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MAXIMAL DISCRETE SETS 

DAVID SCHRITTESSER 

ABSTRACT. We survey results and open questions as well as give some 
new results regarding the definability and size of maximal discrete sets 
in analytic hypergraphs. Our main examples include maximal almost 
disjoint (or mad) families, I-mad families, maximal eventually different 
families, and maximal cofinitary groups. We discuss the non-increasing 
sequence of cardinal characteristics aE, for~< 叫 as well as the no-
tions of spectra of characteristics and optimal projective witnesses. We 
give a streamlined account of Zhang's forcing to add generic cofinitary 
permutations, and of a version of this forcing with built-in coding. 

As probably every mathematician and certainly every logician knows, 

with the Axiom of Choice one can construct objects which have counter-

intuitive, often unrealistic, even fantastic properties— such as the Banach-
Tarski decomposition. These mathematical objects have been called para-

doxical and even "monsters" a wonderful and fitting metaphor! 

In this article I will discuss a number of such objects, whether they be 

deemed monstrous or not, arising as maximal discrete sets for hypergraphs. 

Largely, this article is to be viewed as a survey or as an attempt to lure new 

contributors into this area. I will also announce one or two theorems, the 

proof of which is left for a future paper, as well as make some conjectures. 

I also give some partial results which are not published anywhere else. 

1. A MENAGERIE OF BEAUTIFUL MONSTERS 

Recall that a hypergraph is a a structure G = (X, H) where X is a set 
and H~P (X); elements of X are called the vertices of G, and elements 
of H are called its hyperedges. The cardinality of a hyperedge is called its 

arity. To say that G is "'—uniform, where "'is a cardinal, means that "' 
is the arity of each of its hyperedges. A hypergraph is called simple if H 

does not contain singletons, i.e., no loops (hyperedges connecting a vertex 
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only to itself). Thus, we can define a simple graph G = (X, E) to be a 2-
uniform hypergraph; an edge is a hyperedge of arity 2. We similarly write 

< K,-uniform and ::; K,-uniform to mean the obvious things. 
We will be interested mostly in simple graphs, and simple hypergraphs 

where the arity of each hyperedge is some finite number, i.e., < w-uniform 
simple hypergraphs. 

Convention 1. 1. In this note, hypergraph means simple < w-uniform hy-
pergraph and graph means simple graph. 

A set D~X is called G-discrete if P(D) n H = 0, that is, if no subset 
of D forms a hyperedge. In the case of graphs, this is clearly the same as 

saying that no two (or no two distincが） elements of vertices from D form an 
edge. A maximal G-discrete set is a discrete set which is maximal among 

discrete sets with respect to~- We will sometimes just say (maximal) 
discrete set if the hypergraph in question is clear from the context. 

Now let us start with some examples of graphs. 

Examples 1.2. 

(1) G = (土，E。） recalling that E。isthe equivalence relation given by 

xE。y⇔ l{n E w I x(n) f y(n)}I < w. 
Similarly, one can consider G = (w2, E。),where we sloppily also 
write E0 for the restriction of this relation to w2. 

(2) G = (賊，E)where E is given by the equivalence relation r E s←⇒ 
r -s E (Q. A maximal discrete set is called a Vitali set. 

(3) For this and the next two examples let X = [w]竺 ConsiderG = 
(X, E) where A E B ⇔ IA n Bl = w, i.e., if A and B are 
not almost disjoint. A maximal discrete set is known as a mad 

family.2 

(4) (G, E) where X = ww and f Eg if the graphs off and g are not 
almost disjoint. If -.(J E g) we also say f and g are eventually 
different; a maximal discrete set is called a maximal eventually dif-

ferent family. 

We continue by giving some examples of hypergraphs. 

Examples 1.3. 

(1) Let X =恥 and{ro, ... ,rn} EH ifro, ... , r n are linearly dependent 
切罠 seenas a vector space over (Q. A maximal discrete set is called 

a Hamel basis of罠 over(Q. 

1This is equivalent since we are only considering simple graphs. 
2We do not define "mad family" to mean an infinite E-maximal discrete set. 
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(2) Let again X = [w]w. Fors+, s―E心 X write 

B(s+,s―) = LJ ran(s+) ¥ LJ ran(s―) 
and let {A。,... , An} E H if for alls+, s―E <w{A。,．．．，ふ},the set 
B(s九s-)is finite. An E-discrete family is called an independent 
family (of sets) and a maximal discrete set is called a maximal 

independent family (of sets). A similar graph has been consisered 

on ww (see, e.g., [14]). 

(3) Let X = Soo (the group of permutations of w) and let {go, ... , gn} E 
H if〈9o,・ ・ ・,gn〉,the subgroup of S00 generated by go, ... , gn, is not 
cofinitary, i.e., it contains a permutation with infinitely many fixed 

points other than the idendity. A maximal discrete set is a maximal 

cofinitary group. We write Gmcg for this hypergraph. 

In all cases discussed in this article, the set of vertices X is an effective 

Polish metric space, so we can use the projective hierarchy in its boldface 

and lightface version to measure definitional complexity. For all of the 

spaces X we discuss, we can regard P([X臼） as an effective Polish metric 
space by indentifying it with the set {元 E⇔ XI元0< ... <元lh(元）ー1},with 
the usual Polish metric structure, where < is the natural strict linear order 
on the space X in question. Of course when we say that a hypergraph 

G = (X,H) is噂 Borel,analytic or 均 (lightface)~i etc., we mean that 
X is an (effective) Polish (metric) space and the set of hyperedges H is望
Borel, etc. as a subset of [X]<w.3 

Obviously, all of the above graphs and hypergraphs are Borel. We will 

later write down an interesting family of graphs whose complexity lies co-

finally in the Borel hierarchy (cf. also [1]) 

Of course, you might say, one can define a number of combinatorial 

objects in the language of hypergraphs, simply because this language is so 

versatile. The benefit, you might continue, of doing so is elusive since the 

objects in question are in fact very different. To this I answer that to the 

contrary, indeed theorems can be proved at precisely this level of generality, 

such as the following result due to Vidnyansky. 

First, let us introduce some terminology: 

Definition 1.4. Let G = (X, H) be a hypergraph, x E X and CこX.We 
say x is G-independent from C if CU { x} is discrete. We say x is G-caught 

by C to mean that on the contrary, C U { x} is not discrete. As before we 

shorten these to independent and caught when G is clear from the context. 

3We lack a good example of aさw-uniformhypergraph. 
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Theorem 1.5 ([23]). Suppose V = L and we are given an analytic hyper-
graph G = (X, H) on a Polish space which satisfies the following property: 
For any z E w2, any countable discrete set CこX and any x E X which 
is independent from C, there are Yo, ... , Yn EX  such that 

• Cu {yo, ... , 珈}is discrete but 
• x is caught by CU {y0, ... , 珈}and 
• for each i < n + 1 it holds that z is computable in xi (or just 
hyperarithmetic in xi). 

Then there is a Ili maximal H -discrete set. 
The above is only a special case of the theorem proved in [23]: Re-

stricting our attention to maximal discrete sets makes the statement much 

less abstract. Earlier versions of this construction, carried out for specific 

hypergraphs can be found in Arnie Miller's famous article [14]. 

Moreover once we are at this level of generality, i.e., at bird-eyes'view, 

interesting questions can be asked: 

Question 1.6. Is there a hypergraph G such that the statement''there does 

not exist a maximal G-discrete set" has consistency strength at least a mea-

surable cardinal? What about even stronger large cardinal notions? 

This question is motivated by the following result of Horowitz and Shelah 

(see [11]): 

Theorem 1. 7. There is a Borel graph G such that the ZF + DC +''there 

does not exist a maximal G-discrete set" implies that w1 is inaccessible in 

L. 

Of course it is tempting to find an upper bound for the type of large 

cardinals appearing in Question 1.6. Such an upper bound could be given 

by constructing a model in which some large class of hypergraphs do not 

have maximal discrete sets. But one has to be careful to exclude graphs 

which have maximal discrete sets provably in ZF. 

There are of course trivial such cases. For instance, the graph giving rise 

to mad families has finite maximal discrete sets. A less trivial case is given 

by maximal eventually different families and maximal cofinitary groups, 

which were shown by Horowitz and Shelah to exist just working in ZF (see 

below, Theorems 2.2 and 2.3). 

The following formulation, as far as I can tell, takes these obstacles into 

account and thus (hopefully) renders the question non-trivial: 

Question 1.8. Is there a model of ZFC where no projective hypergraph has 

a maximal H-discrete set which is Ili hard? Is there a model of ZF where 
no hypergraph has a maximal H-discrete set which is Ili hard? 
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By the previous theorem, to construct such a model one must assume 

at least that ZFC is consistent with the existence of an inaccessible. Any 

answer to Question 1.8 would give an upper bound for what kind of large 

cardinal property can be substituted for measurability in Question 1.6. 

2. REGULARITY AND DEFINABILITY OF MAXIMAL DISCRETE SETS 

It is nevertheless true that some of the examples listed above differ sig-

nificantly from the others. Namely, in all but two cases one can show that 

some (perhaps weak) form of the Axiom of Choice is necessary to pro-

duce maximal discrete sets for the above graphs: For all these hypergraphs 

G, one can construct a model of ZF without any maximal G-discrete sets 

by forcing. In fact usually this will hold in Solovay's model (that is in 

HOD(w On) of the the generic extension by Coll(w, < K) where K is inac-
cessible in the ground model). In some cases we know that this is not the 

optimal proof in terms of consistency strength. For example, a model where 

every set has the Baire property can be obtained just from the assumption 

that ZF is consistent, and in this model there will be no maximal indepen-

dent family of sets, no Hamel basis, no Vitali set, and no transversal for 

E。.To give a more recent example, Horowitz and Shelah [10] showed the 
following: 

Theorem 2.1. Every model of ZF + DC has a forcing extension in which 
DC holds and there is exists no infinite mad family which is OD(w On). In 

particular, if ZF is consistent, so is ZF + DC + there is no infinite mad 
family. 

For many hypergraphs G it can moreover be shown that a G-maximal 

discrete set cannot be analytic (for some, as we have seen the proof goes 

through standard regularity properties such as measurability or the Baire 

property). 

In contrast, as was already mentioned, the following two results were 

shown in 2016 by Horowitz and Shelah [9, 8]: 

Theorem 2.2. In ZF one can construct a Borel maximal eventually dif-

ferent family as well as a Borel maximal cofinitary group. 

It is easy to see that for any analytic hypergraph, the existence of a Borel 

maximal discrete set and of an analytic such set are equivalent. 

In fact much simpler maximal discrete sets can be constructed for these 

two particular hypergraphs: 

Theorem 2.3. In ZF one can construct 

• A closed maximal eventually different family [18, 20, 19]. 
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• A maximal cofinitary group g with a set of generators which is 
closed in S00; thus g is羽[17].

Question 2.4. Is there a closed maximal cofinitary group? 

So far, we have investigated whether the Axiom of choice is needed to 

prove the existence of a G-maximal discrete set for a given hypergraph G. 

At least three other types of interesting questions can be asked: 

Question 2.5. Given a hypergraph G, does the existence of a maximal 

G-discrete set imply a fragment of the Axiom of Choice (such as AC』in
ZF? 

Negative answers for such a question are, of course, independence results. 

Examples for research addressing this type of question can be found in a 

series of research articles by Beriashvili, Castiblanco, Kanovei, Schindler, 

Wu, and Yu [2, 16, 12]. 

Question 2.6. Given a hypergraph G, does the existence of some (or some 

infinite, or even uncountable) maximal G-discrete set imply the existence 

of an irregular set, such as a non-measurable set, a set without the Baire 

property etc. ? 

As we have seen for many hypergraphs G the existence of a maximal 

G-discrete set implies there are non-measurable sets and sets without the 

Baire property. It is shown in [22, 21] that if there is an infinite Fin°'-mad 

familiy, there is a set which behaves irregularly in a Ramsey theoretic sense. 

On the other hand, Horowitz and Shelah [11] show that the non-existence of 

a mad family is consistent with a broad assumption of universal regularity, 

namely measurability with respect to ww-bounding forcing notions. 

Question 2. 7. Given two hypergraphs G, G'does the existence of a max-

imal G-discrete set imply, in ZF, the existence of a maximal G'-discrete 

set? 

For instance, one can show in ZF that if there is a Hamel basis, then 

there is a Vitali set. 

2.1. Mad families and their higher dimensional relatives. We shall 

now generalize the definition of mad family and construct a class of graphs 

with complexity cofinal in the Borel hierarchy. The generalization of mad 

families is achieved by allowing an arbitrary ideal'I on w instead of the 

ideal Fin of finite sets. 
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Definition 2.8. Let I be an ideal on a countable set S. An I-almost 

disjoint set is a discrete set in the hypergraph G = ([ S]w, E) where A E 
B ⇔ AnB足I. An I-mad {maximal almost disjoint) family is a 
m訟 imaldiscrete set in G. 

The following questions are open.4 An尻 idealis simply an ideal which 

is Fu as a subset of w2. For the other notions used in the question, see, 

e.g., [4]. 

Question 2.9. Does there exist an analytic (equivalently, Borel) I-mad 

family, where I is some Fu ideal? What about if {instead, or in addition) 

工isassumed to be an ideal of the form Exh(¢), for some lower continuous 

submeasure¢on w ? 

Ideals coming from lower continuous submeasures lie very low in the 

Borel hierarchy. To obtain more complex ideals, we can use Fubini sums. 

Definition 2.10. 

(1) Suppose I is an ideal on w and for each n, In is an ideal on a 
countable set Sn (which we call its underlying set). Then金五the
Fubini sum of 〈エ~In E w〉overI is the ideal on LJぶ=LJ{n}xSn 
given by 

XE 箪~ ~{n E w I X(n)戸}EI 

where we write X(n) for {s E Sn I (n, s) EX}, the "nth vertical" 

of X. 

(2) If In = J for each n E w we write 

1汀＝④In. 
T 

Moreover, for n E w we write In for then-foldR-product of I with 

itself: 

In=IR... ⑳1 
'~ ~ 

n times 

(3) Write含forthe smallest collection of ideals such that Fin E含and

if五 EJ for each n E w then EE姶五€ 含．

The sequence of ideals Finn for n E w is readily seen to be increasing in 

Borel complexity. Obviously the ideals in J extend this sequence into the 
transfinite. We shall later explore the structure of含ina more detail. At 

present, let us point out that the methods in [1] show the following: 

4A previous version of [1] claimed to have answered the first question, but alas, a 
mistake was found (by the authors themselves). 
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Theorem 2.11. For no IE含doesthere exist an infinite I-mad family. 

In fact the methods of [21] show the following stronger theorem: 

Theorem 2.12. Assume ZF + DC and suppose r is a pointclass closed 
under taking continuous preimages and intersections with Borel sets and 

such that every total binary relation on [w]w in r can be uniformized on a 
non-empty Ellentuck open set by a continuous function. Let IE J. Then 
there is no infinite I-mad family in r. 

As a corollary to this theorem, there is no infinite I-mad family in Solo-

vay's model for IE J. Moreover, under the Axiom of Determinacy there is 
no such family in L(賊）， andunder the Axiom of Projective Determinacy, 
there is no projective such family. 

3. COMBINATORIAL CARDINAL CHARACTERISTICS AND SPECTRA 

Let a hypergraph G = (X, H) be given. 

Question 3.1. What are the possible sizes of G-maximal discrete sets? 

How are they related to other combinatorial cardinal characteristics of the 

continuum? 

Let us make the following definition. 

Definition 3.2. Write 

Spec(G) = {IDI : DこX n・G  1s a -maximal discrete set} 

的=min (Spec(G) ¥ w). 

Conventionally, one writes a, ne and ng for the least sizes of a mad fam-

ily, maximal eventually different family, and a maximal cofinitary group, 

respectively. We also write 

aI = min{IAI : AこP(w),A is an infinite I-mad family}. 

Remark 3.3. Note that for some graphs, it may be more appropriate or 

more interesting to define a0 as min (Spec(G) ¥ w1). 

3.1. Higher dimensional mad families as families on trees. What 

can be said about aェforIE芯?To address this question, we must first 
find a rough description of the ideals in J. To this end, write'I。forthe 
collection of non-empty subtrees T of <ww such that 

• Tis well-founded 
• For each t E T, the set { n E w I t~n E T} is either infinite or equal 
to 0. 
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Consider the equivalence relation ~ on'I。givenby T ~ T'if there is 
some bijection f: T→ T'which preserves the length of sequences, and let 
'I= {[T] IT E況}, where [T] denotes the equivalence class with respect 
to~ of T. 

Define for each T E'I。anideal I(T) on T by induction on the ordinal 
rank of well-founded trees: If T is the unique tree in'I。withrank 1 let 
I(T) be the finite ideal on T, 

工(T)= [T]<w 

which is obviously the same as Fin up to a bijection of the underlying sets. 

For TE'I。ofrank greater than 1 letエ(T)be given by 
x豆 (T)← {nEwlXln」戸I(TLn」)} E Fin 

where for Xこ<ww we use the notation 

Xln」={t'E <ww I <n>~t'EX}.

Note that obviously, up to a bijection of the underlying sets of ideals, 

工(T)=④エ(TLn」)．
Fin 

As we shall see, this gives us a useful presentation of the ideals in含：

Fact 3.4. 含={I(T) IT E均}and if T ~ T'then I(T) = I(T') where 
we consider ideals to be identical if they are the same up to a bijection of 

their underlying sets. 

Thus, with this slight abuse of notation we could write'I for'I。/~and
define I([T]) = I(T) (as we identify ideals which agree up to renaming 

elements of the underlying space). 

But one should be aware here thatエ(T)andエ(T')can be very similar 
also when T f T'. To give a simple (perhaps the only other?) example, 
we have the following useful fact: 

Fact 3.5. Suppose T, T'E'I。andT¥ T'Eエ(T).Then 
I(T') = {X nT'Ix ET}, 

i.e., I(T') is'I(T) restricted to T', which since T'agrees with T up to a set 

in'I(T), for our purposes can be identified with I(T). 

In the situation described in the above fact, let us say that I(T) almost 

equals I(T'). 

It is to be expected that further relationships between trees T and T' 

correspond to relationships between I(T) andエ(T').For example, we can 
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now show that a certain type of embedding between trees has consequences 

for the spectrum of mad families of the corresponding ideals. 

We define an ordering -< on'I as follows: Let [S] -< [T] if S'こTfor 
some S'E [S]. We can now easily show the following: 

Lemma 3.6. Let T, T'E'I。begiven with [T] -< [T']. Then from any 
工(T)-madfamily A we can construct a I(T')-mad family of size IAI. In 

particular, 

[T]-< [T']⇒ aエ(T'):'.S aI(T) 

Proof. Recall that T and T'are the underlying sets ofエ(T)andエ(T'),
respectively. 

We first define two maps 

A→ A*, P(T)→ P(T') 

and 

A→ A*, P(T')→ P(T) 
as follows: Given AこT,let 

A* = { t'E T'I (ヨtEA) ts;;; t'}. 

and given AこT',let 

A*= {t ET I (ヨt'EA)ts;;; t'}. 

Note that these maps have the following properties: 

(i) A* n B* =(An B)* for every A, BこT,
(ii) If A E I(T) then A* E I(T'), 

(iii) If A's;;; T'with A'ff_ I(T') then (A')* ff_ I(T), 

(iv) Suppose As;;; T, and suppose A's;;; T'satisfies {n E w It~ 〈n〉}ff_ 
Fin for each t EA'. Then (A')* n B ff_エ(T)⇒A'nB* ff_エ(T').

Now suppose we are given anエ(T)-madfamily A. Let 

A'= {A* I A EA}. 

With the above properties (i)-(iv) it is easy to see that A'is an I(T')-mad 

family. For instance, to see m訟 imalitylet A's;;; T'such that A'ff_ I(T') 

be given. By replacing A'with a subset if necessarily, we can assume that 

for any t'EA'it holds that {n E w It'~ 〈n〉}is infinite. Find A E A such 
that (A')* n A見エ(T).Now use (iv). ロ

Lemma 3.6 has the following perhaps somewhat surprising corollary. 

Given f: w→ w, let us momentarily write I(!) =④ Fin Finf(n). Recall 
that for f,g E ww, f :S* g means that {n E w I f(n) > g(n)} E Fin. 



74

MAXIMAL DISCRETE SETS 

Corollary 3. 7. Suppose f, g E ww and fぐ g.Then aエ(g):::; llI(J)・

Proof. This is obvious by finding trees Tt s;; T9 such thatエ(TJ)almost 
equalsエ(J)and I(T9) almost equals I(g) in the sense of Fact 3.5. ロ

Our presentation of J as {エ(T)I T E'I} also shows that there is po-
tentially more than one way to extend〈FinnI n E w〉linearlyinto the 
transfinite. For example, fix any sequence 

cf=句 Io<aく叫

where eachず°'isin turn a sequence from a¥ 1 of length w, 

戸＝〈咋 InEw〉,

with either supremum a if a is a limit, and so that a-°'is the constant 

sequence with value a -1 otherwise. Then define T! by induction on 

a > 0 as follows: 

Tf =如，
T! ={<n>~t I n E w, t E~ 贔｝．

Then I(T!) is exactly Fin°'as it was defined in [1]. The sequence of ideals 

obtained in this way extends〈FinnIn E w〉.One should really write Finげ，a;
the question what the relationship of these ideals for different choices ofげ

is a special case of the analogue question forエ(T).
Obviously, the most all-encompassing choice for I would be to let戸 be

an enumeration of a for each limit a. By the fact that T ~ T'implies 
that I(T) andエ(T')differ only trivially, in this case it is obvious that the 
particular choice of sequence of enumerations is of no consequence. This 

is, as far as I can tell, how [15] defines Fin臼

Let us write 

叫＝吐Fini!•")
and allow us to write n0 and hide the dependence onげwhenit is distracting. 

Lemma 3.6 now immediately gives us: 

Corollary 3.8. If a< /3 <叫， n13:::; n0, regardless of the (implicit) choice 
of the sequenceげ．

The following question seems to be hard: 

Question 3.9. Is it consistent with ZFC that的<n? How about屯<a? 

Some light has been shed on this by Raghavan and Steprans [15] from 

which article we mention the following two results. 

Theorem 3.10. For each ideal of the form I=④ Fin五， b:::;nエ・
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Recall here that b, the bounding number, is defined as 

b = min{I刀:F<;:;;;w叉(VgE ww)(ヨfE F) f i* g}. 

The following was shown by Raghavan and Steprans in the same article. 

Theorem 3.11. For every o: E w1, min(-5, a) :::; aa :::; a. 

Recall here that ,5 is the splitting number (see, e.g., [3] for a definition). 

Thus, for a positive answer to Question 3.9 one must construct a model 

also of bさ-5< a. 
It is well-known (and also follows from Theorem 3.10 and Corollary 3.8) 

that ZF proves bさa.It is also known that -5 is independent from each of 

b and a individually. Some constellations of all three are also known to be 

consistent (see, e.g., [7]). The constructions tend to be difficult. 

3.2. The spectrum of maximal cofinitary groups and Zhang's fore-

ing. The cardinal invariant ag, i.e., the least size of a maximal cofinitary 

group, and more generally Spec(Gmcg), the possible sizes of maximal cofini-

tary groups, have drawn much interest. Very little is known about the 

relationship of ag to other cardinal characteristics; see the introduction of 

[5] for a partial survey of results in this direction. 

In connection with questions about Spec(Gmcg) the following forcing is 

very useful. Suppose we have a cofinitary group Q and we want to force to 

add a generic砂 ES00 such that the group generated by Q U {砂}is also 
cofinitary. If Q is countable, such砂 isin fact added by Cohen forcing. For 

any Q as above, such砂 canbe added by a forcing (Qg invented by Zhang 

[24]; this forcing reduces to Cohen forcing should Q be countable. Given 

the similarity to Cohen forcing, it is unsurprising that砂 isnot eventually 

different from any permutation in the ground model with the exception 

of permutations in Q. Thus, an iteration whose length has uncountable 

cofinality and which forces with (Qg at a set of stages which is unbounded 

in the length of the iteration adds a maximal cofinitary group which extends 

Q. 

We now proceed to give an exposition of this forcing, simplifying the 

definition and the main arguments. 

Let us fix some cofinitary group g and a letter X to stand for the new 
generic permutation added by our forcing. We shall need to talk about 

g * lF(X), the free products of g with the free group with single generator 
X. 

Clearly every element of g * lF(X) can be written uniquely as 

(1) w = g口X応...g閉
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with l = l(w) E wand where we demand that g'f E Q ¥ {lg} for O :Si :S l 
and J"t E Z ¥ {O} for O :S i < l. We will also write g'f for g閉:.Viand g災for
g『(thesubscripts stand for "left-most" and "right-most", of course). When 

l(w) > 0, we allow either of these (but no other g'f) to equal 0, the empty 
word, identified with lg. We also allow l(w) = 0, in which case w = 0, i.e., 

19Writing Wg,x for the set of words as in (1) equipped with an obvious 

operation of concatenate-and-reduce, we obtain a useful presentation of the 

group g * IF(X). 

Let us write J00 for the set of finite injective partial functions from w to 

w. (With the operation of concatenation of partial functions, it becomes 

an associative monoid, and also allowing inverses, a groupoid.) Let us 

momentarily fix s E J00・

Define a map w f--t w[s] for w E Wg,x by 

w[s] = 91訊 1••. g閤，

where l = l(w) and沼forj E Z ¥ {O} denotes ssgnJ concatenated with itself 
IJI times. That is, w[s] "replaces each X in w bys and each x-1 bys―1,,_ 
Writing also Ps for the map w f--t w[s], clearly 

Ps: Q * IF(X)→ loo, 
W→ Ps(w) = w[s] 

acts as a homomorphism of associative monoids and preserves taking in-

verses; in fact, it is the unique homomorphism of groupoids which restricts 

to the identity on g and sends X to s. 
Before we can define (Qg we need one last piece of terminology: Let us 

say that w。EWg,x is a proper conjugated subword of w1 E Wg,x if there 
exists w E Wg,x ¥ {0} such that w1 = w―lWoW. 

Definition 3.12 (The forcing (Qg). 

(a) Conditions of (Qg are pairs p = (sP, 戸） where s E J00 and FP~ 
Wg,x is finite and contains only words without proper conjugated 

subwords. 

(b) (sq, Fり：：：：：：IQlg (sP, F門ifand only if sq ;;2 sP, Fq ;;2 FP and for all 
w E FP ¥ Q, fix(w[sり） = fix(w'[s門）．

Transitivity is sometimes tedious to check; but not here. 

Lemma 3.13. The ordering ::;Qg is transitive. 

Proof. With the present definition ofさQgthis is completely obvious. ロ



77

DAVID SCHRITTESSER 

We write any condition p E (Qg as (sP, Fりifwe want to refer to the 
components of that condition. 

If G is (V, (Qg)-generic, we let 

砂=u SP. 
pEG 

Using requirement (b) and typical genericity arguments it is easy to see 

that 

P砂： Q * lF(X)→ 〈g訊〉
is an isomorphism of groups, and the image on the right is a cofinitary 

group. Moreover, 〈Q,凸 ismaximal with respect to the ground model, 
i.e., for no T E (S00 ¥ Q) n Vis Q U {砂，T}contained in a cofinitary group. 

Before we continue the discussion of (Qg, it is convenient to introduce 

the notion of path, which despite being fairly intuitive should be given a 

precise definition. 

Defimt10n 3.14 (Paths). Givens E /00 and a word a1 ... a1 E Wg,x where 

each ai E Q U {x,x-1}, the path of m E w under (w,s) is the sequence 

〈mk:k Ea〉,where m。=m, and where for each k, writing k = nl + i with 
i < n we have 

叫=(ai・ ・ ・a1wn1)[s](m), 

and where a is either w, or denotes the least k for which mk as above is not 

defined. In other words, the path is the sequence given by the following 

evaluations: 

・ ・.mk+lこ mk... ~m1+1~m1~ —... ~m1~m。 =m

We return to our discussion of Qg. First, let us explain why we do not al-

low arbitrary words with proper conjugated subwords in F匹 Forsupposing, 

e.g., g E g and n E fix(g) the condition (0, {X-1gX}) E Qg has no exten-
sion q E Qg with n E ran(呼）. Similarly, if w'E Wg,x and s E 100 are such 
that n E fix(w0[s]) and w E Wg,x is arbitrary, (s,{wXw'X-1w―1}) E Qg 

has no extension q E Qg with n E dom(呼）. This obstruction was already 
pointed out in [24, p. 42f.]. 

Previously, the strategy to avoid this obstruction has been to adopt a 

more complicated definition of :'.SIQlg, namely as follows. 

(b') (sq, 戸） :'.SIQlg (sP, Fりifand only if sq 2 sP, Fq 2 FP and for all 
w E FP and m E fix(w[s外）， thereis a non-empty subword w'of 
w such that letting w =叫w'w。andletting〈...m1,mo〉bethe 
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(w, sq)-path of m, mk E fix(w'[sP]) where k is the length of w。.We 
describe this situation by the following picture: 

w1 w wo 
m ←—叫←—叫←― m

With the above variant definition of :::;IQig it becomes possible to allow 

arbitrary words in F久includingwords with proper conjugated subwords. 

But since conjugate pairs of words have the same fixed points, it is enough 

to rule out infinitely many fixed points for words without proper conjugate 

subwords. 

The following is a much more streamlined version of the crucial lemma in 

[5] and [6] (a version exists also in [24]). Given this lemma, the remaining 

treatment of (Qg can take the path set out in, e.g., [6]. 

To state the lemma, let us clarify what we mean by the circular shift of 

a word in w E Wg,x: Writing w = Wz・ ・ ・w1 in the form as in (1) and given 
a permutation II : {1, ・ ・ ・, l}→ {1, ・ ・ ・, l} such that II(i) = i + k mod l for 
some k E w, we will refer to Wrr(l)・ ・ ・Wrr(l) as a circular shift of w. Thus, in 

particular, there are only finitely many circular shifts of a given word. 

Lemma 3.15 (Domain Extension for (Qg). Suppose s E !00, w E Wg,x 

has no proper conjugate subwords and n E w ¥ dom(s). Then for a co-

finite set of n', letting s'= s U { (n, n')}, we have that s'is injective and 

fix(w[s']) = fix(w[s]). 

Proof. Let W* be the set of subwords of circular shifts of w and pick n' 

arbitrary such that 

n'i LJ { fix(w'[s]): w'E W* ¥ {0} }, 
(2) n'i LJ { w'[ s「(n): i E { -1, 1}, w'E W*}, and 

n'i ran(s). 

By the last requirement s'is injective and by the middle requirement n'ヂn
since 0 E W*. 
Assume towards a contradiction that m。Efix(w[s']) ¥ fix(w[s]). As the 
(w, s)-path of m。differsfrom the (w, s')-path, the latter must contain an 
application of X to n or of x-1 to n'. Write this latter path (omitting 

some steps) as 

xi Cl) xi Co) 
(3) m。江 mk(l)+l←-mk(l)~··· 喜 mk(O)+l←-mk(O)こ m。
where for each i:::; l, j(i) E {-1,1} and {k(i): i:::; l} is the increasing 
enumeration of the set of k such that mk = n and X is applied or mk = n' 

and x-1 is applied at step k. Thus by definition wi[s] =叫s']for each 

iさl+ 1. 
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The following hold by definition of the k(i) and by choice of n': 

(i) Unless i = 0 or i = l + 1, wi =I= 0 f : or assummg otherwise, J (i -1) = 
j(i) is impossibly as n =I= n'; but j(i -1) =I= j(i) is also impossibly 
as adjacent X and x-1 cannot cancel. 

(ii) For no i :::; l is it the case that wi sends n to n'or vice versa. 

(iii) For no i :::; l is n'a fixed point of wi[s] unless wi = 0. 

From this it follows that if O < i < l + 1, the values in the path appearing 
adjacent to wi (i.e., mk(i-l)+i and mk(i)) are both n. There is at least one 

such i, for the path cannot have the following form: 

(4) 
w1 XJ(O) wo 

m。←-mk(O)+l← -mk(O) ←— m。

for then w0w1 a subword of a cyclic shift of w or its inverse sends n to 

n'which is impossible by choice of n'. Thus w2 and j(l) are defined; as n' 

can appear on neither side of叫 wehaven E fix(w1), mk(l) = mk(l)+l = n, 
j(O) = -1, and j(l) = 1. (Observe that here the proof is done if we work 

with the definition of our partial order as given in (b')). 
Fi叫 lyj(2) cannot be defined as otherwise w3 must be non-empty and 

send n'to one of { n, n'}, contradicting Items (ii) or (iii) above. So the path 

in (3) has the following form: 

(5) m。 ~n' 紅~n~n?---n'~m。

As w3w1 is a subword of a cyclic shift of w, w3w1 = 0 since we made sure 
n'~fix(w剥i[s]) otherwise. So叫＝叫―1and叩 isa conjugate subword 

of w. In fact, by the presence of X and x-1 adjacent to w2, it is a proper 

conjugate subword. Since we assumed that w had no proper conjugate 

subword we reach a contradiction. 口

4. OPTIMAL PROJECTIVE WITNESSES 

Questions about the spectrum of a hypergraph G other than to give a 

particular value to its minimum are of interest. For example, one can ask 

whether it is consistent with→ CH that Spec(G) = {叱，2w},or how to find 
maximal discrete set whose size lies strictly between the minimum and 2w 

in Spec(G). 

In particular, one might be interested in the minimum definitional com-

plexity of a maximal discrete set D of a given size K, from the spectrum of 

G. 

Definition 4.1. Fix a hypergraph G = (X, H) and a cardinal IE Spec(G). 
We say D is a II; (resp. △ ;) witness to I if D is II; (resp. △い maximal

G-discrete set of size 1. We say such a witness is optimal if there is no~ い
or IIいmaximalG-discrete D'set with IDI = K,-i.e., there is no witness 
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to I of strictly lower complexity in terms of the projective hierarchy. The 

term (optimal) projective witness (to 1) has the obvious meaning, i.e., a 

塁_1or IIいsuchwitness for some n E w. 
Conjecture 4.2. Suppose GCH and that凸く 1< "'are cardinals of 
uncountable co finality. Then there is a cardinal preserving forcing extension 

of V in which 2w = K, and there is a projective witness to 1. In fact there 
exists a good II~witness to 1. 

A version of this conjecture has been shown in [5]; unfortunately, this 

version restricts 1,"'to lie below心.One reason for this is that the proof 
of the full conjecture would presumably use Jensen coding, which is noto-

riously cumbersome to work with. 

The following loosely related question is open: 

Question 4.3. Is it consistent with ZF +DC+ ,CH that every cofinitary 

group Q with 191 < 2w can be extended to am  maximal cofinitary group? 

In this connection we also make the following conjecture: 

Conjecture 4.4. It is consistent with ZF +DC+ ,CH that every cofinitary 

group Q with 191 < 2w can be extended to a II~maximal cofinitary group of 

size IQ「.

In a model witnessing a positive answer to the above conjecture, there 

is an optimal II~witness to every cardinal of uncountable cofinality in 

Spec(Gmcg)-

To prove such conjectures, or generally when one wants to create optimal 

projective witnesses for Gmcg, a version of Zhang's forcing with "built-in 

coding''becomes important. We shall now present such a forcing (an earlier, 

less streamlined version can be found in [5]; more or less distant ancestors 

can also be found in [6, 13]). 

4.1. Zhang's forcing with coding. Fix a cofinitary group Q. Our goal is 

again to add a generic permutation CY such that〈gしl{CY}〉iscofinitary and 
maximal with respect to permutations from the ground model. This time, 

we want to make sure that each permutation g E〈QU{CY}〉¥Q、'codes"a real 
z9 in the sense that筑 iscomputable from g―similar to the assumption 
made in Theorem 1.5. The map g← 砂 willbe given at the outset, in the 
ground model, in the form of a map 

芝： Q * IF(X) ¥ Q→ w2. 

Before we can define the forcing, we need to fix the algorithm used in 

the coding of zw by the generic permutation w[戸］．



81

DAVID SCHRITTESSER 

Definition 4.5 (Coding). From now on, let〈Pn: n E w〉denotethe 
enumeration of the prime numbers in increasing order. 

Let a sequence x E 2-<::w be given. Suppose a is a partial function from 

w tow and w E Wg,x has no proper conjugate subwords and X or x-1 
occurs at least once in w. 

(6) 

(1) We say (w, a) codes x with parameter m if and only if 

(¥/k < lh(x)) w砕此~)位](m)= x(k) (mod 2). 
(2) Suppose now that lh(x) < w. We say that (w, a) exactly codes x 
with parameter m if (w, び） codes x and in addition 

lh(x) 

X加wPih(w)[a](m) is undefined, 

where i is the sign of j訊i.e.,the exponent of the right-most oc-
currence of X or x-1 in w. In other words, at least for lh(x) > 0, 
(w, a) exactly codes x if the path of m under (w, a) is of minimal 

possible length under the requirement that it codes X・We require 

this so we have enough freedom to separate different coding paths 

for incomparable words in the density argument showing that it is 

forced that w囮]codesる(w).
(3) We say that m'is the critical point in the path of m under (w, a) if 

for some k E w, 

m'= (gりXり―lWPthi↓)[a](m) 

where i is the sign of j閉~)-l'i.e., the exponent of the left-most 

occurrence of X or x-1 in w. We define this terminology because, 
when extending a so that the path of m increases in length with 

the purpose of achieving exact coding of a given X, it is precisely at 

critical points that exact coding imposes a non-trivial requirement 

for this extension. 

Now in addition to the cofinitary group Q, suppose we are given a map 

芝： g * IF(X) ¥ g→ w2. 

Definition 4.6. Let the forcing (Q~consist of conditions p = (sP, FP, 叩）
where (s丸戸） E (Qg and叩 isa function from戸 tothe set of words in 

Wg,x in which X or x-1 occurs at least once and which have no proper 
conjugate subword, and moreover p satisfies 

(E) for each w E dom(rr炉） there exists a (unique) l which we denote by 
lE such that (w, 呼） exactly codes芝(w)r l with parameter mP(w). 

The ordering on国 isas follows: Let q さIQI~p if (sq, FりさIQig(sP, 戸） in 
(Qg and mPこmq.
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One can then show the following facts: 

Facts 4. 7. Let G be a⑳ -generic filter and let 

砂 =LJ{sPlpEG}.

The permutation砂 hasthe following properties: 

(I) The group〈QU{砂｝〉 iscofinitary. 
(II) If T is a ground model permutation, T~g, and〈{T}LJQ〉iscofini-
tary, there are infinitely many n such that T(n) =砂(n)and so 

〈gu詞}LJ {T}〉isnot cofinitary; 
(III) For each w E Wg,x with at least one occurrence of X or x-1 and 
without proper conjugate subwords there ism E w such that w[砂］
codes z(w) with parameter m. 

We omit all proofs regarding this forcing; but we shall try to give at least 

an idea of how the forcing generically achieves the coding of z(w) by w[砂］．

Lemma 4.8 (Generic Coding). Suppose w E Wg,x with at least one oc-

currence of X or x-1 and without proper conjugate subwords. For l E w, 
let D汀 denotethe set of q E Q~such that w E dom(叩） and for some 
l'2'. l, q exactly codesゑ(w)f l'with parameter叩 (w).Then D口沢 isdense 
in喝

Sketch of proof idea. Let w and a condition q E Q~be given and write 
l = lZi; it suffices to find a stronger condition r such that l~= l + l. In 
fact, of the components of q and r only sq and亙 willdiffer (we assume 

that w Edom(叩）； if not, it is easy to first find m so that sq codes 0 with 
parameter m and extend q by adding (w, m) to町）．
To achieve l~= l + l we must ensure exact coding of芝(w)「l+ l. The 
only difficulty is that there may be other words w'E dom(即） whose coding 
paths merge with the coding path of w; here, by a coding path of a word 

w'we mean the path under (w', sりof叩 (w').
So our task is to extend sq finitely many times to obtain sr in such a 

way that with each extension, we separate the coding paths of each of the 

relevant words w'E dom(叩）， ifpossible. To do this one uses the same 
method as in the proof of the Domain Extension Lemma 3.15. 

It turns out that the only coding paths which cannot be made to diverge 

before reaching a critical point are those of words w', w" dom(ii祁） such 
that either w'is a subword of w" or vice versa. This is because if w'is 

こ—incomparable to w" then before reaching the next critical point in the 

coding path of w'we must reach a point where w'and w" differ in the 

next letter to be applied (it is crucial that Plh(w') > 1, for the critical point 
comes before g'f'and the part of the coding path we have control over 
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starts after g閉）. One sees easily that this suffices to allow us to continue in 
the process of extending呼 insuch a way that the coding paths associated 

to こ—incomparable w', w" E dom(mりseparatewhen they reach the first 
letter where w'itself diverges from w" (here one uses that g is cofinitary). 
Therefore, it remains to see that none of the exact coding requirements 

for the s;;; —comparable pairs of words w', w" E dom(叩） create a conflict. 
But it is easy to show that no point in any coding path can be critical 

for more that one such word. This is by a simple argument involving the 

details of our coding mechanism, the length of the path up to the critical 

point, and the prime divisors of this length. It is crucial here any pair 

w', w" of distinct s;;; —comparable words must differ in length; and hence the 

coding mechanism uses a greater prime for the longer of the two words w' 

and w". ロ
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