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1 Devil's chessboard puzzle 

（大阪府立大学）

（大阪府立大学）

As a us叫 conventionin set theory, we identify a natural number n and the set 

{ 0, ... , n -1} of natural numbers less than n, and w denotes the set of all natural 
numbers. For a set S, 82 denotes the set of all functions from S to 2 = {O, 1 }, whereas 

by勿 wewill mean the usual arithmetic exponentiation. We will often regard the set 

2 = {O, 1} as the two-element cyclic group Z2 = (Z/2乙+),and for f,g E 82, f + g 

denotes the usual coordinatewise addition in噂砂
Devil's chessboard puzzle, also known as life or death problem, is a mathematical 

puzzle which can be formulated as follows. Fix a natural number b E w. Alice wants 
to send Bob a b-bit message m E b2 under the following conditions: 

(1) The only medium available to Alice is a given 2b-bit sequence a E化2)2which 

Bob cannot see. 

(2) Alice is allowed only to flip (change O to 1 or the other way round) exactly one 
place of the sequence a and to send Bob the resulting sequence. 

(3) Alice and Bob can share a strategy in advance (before Alice sees a). 

The question is to find a strategy with which Alice can successfully send Bob a 

message. The word "chessboard" comes from the special case when b = 6 (and hence 

沙=64 = 8 x 8). It is known that there is such a strategy for each b E w (folklore; 

see [1] for example). 
In the present paper we will generalize this question to infinity. 

First, we just put any cardinal r;, (either finite or infinite) into b, that is, Alice 

sends Bob a functionμE "2 using a given function a Eげ）2 as a medium. We will 

employ the concept of parity functions, which was suggested by Geschke, Lubarsky 
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and Rahn [2], to generalize a standard strategy for a finite case to infinite cases. 

Second, we replace b2 by w, that is, we consider the situation that Alice sends Bob 

a natural number m E w using a given u E w2 as a medium. 

2 Parity function 

Geschke, Lubarsky and Rahn [2] introduced a notion of parity functions to investigate 
"infinite hat guessing games". We say, for a set S, a function p from翌 to2 is a 

parity function on S if it has the following property. 

For f, g E 82, if f(x)ナg(x) holds for exactly one x E S, then p(f) /-p(g). 

Clearly, if Sis finite, then the function p determined by p(f) = Lx:=S f(x), where L 
is taken in Z2, is a parity function on S. On the other hand, the existence of a parity 

function p on w cannot be proved under ZF alone, since the set p―1({1}) s:;; 竺2would 
be Lebesgue nonmeasurable and fail to have the Baire property [2, Theorem 10]. 

The following theorem assures the existence of a parity function on w under AC. 

Theorem 2.1. [2, Lemma 6] There is a parity function p on w. 

The following proof, which is called "the E。-transversalproof" in [2], is essentially 

the proof of Lenstra's theorem presented in [3]. What we actually need in the proof is 
a selection of representatives of the quotient set 2w / E。,where E。denotesthe eq叫 ity

modulo finitely many places. We may regard the existence of a set of representatives 

of 2w /E。asa weaker choice principle. See [2, Section 3] for more information. 

Proof. Let A be a set of representatives for the quotient set 2w / E。.Define a function 
p from w2 to 2 in the following way. For s E w2, let t be the unique element of A 

withs E。t,and let p(s) = 1 if l{n E w: s(n)ナt(n)}Iis an odd number and p(s) = 0 

otherwise. It is easily checked that this p works. ロ

It is easy to generalize the theorem above to the one asserting the existence of a 
parity function on入forany infinite cardinal入．

3 Strategies 

This section is devoted to the construction of successful strategies in Devil's infinite 

chessboard puzzles. 
Let ;;, be a cardinal, either finite or infinite, and we deal with the case when Alice 

sends Bob a messageμE "2 using a a E口）2 as a medium. We call such a puzzle a 

"2-chessboard puzzle. 

Theorem 3.1. For any cardinal;;,, there is a successful strategy for a "2-chessboard 
puzzle. 

Proof. Fix a cardinal氏 anda parity function p on "2. For a function T E□) 2, we 
define a function元 E"2 in the following way. For each a E ;;,, define [T]a E (に2)2by 
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letting, for each'T/ E氏2,

[T]a(TJ) = { T(TJ) if TJ(O:) = 1, 
0 otherwise. 

Then define 1r 7 E /'(,2 by letting元 (a)= p([T]。)for each a E Ii. Observe that, 

if two functions T, T1 Eに2)2take different values only at one point (E /'(,2, then 

元 (a)#元 ,(a)if and only ifく(a)= 1. This property will help Alice find the right 

place to flip. 

Suppose that Alice has a medium a Eに2)2and wants to send Bob a message 

μE竺t
Let (u,μ= 1r u +μ, and aμbe the function which is obtained fromび byflipping the 

value atくu,μ-By the observation, we have叩びμ(a)=μ(a)for all a E Ii. 

Therefore, the following strategy is successful: Alice and Bob share a parity function 

p on 2/'(, in advance. Alice calculates aμand send it to Bob, and Bob regainsμby 

calculating厄uμ(a)for all a E Ii. ロ

Now we turn to the case when Alice sends Bob a message m E w using a medium 

aE竺2.We call this an w-chessboard puzzle. 

Theorem 3.2. There is a successful strategy for an w-chessboard puzzle. 

We will present two proofs. The first proof, due to Shohei Tajiri (in a private 

communication), uses a selection of representatives of the quotient set 2w / E。.The 

second proof only uses a parity function on w. 

First proof. In the beginning Alice and Bob share a set A of representatives of 2w / E。•

For f,g E勺 withf E。g,let N(f,g) = min{N < w: f(n) = g(n) for all n::,. N}. 

Suppose that Alice has a message m E w and a given medium a E w2. Find the 

unique h E A with h E。a,and l = N(h, a). Let u is the function obtained from a by 

flipping the value at N + m. Note that N(h, u) = N + m + 1. Alice sends Bob the 

function u. 

Now Bob can decode the message m from u in the following way. Find the unique 

h'EA with h'E。u.Let l'= N(h',u). Clearly h'= h, and hence Bob can regain a 

from a by flipping the value at l'-1, and also find l = N(h, a). Finally Bob obtains 

m = (l'-1) -l. ロ

For the second proof we employ the binary expression of natural numbers. For 

f E w2 such that f―1 ({ 1}) is finite, we define山(!)=区 f(i) 2i. For the other way iEw 

round, for each n E w, 〈n〉denotesthe unique f E w2 with n =じ(!),〈n〉i= f(i) for 

each i, and lh(n) = min{N E w: f―1 ({ 1}) s;; N}. 

Second proof. In the beginning Alice and Bob share a parity function p on w. We 

set an encoding and decoding scheme which is similar to the one in the proof of the 

preceding theorem. For a function T E w2, we define a function 7r7 E w2 in the 
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following way. For each a E w, define [T]a E w2 by letting, for each k E w, 

［中(k)= { T(k) if〈K〉a=1, 
0 otherwise. 

Then define元 Ew 2 by letting后 (a)= p([T]a) for each a E w. If two functions 

T, T1 E w2 disagree only at one point z E w, then元(a)-/-元,(a) if and only if 

〈z〉 =1. Note that flipping the value of T at z E w does not affect values of冗 at
a 

n 2 lh(z). 
Suppose that Alice has a message m E wand a given medium er E w2. Let Nm= 

lh(m) and m = (2m + 1)・2叫 Notethat 
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if i < N加

if i = N加

if N rn + 1 ::; iく 2Nrn+ 1, 

if 2Nrn + 1 ::; i. 

Alice will embed m into CY in a similar, but slightly different, way as in the proof 

of the preceding theorem. 

Define a function Za,m E竺2by 

Za,m(i) = { 7ra(i) +〈尻 ifiく 2Nm+1, 

゜
otherwise. 

where + is calculated in Z2. Let叩 E吟 bethe one obtained from a by flipping the 

value at~(za,m)- Alice sends Bob the function a加

Bob calculates ma = 1rび"'(a)for all a E w and regains Nm= min{ a E w : 叫=1}. 
Then Bob obtains the message m by calculating 

t四 i-(Nm+l),

i=Nm+l 

which concludes the proof. 口

It seems natural to ask, for an infinite cardinal入， ifthere is a successful strategy 

when Alice wants to send Bob a messageμE入usinga given a-E入2as a medium. 
Theorem 3.1 applies in the case when入=2" holds for some cardinal ,-,,_ Also, when 

2<入＝入 holds,it is not so hard to modify Theorem 3.2 to fit in this case. AC will 

be used only to ensure the existence a parity function on入， andAlice and Bob will 

share two bijections: one isゆ：入→ ＜入2,and the other is cp : ,-,, x 2→ ,-,, such that, for 

any {3 < ,-,,, cp"(/3 x 2) is bounded in ,-,,_ Details are left to the reader as an exercise. 
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