal cardinality of a family F of functions f E ww such that for every g E ww there is f E F 

such that g ::;• f. Since()::; cof(N) we obtain that max (na心） ::; cof(N). Since 1,, 2': cof(N), these 
inequalities allow us indeed to attach at most 1,, new elements in each step of the construction which 

would kill bad sequences in the final algebra. 
Note that it follows from the above discussion that we in fact prove the following stronger version 

of Theorem 5.1 which does not mention cof(N). 

Theorem 5.3. If 1,, is such a cardinal number that max (na, ne) ::; 1,, = cof ([年）， thenthere exists 
a Boolean algebra A such that Al = 1,, and A has the Nikodym property. In particular, nit ::; 応

Recently, the author obtained also a theorem concerning gt and cof(N), very much similar to 
Theorem 5.1. 

Theorem 5.4 (Sobota [42]). If 1,, is such a cardinal number that cof(N) ::; 1,, = cof ([年）， thenthere 
exists a Boolean algebra A such that IAI = 1,, and A has the Grothendieck property. In particular, 
gt ::; K,. 

Corollary 5.5. If cof(N) =切<c, then gt = 叫<c, too. More generally, if cof(N) = Wn for 
some n E w, then gt::; cof(N). 

The idea standing behind the proof of Theorem 5.4 is very similar to the one of Theorem 5.1, 
that is, we inductively construct an increasing w1 -sequence of Boolean subalgebras of p(1,,) of size 1,, 
in such a way that in each step we "kill" "bad" sequences of measures on the Boolean algebras from 
the previous steps that would contradict the Grothendieck property of the ultimate algebra. This 

time, however, we need three auxiliary properties of [wt and Fr(w) that are related to the Phillips 
lemma, Rosenthal lemma and Dieudonn← Grothendieck characterization of weak compactness of 
families of measures on compact Hausdorff spaces. Similarly as before, from those new properties 
we derive new cardinal characteristics which we call the Phillips number, the Rosenthal number and 
the Dieudonne-Grothendieck number, denoted p~il, tos and Dg, respectively. The role of p~il and 
tos in the proof of Theorem 5.4 is basically the same, they just yield two possible variants of the 
proof and hence two possibly different upper bounds of gt. Let us discuss the three characteristics 
more carefully, as they are interesting on their own. 

The Dieudonne-Grothendieck theorem in its particular form asserts that a bounded sequence 

伽： nEw〉ofmeasures on a Boolean algebra A is not weakly convergent if and only if there are 
an antichain〈ak: k E w〉inA, an increasing sequence〈nk: k E w〉inw and c > 0 such that 

い (ak)I 2': c for every k E w. The number Dg is defined in the following related to the theorem 
way. 

Definition 5.6. The Dieudonne-Grothendieck number Dg is the minimal cardinality of a family F 

of antichains in Fr(w) such that for every sequence〈μn: n E w〉ofmeasures on Fr(w) which is 

weakly* null but not weakly null there are an antichain〈ak: k E w〉EF, an 1ncreasmg sequence 

〈nkE w: k E w〉andc > 0 such that lμn, (ak) I 2': c for every k E w. 
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It was showed in [38] and [42] that b ::; clg ::; cof(N). Thus, consistently, to prove that a given 
weakly* null sequence of measures on the Cantor space 2w is (not) weakly null, it is enough to check 
its values on antichains from a special family F of size strictly less than c. 

The next number is related to the Phillips lemma asserting that for every sequence〈μn: n E 

a〉ofmeasures on the Boolean algebra p(山） if limn→oo伽 (A)= 0 for every A E p(叫， then

limn→oo区kEw四({k})l=O(i.e.,μn→0 in the norm on£ 心））．

Definition 5. 7. The Phillips number PDil is the minimal size of a family F c;;; [平 suchthat for 

every sequence〈μn: n E w〉ofmeasures on the Boolean algebra p(w) if limn→oo匹 (A)= 0 for 

every A E F, then limn→ 00LkEw四({k})l=O.

In his PhD thesis [38], the author showed that p ::; PDil ::; cof(N) and in [39, Proposition 2.5] 
that p < PDil = c consistently holds. We refer the reader to [39] for information concerning possible 
analytic applications of those inequalities. 

The last number which we want to discuss here is the Rosenthal number related to Rosenthal's 
lemma stating that for every antichain〈an:nEw〉ina Boolean algebra A, sequence〈μk: k E w〉
of non-negative measures on A of norm 1, and c > 0, there exists an infinite set A E [叫wsuch 

that for every k E A the inequality LnEA匹 (an)< c holds. For analytic and measure-theoretic 
n#-k 

applications of the lemma, see e.g. [15, Chapter VII] and [16, Section I.4]. 
The lemma may be actually also stated in a much simpler form: for every infinite matrix 

〈mな： n,k E w〉ofnon-negative real numbers such that区nEwm~::; 1 and a~= 0 for every 

k E w, and every c > 0 there is A E [wt such that LnEA mな<c for every k E A. 

Definition 5.8. The Rosenthal number t0.5 is the minimal cardinality of a family F E [w『such

that for every infinite matrix〈mな： n,k E w〉ofnon-negative real numbers such that LnEw mな::;1 

and a~= 0 for every k E w, and every c > 0 there is A E F such that区nEA鴫<c for every k E A. 

The number tos was studied by the author in [40] where it was proved that cov(M) ::; tos and that 
for every selective ultrafilter (if any exists) its base has cardinality at least tos, so tos::; Usel, where 
Usel denotes the minimal cardinality of a base of a selective ultrafilter, if any exists, or c, otherwise. 
It was also showed there that under Martin's axiom there exists a filter which is not selective but 

satisfies the (Rosenthal's lemma) condition from Definition 5.8. Koszmider and Martinez-Celis [30] 
proved in ZFC that actually every ultrafilter on w satisfies this condition and that t0.5 = t. Let us 
note that the inequality t0.5 2: twas obtained independently by Repicky [35]. 

After we defined all the necessary additional cardinal characteristics and having in mind that 
t0.5 = t, we are in the position to recall the following stronger variant of Theorem 5.4. 

Theorem 5.9. If ,-,, is such a cardinal number that max (Dg, min(pQil, tos)) ::; ,-,, = cof ([年），
then there exists a Boolean algebra A such that IAI = ,-,, and A has the Grothendieck property. In 
particular, gt ::; ,-,, . 

Theorems 5.1 and 5.4 yield an important conclusion concerning the characteristics nit and gt and 
the almost disjointness number a. Recall that a family F of infinite subsets of w is almost disjoint 
if A n B is finite for any two distinct elements of F. The almost disjointness number a is defined 
as the minimal cardinality of a maximal almost disjoint family. It is a basic result that a = w1 in 
the Cohen model, so consistently a< nit and a< gt (as cov(M) = c in this model). On the other 
hand, Brendle [11, Proposition 4.7] showed that it consistently holds四=cof(N) <a=四 =c, so 
in this model we also have nit < a and gt < a. 

Corollary 5.10. Neither of the characteristics nit and gt is comparable in ZFC with a. 
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6. OTHER CONSISTENCY RESULTS 

Let us start the section with noticing in which standard models of set theory the characteristics nit 
and gt are equal to c. This may be easily derived from Corollaries 4.2 and 4.3, having on hand Table 
4 in [7, page 92]. Indeed, we have the following equalities in the corresponding models: cov(M) = c 
in the Cohen model, b = ,s = c in the Mathias model, and b = cov(M) = c in the Hechler model; so 
in these mentioned models it holds ni£= gt = c. In the Laver model, however, we have b = c only, 
so nit = c in this model and we do not know the value of gt therein, see Section 8. 

Let us now study a more interesting case, i.e., when ni£=gt< c. A main set-theoretic tool used 
in the proofs of Theorems 3.1 and 3.3 is Axiom (A) of the Sacks forcing, in particular, the existence 
of fusions for fusion sequences and the Sacks property— see [21] for definitions. Since many other 
notions of forcing satisfy Axiom A or have similar properties, the author and Zdomskyy looked more 
carefully on the proofs of the theorems and in [44] generalized the results to much broader class of 
forcings. To explain this, let us recall the following two standard definitions. 

Definition 6.1. Let V be a model of set theory. A notion of forcing lP'EV has the Laver property 
if for every lP'-generic filter G over V, functions f E ww n V and h E ww n V[G] such that hぐ f

there is a function H : w→ [w]<w in V such that h(n) E H(n) and IH(n)I :Sn+ 1 for every n E w. 

Standard notions of forcing having the Laver property are, e.g., Sacks, side-by-side Sacks, Laver, 
Mathias, Miller, Silver (-like), and their countable support iterations, see [判 forreferences. 

Definition 6.2. Let V be a model of set theory. A notion of forcing lP'E V preserves the ground 
model reals non-meager if for every lP'-generic filter G over V the set恥 nVis non-meager in V[G]. 

Among the notions listed after Definition 6.1, only Sacks, side-by-side Sacks, Miller, Silver (-like), 
and their countable support iterations, preserve ground model reals non-meager. 

We are in the position to state the main theorem of [44]. 

Theorem 6.3 (Sobota and Zdomskyy [44]). Let V be a model of set theory and A a び—complete

Boolean algebra in V. If a notion of forcing lP'E V is proper, preserves the ground model reals 
non-meager and has the Laver property, then in any lP'-generic extension V[G] the algebra A has the 
Nikodym and Grothendieck properties. 

We immediately get the corollary analogous to Corollary 3.6. 

Corollary 6.4. Let V be a model of set theory satisfying the Continuum Hypothesis. If a notion of 
forcing lP'E V is proper, preserves the ground model reals non-meager and has the Laver property, 
then in any lP'-generic extension V[G] we have w1 =nit= gt. 

Since in the side-by-side Sacks forcing all the standard characteristics are equal to w1, so far, the 
only strict inequalities we have had between nit, gt and these characteristics followed from Corollaries 
4.2 and 4.3 together with the well-known fact that there is no ZFC inequality between b, ,s and 

cov(M). Theorem 6.3 and Corollary 6.4 yield us some new situations where w1 =nit= gt< c = w2 
and c is equal to some other standard cardinal characteristics of the continuum. Let us thus look 
at two particularly interesting situations, namely, those of the Miller and Silver models, and check 

what new inequalities between the characteristics we obtain therein. Note that by Corollary 6.4 
both in the Miller model as well as in the Silver (-like) model we obtain that w1 =nit= gt< w2 = c. 

Two important cardinal characteristics of the continuum which have value c in the Miller model 
are the dominating number () and the groupwise density number g. It is well known that () 2': 
max (b, ,s, cov(M)), so, in the context of Corollaries 4.2 and 4.3, () was another natural candidate 
for a cardinal characteristic~such that~:S ni£and~:S gt in ZFC, however, as we see, this is not 
the case. 
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Corollary 6.5. It is consistent that w1 =nit= gt< D = c = w2. 

The definition of the groupwise density number g is a bit complicated and would take too much 
space, therefore we refer the reader to [7, Definition 2.26] and [6]. Let us note here that g = w1 
in the Cohen model, therefore both gt and nit are independent of g in the sense that there is no 
provable in ZFC inequality between either of the former characteristics and g. 

Among cardinal characteristics which have value c in the Silver model are the reaping number t 
and the ultrafilter number u, see [25, Page 379]. The reaping number t is the smallest cardinality 
of a family Fこ[w『forwhich there is no A E [w『suchthat for every B E F the sets B n A and 
B ¥ A are infinite. The ultmfilter number u is the minimal size of a base of a non-principal ultrafilter 

inゅ(w).
Note that it is consistent that w1 = t = u < s = c, cf. [7, Section 11.11], therefore we consistently 

get that w1 = t = u <nit= gt= c and hence the following corollary is true (cf. Corollary 5.10). 

Corollary 6.6. Ih E { t, u, g} andりE{ nit, gt}, then there is no inequality between J andりprovable
in ZFC. 

The independence number i is the minimal size of a maximal family I~[w『 such that for every 

finite disjoint subsets F, G~I the intersection nAEF An nAEdw ¥ A) is infinite. The value of i in 
the Silver model is also c, so consistently nit < i and gt< i. However, we do not now if any of the 
inequalities i < nit and i < gt holds in some model of set theory. 

Corollary 6. 7. It is consistent that nit < i and gt < i. 

6.1. Adding one new real. In the previous section we studied several forcing notions in the 
context of preserving the Nikodym and Grothendieck properties of a-complete Boolean algebras. In 
this section we study the converse, i.e., when adding one new real to the ground model destroys the 
properties of all ground model (not necessarily)び-completeBoolean algebras. 

In Section 4 we recalled the result of Geschke asserting that if a non-scattered compact space K 

has weight strictly less than cov(M), then there is a perfect subset L~Kand a point x EL which 
is a羹 pointin L, hence K contains a non-trivial convergent sequence. It appears that the proof of 
the result may be actually rewritten in terms of the Cohen forcing as follows (see [45]). 

Proposition 6.8. Let A be a Boolean algebra in the ground model V. If c is a Cohen real over V, 
then, in V[c], the Stone space St(A) has a non-trivial convergent sequence. 

The above fact was first observed by Dow and Fremlin [17, Introduction] as being implied by 
the results of Koszmider [29]. Since a Boolean algebra with neither the Nikodym property nor the 
Grothendieck property may have a non-trivial convergent sequence in its Stone spaces, Proposition 

6.8 yields that adding a Cohen real to the ground model kills either of the properties of ground 
model Boolean algebras. 

Note that adding a Hechler real to the ground model adds also a Cohen real, so the Hechler forcing 
adds non-trivial convergent sequences to the Stone spaces of ground model Boolean algebras, too. 

Adapting the result of Booth mentioned in Section 4 and stating that if a compact Hausdorff 
space K has weight strictly less than the splitting numbers, then K is sequentially compact, one 
can obtain an analogon of Proposition 6.8 for unsplit reals. Recall that x E [w『isan unsplit real 
over the ground model V if for no A E [wt n V both sets B n A and B ¥ A are infinite. Every 
Mathias real is an example of an unsplit real. 

Proposition 6.9 ([45]). Let A be a Boolean algebra in the ground model V. If u is an unsplit real 
over V, then, in V[u], the Stone space St(A) has a non-trivial convergent sequence. 
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Thus, similarly as before, adding an unsplit real to the ground model kills the Nikodym and 
Grothendieck properties of ground model Boolean algebras. 

Also the fact that if a Boolean algebra has cardinality strictly less than the bounding number 
b, then it does not have the Nikodym property, may be adapted to the forcing setting concerning 

adding a dominating real and thus killing the Nikodym property of ground model Boolean algebras. 

Proposition 6.10 ([45]). Let A be a Boolean algebra in the ground model V. If d is a dominating 
real over V, then, in V[d], the Boolean algebra A does not have the Nikodym property. 

We do not know if Proposition 6.10 holds true with the Grothendieck property instead of the 
Nikodym property. A natural forcing to check this seems to be the Laver forcing (as it has the Laver 
property, see the previous section). 

We left the most interesting case of a notion of forcing to the very end of the section, namely, the 
case of the random forcing. Dow and Fremlin [17] proved the following preservation result. Recall 
that a compact Hausdorff space K is an F-space if every two disjoint open 1Fa-subsets of K have 
disjoint closures; in particular, every extremely disconnected space (or, equivalently, the Stone space 
of every complete Boolean algebra) is an F-space. 

Theorem 6.11 (Dow and Fremlin [17]). Let A be a Boolean algebra in the ground model V such 
that the Stone space St(A) is an F-space. If r is a random real over V, then, in V[r], the Stone 
space St(A) does not have any non-trivial convergent sequences. 

Theorem 6.11 cannot be generalized in any way to the case of the Nikodym or Grothendieck 
property. Namely, the author and Zdomskyy proved that adding a random real to the ground model 
kills either of the properties of ground model Boolean algebras. 

Theorem 6.12 ([45]). Let A be a Boolean algebra in the ground model V. If r is a random real 
over V, then, in V[r], the Boolean algebra A has neither the Nikodym property nor the Grothendieck 
property. 

As a corollary we obtain that in the model obtained by forcing with the Boolean algebra Bor(2り/N(K),
i.e. the algebra of Borel subsets of 2" modulo the ideal of null sets of the standard product measure 
on 2へthecharacteristics nit and gt are equal to c while the dominating number () is w1・

Corollary 6.13. It is consistent that w1 = () <nit= gt= c = w2. 

Together with Corollary 6.5 we get the following result. 

Corollary 6.14. There is no provable in ZFC inequality between() and either of the characteristics 
nit and gt. 

Another corollary is related to the result of Dow and Fremlin and the convergence number 3 
defined in Section 4. 

Corollary 6.15. It is consistent that w1 = 3 < nit= gt= c = w2. 

7. THE COFINALITIES OF nit AND gt 

Schachermayer [36, Proposition 4.6] proved that if a Boolean algebra A can be written as a 

countable increasing union of its proper subalgebras, i.e. A = LJ nEw ふ whereAn is a proper 
subalgebra of A and An~An+l for each n E w, then A does not have the Nikodym property or the 
Grothendieck property. It follows immediately that the cofinality of nit and gt is uncountable. 

Corollary 7.1. cf(nit) 2': w1 and cf(gt) 2': w1・



61

D. SOBOTA 

Under the Continuum Hypothesis cf(c) = c =nit= gt, so both nit and gt may be consistently 
regular. On the other hand, in a model obtained by adding, e.g., ぬ manyCohen reals to a model 

of the Generalized Continuum Hypothesis we have ni£= gt = c =ぬ＞叫=cf (ぬ） (see [32, 
Lemma 5.14]), so cf(ni£) < nit and cf(gt) < gt in this model and hence neither ni£nor gt is regular. 
Note that in this way we may obtain actually any uncountable cofinality of ni£and gt with both 
characteristics being still equal to c. 

Corollary 7.2. The regularity of neither nit nor gt is decidable in ZFC. 

8. OPEN PROBLEMS 

In this final section of the survey we present several most important open questions concerning the 
Nikodym and Grothendieck properties and their set-theoretic aspects. We start with the following 
one concerning Talagrand's result mentioned in the introductory section and stating that under 
the assumption of the Continuum Hypothesis there exists a Boolean algebra with the Grothendieck 
property but without the Nikodym property. 

Question 8.1. Does there exist in ZFC a Boolean algebra with the Gmthendieck property but without 
the Nikodym pmpe廿y?

A weaker variant of Question 8.1 could be the following: assuming Ma仕in'saxiom {or the Proper 
Forcing Axiom, etc.), does every Boolean algebra with the Gmthendieck property have the Nikodym 
pmpe廿y?

In Section 2 we discussed several properties of Boolean algebras that are weaker than the u-

completeness but still imply at least one of the properties. We presented there the result of Koszmider 
and Shelah yielding that all those properties imply also that every Boolean algebra having any of 
them must be of size at least c. In view of the results presented in Sections 3, 5 and 6 we ask the 
following question. 

Question 8.2. Is there any {algebraic or structural) pmpe代yof Boolean algebras that imply either 

the Nikodym pmpe廿yor the Gmthendieck property and is satisfied also by algebras of size strictly 
less than c? 

The following question appears to be the most important one concerning the relation between nit 
and gt. 

Question 8.3. May any of the inequalities nit < gt and nit> gt consistently hold? 

In Section 4 we stated that the inequality b :::; n廿h。1曲 inZFC and礼記 unkn〇wnt゚ uswh叫h虹

b :::; gt holds, too. 

Question 8.4. Does the inequality b :::; gt加 ldin ZF岱

A natural model to check whether the inequality gt< b may consistently hold (and thus gt< nit) 

is the Laver model (in which b =nit= w2 = c). 

Question 8.5. What is the value of gt in the Laver model? 

Recall that the Laver forcing adds dominating reals and thus "kills" the Nikodym property of 
ground model Boolean algebras (Proposition 6.10). Since we do not know if adding dominating 
reals automatically kills the Grothendieck property, a question related to Questions 8.3-8.5 and 
being in the spirit of Theorem 6.3 and Proposition 6.10 could be thus stated邸 follows.

Question 8.6. Does there exists a notion of forcing adding dominating reals and preserving the 
Grothendieck property of ground model u-complete Boolean algebras? 
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Two strict inequalities between ni£or gt and a characteristic from van Douwen's diagram about 

which we do not know whether can be consistently true are ni£> i and gt > i note that the reverse 

strict inequalities hold in the Silver model (Corollary 6.7). 

Question 8.7. Does any of th e inequalities nit > t and gt > i consistently hold? 

Concerning Cichon's diagram the only strict inequalities that are unknown to hold consistently 

are listed in the following question. 

Question 8.8. Let r E { ni£, gt}. Does any of the following inequalities consistently hold: 

• r < cov(N), 
• r < non(M), 
• r < non(N), 
• cof(M) < r? 

Having analyzed the proof of Theorem 6.3, it seems that the theorem holds not only for ground 

model u-complete Boolean algebras but also for algebras with the SCP (Definition 2.1). However, 

we do not know whether a similar theorem could be proved for algebras with some weaker property 

mentioned in Section 2. 

Question 8.9. In Theorem 6.3, can we exchange the び—completeness with some weaker prope礼yand 

still preserve either the Nikodym prope汎yor the Grothendieck property? 

The last question concerns weakening the assumptions of Theorems 5.1 and 5.4. 

Question 8.10. In Theorems 5.1 and 5.4, can we drop the assumption that"'= cof ([r., ド，こ）？
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