Devil＇s infinite chessboard puzzle under a weaker choice principle

Masaru Kada 嘉田 勝（大阪府立大学）
Souji Shizuma 静間荘司（大阪府立大学）

1 Devil＇s chessboard puzzle

As a usual convention in set theory，we identify a natural number n and the set $\{0, \ldots, n-1\}$ of natural numbers less than n ，and ω denotes the set of all natural numbers．For a set $S,{ }^{S} 2$ denotes the set of all functions from S to $2=\{0,1\}$ ，whereas by 2^{n} we will mean the usual arithmetic exponentiation．We will often regard the set $2=\{0,1\}$ as the two－element cyclic group $\mathbb{Z}_{2}=(\mathbb{Z} / 2 \mathbb{Z},+)$ ，and for $f, g \in{ }^{S} 2, f+g$ denotes the usual coordinatewise addition in ${ }^{S}\left(\mathbb{Z}_{2}\right)$ ．

Devil＇s chessboard puzzle，also known as life or death problem，is a mathematical puzzle which can be formulated as follows．Fix a natural number $b \in \omega$ ．Alice wants to send Bob a b－bit message $m \in{ }^{b} 2$ under the following conditions：
（1）The only medium available to Alice is a given 2^{b}－bit sequence $\sigma \in\left({ }^{b} 2\right) 2$ which Bob cannot see．
（2）Alice is allowed only to flip（change 0 to 1 or the other way round）exactly one place of the sequence σ and to send Bob the resulting sequence．
（3）Alice and Bob can share a strategy in advance（before Alice sees σ ）．
The question is to find a strategy with which Alice can successfully send Bob a message．The word＂chessboard＂comes from the special case when $b=6$（and hence $2^{b}=64=8 \times 8$ ）．It is known that there is such a strategy for each $b \in \omega$（folklore； see［1］for example）．

In the present paper we will generalize this question to infinity．
First，we just put any cardinal κ（either finite or infinite）into b ，that is，Alice sends Bob a function $\mu \in{ }^{\kappa} 2$ using a given function $\sigma \in{ }^{\left({ }^{\kappa} 2\right)} 2$ as a medium．We will employ the concept of parity functions，which was suggested by Geschke，Lubarsky

[^0]and Rahn [2], to generalize a standard strategy for a finite case to infinite cases.
Second, we replace ${ }^{b} 2$ by ω, that is, we consider the situation that Alice sends Bob a natural number $m \in \omega$ using a given $\sigma \in{ }^{\omega} 2$ as a medium.

2 Parity function

Geschke, Lubarsky and Rahn [2] introduced a notion of parity functions to investigate "infinite hat guessing games". We say, for a set S, a function p from ${ }^{S} 2$ to 2 is a parity function on S if it has the following property.

For $f, g \in{ }^{S} 2$, if $f(x) \neq g(x)$ holds for exactly one $x \in S$, then $p(f) \neq p(g)$.
Clearly, if S is finite, then the function p determined by $p(f)=\sum_{x \in S} f(x)$, where \sum is taken in \mathbb{Z}_{2}, is a parity function on S. On the other hand, the existence of a parity function p on ω cannot be proved under ZF alone, since the set $p^{-1}(\{1\}) \subseteq{ }^{\omega} 2$ would be Lebesgue nonmeasurable and fail to have the Baire property [2, Theorem 10].

The following theorem assures the existence of a parity function on ω under AC.
Theorem 2.1. [2, Lemma 6] There is a parity function p on ω.
The following proof, which is called "the E_{0}-transversal proof" in [2], is essentially the proof of Lenstra's theorem presented in [3]. What we actually need in the proof is a selection of representatives of the quotient set $2^{\omega} / E_{0}$, where E_{0} denotes the equality modulo finitely many places. We may regard the existence of a set of representatives of $2^{\omega} / E_{0}$ as a weaker choice principle. See [2, Section 3] for more information.

Proof. Let A be a set of representatives for the quotient set $2^{\omega} / E_{0}$. Define a function p from ${ }^{\omega} 2$ to 2 in the following way. For $s \in{ }^{\omega} 2$, let t be the unique element of A with $s E_{0} t$, and let $p(s)=1$ if $|\{n \in \omega: s(n) \neq t(n)\}|$ is an odd number and $p(s)=0$ otherwise. It is easily checked that this p works.

It is easy to generalize the theorem above to the one asserting the existence of a parity function on λ for any infinite cardinal λ.

3 Strategies

This section is devoted to the construction of successful strategies in Devil's infinite chessboard puzzles.

Let κ be a cardinal, either finite or infinite, and we deal with the case when Alice sends Bob a message $\mu \in{ }^{\kappa} 2$ using a $\sigma \in\left({ }^{\left({ }^{2}\right)} 2\right.$ as a medium. We call such a puzzle a ${ }^{\kappa} 2$-chessboard puzzle.

Theorem 3.1. For any cardinal κ, there is a successful strategy for $a^{\kappa} 2$-chessboard puzzle.
Proof. Fix a cardinal κ and a parity function p on ${ }^{\kappa} 2$. For a function $\tau \in{ }^{\left({ }^{\kappa} 2\right)} 2$, we define a function $\pi_{\tau} \in{ }^{\kappa} 2$ in the following way. For each $\alpha \in \kappa$, define $\llbracket \tau \rrbracket_{\alpha} \in{ }^{\left({ }^{\kappa} 2\right)} 2$ by
letting, for each $\eta \in{ }^{\kappa} 2$,

$$
\llbracket \tau \rrbracket_{\alpha}(\eta)= \begin{cases}\tau(\eta) & \text { if } \eta(\alpha)=1 \\ 0 & \text { otherwise }\end{cases}
$$

Then define $\pi_{\tau} \in{ }^{\kappa} 2$ by letting $\pi_{\tau}(\alpha)=p\left(\llbracket \tau \rrbracket_{\alpha}\right)$ for each $\alpha \in \kappa$. Observe that, if two functions $\tau, \tau^{\prime} \in{ }^{\left({ }^{\kappa} 2\right)} 2$ take different values only at one point $\zeta \in{ }^{\kappa} 2$, then $\pi_{\tau}(\alpha) \neq \pi_{\tau^{\prime}}(\alpha)$ if and only if $\zeta(\alpha)=1$. This property will help Alice find the right place to flip.

Suppose that Alice has a medium $\sigma \in\left({ }^{\kappa 2} 2\right) 2$ and wants to send Bob a message $\mu \in{ }^{\kappa} 2$.

Let $\zeta_{\sigma, \mu}=\pi_{\sigma}+\mu$, and σ_{μ} be the function which is obtained from σ by flipping the value at $\zeta_{\sigma, \mu}$. By the observation, we have $\pi_{\sigma_{\mu}}(\alpha)=\mu(\alpha)$ for all $\alpha \in \kappa$.

Therefore, the following strategy is successful: Alice and Bob share a parity function p on 2^{κ} in advance. Alice calculates σ_{μ} and send it to Bob, and Bob regains μ by calculating $\pi_{\sigma_{\mu}}(\alpha)$ for all $\alpha \in \kappa$.

Now we turn to the case when Alice sends Bob a message $m \in \omega$ using a medium $\sigma \in{ }^{\omega} 2$. We call this an ω-chessboard puzzle.

Theorem 3.2. There is a successful strategy for an ω-chessboard puzzle.
We will present two proofs. The first proof, due to Shohei Tajiri (in a private communication), uses a selection of representatives of the quotient set $2^{\omega} / E_{0}$. The second proof only uses a parity function on ω.
First proof. In the beginning Alice and Bob share a set A of representatives of $2^{\omega} / E_{0}$.
For $f, g \in{ }^{\omega} 2$ with $f E_{0} g$, let $N(f, g)=\min \{N<\omega: f(n)=g(n)$ for all $n \geq N\}$.
Suppose that Alice has a message $m \in \omega$ and a given medium $\sigma \in{ }^{\omega} 2$. Find the unique $h \in A$ with $h E_{0} \sigma$, and $l=N(h, \sigma)$. Let $\tilde{\sigma}$ is the function obtained from σ by flipping the value at $N+m$. Note that $N(h, \tilde{\sigma})=N+m+1$. Alice sends Bob the function $\tilde{\sigma}$.

Now Bob can decode the message m from $\tilde{\sigma}$ in the following way. Find the unique $h^{\prime} \in A$ with $h^{\prime} E_{0} \tilde{\sigma}$. Let $l^{\prime}=N\left(h^{\prime}, \tilde{\sigma}\right)$. Clearly $h^{\prime}=h$, and hence Bob can regain σ from $\tilde{\sigma}$ by flipping the value at $l^{\prime}-1$, and also find $l=N(h, \sigma)$. Finally Bob obtains $m=\left(l^{\prime}-1\right)-l$.

For the second proof we employ the binary expression of natural numbers. For $f \in{ }^{\omega} 2$ such that $f^{-1}(\{1\})$ is finite, we define $\sharp(f)=\sum_{i \in \omega} f(i) 2^{i}$. For the other way round, for each $n \in \omega,\langle n\rangle$ denotes the unique $f \in{ }^{\omega} 2$ with $n=\sharp(f),\langle n\rangle_{i}=f(i)$ for each i, and $\operatorname{lh}(n)=\min \left\{N \in \omega: f^{-1}(\{1\}) \subseteq N\right\}$.
Second proof. In the beginning Alice and Bob share a parity function p on ω. We set an encoding and decoding scheme which is similar to the one in the proof of the preceding theorem. For a function $\tau \in{ }^{\omega} 2$, we define a function $\pi_{\tau} \in{ }^{\omega} 2$ in the
following way. For each $a \in \omega$, define $\llbracket \tau \rrbracket_{a} \in{ }^{\omega} 2$ by letting, for each $k \in \omega$,

$$
\llbracket \tau \rrbracket_{a}(k)= \begin{cases}\tau(k) & \text { if }\langle k\rangle_{a}=1 \\ 0 & \text { otherwise }\end{cases}
$$

Then define $\pi_{\tau} \in{ }^{\omega} 2$ by letting $\pi_{\tau}(a)=p\left(\llbracket \tau \rrbracket_{a}\right)$ for each $a \in \omega$. If two functions $\tau, \tau^{\prime} \in{ }^{\omega} 2$ disagree only at one point $z \in \omega$, then $\pi_{\tau}(a) \neq \pi_{\tau^{\prime}}(a)$ if and only if $\langle z\rangle_{a}=1$. Note that flipping the value of τ at $z \in \omega$ does not affect values of π_{τ} at $n \geq \operatorname{lh}(z)$.

Suppose that Alice has a message $m \in \omega$ and a given medium $\sigma \in{ }^{\omega} 2$. Let $N_{m}=$ $\operatorname{lh}(m)$ and $\tilde{m}=(2 m+1) \cdot 2^{N_{m}}$. Note that

$$
\langle\tilde{m}\rangle_{i}= \begin{cases}0 & \text { if } i<N_{m} \\ 1 & \text { if } i=N_{m} \\ \langle m\rangle_{i-\left(N_{m}+1\right)} & \text { if } N_{m}+1 \leq i<2 N_{m}+1 \\ 0 & \text { if } 2 N_{m}+1 \leq i\end{cases}
$$

Alice will embed \tilde{m} into σ in a similar, but slightly different, way as in the proof of the preceding theorem.

Define a function $z_{\sigma, m} \in{ }^{\omega} 2$ by

$$
z_{\sigma, m}(i)= \begin{cases}\pi_{\sigma}(i)+\langle\tilde{m}\rangle_{i} & \text { if } i<2 N_{m}+1 \\ 0 & \text { otherwise }\end{cases}
$$

where + is calculated in \mathbb{Z}_{2}. Let $\sigma_{m} \in^{\omega} 2$ be the one obtained from σ by flipping the value at $\sharp\left(z_{\sigma, m}\right)$. Alice sends Bob the function σ_{m}.

Bob calculates $m_{a}=\pi_{\sigma_{m}}(a)$ for all $a \in \omega$ and regains $N_{m}=\min \left\{a \in \omega: m_{a}=1\right\}$. Then Bob obtains the message m by calculating

$$
\sum_{i=N_{m}+1}^{2 N_{m}} m_{i} 2^{i-\left(N_{m}+1\right)}
$$

which concludes the proof.
It seems natural to ask, for an infinite cardinal λ, if there is a successful strategy when Alice wants to send Bob a message $\mu \in \lambda$ using a given $\sigma \in{ }^{\lambda} 2$ as a medium. Theorem 3.1 applies in the case when $\lambda=2^{\kappa}$ holds for some cardinal κ. Also, when $2^{<\lambda}=\lambda$ holds, it is not so hard to modify Theorem 3.2 to fit in this case. AC will be used only to ensure the existence a parity function on λ, and Alice and Bob will share two bijections: one is $\psi: \lambda \rightarrow{ }^{<\lambda} 2$, and the other is $\varphi: \kappa \times 2 \rightarrow \kappa$ such that, for any $\beta<\kappa, \varphi^{\prime \prime}(\beta \times 2)$ is bounded in κ. Details are left to the reader as an exercise.

References

［1］Pau Cantos Coll．Coding theory in a life or death problem，2018．IB Extended Eassay．
［2］S．Geschke，R．Lubarsky，and M．Rahn．Choice and the hat game．In Infinitary combinatorics in set theory and its applications，No． 1949 in RIMS Kokyuroku， pp．34－44．Research Institute for Mathematical Sciences，Kyoto University， 2015.
［3］C．S．Hardin and A．D．Taylor．The Mathematics of Coordinated Inference． Springer， 2010.

Masaru KADA（嘉田 勝）
Graduate School of Science，Osaka Prefecture University
1－1 Gakuen－cho，Naka－ku，Sakai Osaka 599－8531 JAPAN
kada＠mi．s．osakafu－u．ac．jp

Souji SHIZUMA（静間 荘司）
Graduate School of Science，Osaka Prefecture University
1－1 Gakuen－cho，Naka－ku，Sakai Osaka 599－8531 JAPAN
dd305001＠edu．osakafu－u．ac．jp

[^0]: 2010 Mathematics Subject Classification：Primary 03E05；Secondary 03E20，03E25．
 Keywords：devil＇s chessboard，hat guessing game，hat puzzle，axiom of choice．

