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Devil’s infinite chessboard puzzle

under a weaker choice principle
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1 Devil's chessboard puzzle

As a usual convention in set theory, we identify a natural number n and the set
{0,...,n — 1} of natural numbers less than n, and w denotes the set of all natural
numbers. For a set S, 2 denotes the set of all functions from S to 2 = {0, 1}, whereas
by 2" we will mean the usual arithmetic exponentiation. We will often regard the set
2 = {0,1} as the two-element cyclic group Zg = (Z/2Z,+), and for f,g € 92, f + ¢
denotes the usual coordinatewise addition in °(Z,).

Dewil’s chessboard puzzle, also known as life or death problem, is a mathematical
puzzle which can be formulated as follows. Fix a natural number b € w. Alice wants
to send Bob a b-bit message m € *2 under the following conditions:

(1) The only medium available to Alice is a given 2°-bit sequence o € (*22 which
Bob cannot see.

(2) Alice is allowed only to flip (change 0 to 1 or the other way round) exactly one
place of the sequence ¢ and to send Bob the resulting sequence.

(3) Alice and Bob can share a strategy in advance (before Alice sees o).

The question is to find a strategy with which Alice can successfully send Bob a
message. The word “chessboard” comes from the special case when b = 6 (and hence
2b = 64 = 8 x 8). It is known that there is such a strategy for each b € w (folklore;
see [1] for example).

In the present paper we will generalize this question to infinity.

First, we just put any cardinal s (either finite or infinite) into b, that is, Alice
sends Bob a function p € #2 using a given function o € ("?2 as a medium. We will
employ the concept of parity functions, which was suggested by Geschke, Lubarsky
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and Rahn [2], to generalize a standard strategy for a finite case to infinite cases.
Second, we replace *2 by w, that is, we consider the situation that Alice sends Bob
a natural number m € w using a given o € “2 as a medium.

2 Parity function

Geschke, Lubarsky and Rahn [2] introduced a notion of parity functions to investigate
“infinite hat guessing games”. We say, for a set S, a function p from 92 to 2 is a
parity function on S if it has the following property.

For f,g € 92, if f(x) # g(x) holds for exactly one 2 € S, then p(f) # p(g).

Clearly, if S is finite, then the function p determined by p(f) = > c5 [(), where )
is taken in Zs, is a parity function on S. On the other hand, the existence of a parity
function p on w cannot be proved under ZF alone, since the set p 1({1}) C “2 would
be Lebesgue nonmeasurable and fail to have the Baire property [2, Theorem 10].
The following theorem assures the existence of a parity function on w under AC.

Theorem 2.1. [2, Lemma 6] There is a parity function p on w.

The following proof, which is called “the Ey-transversal proof” in [2], is essentially
the proof of Lenstra’s theorem presented in [3]. What we actually need in the proof is
a selection of representatives of the quotient set 2“/Ey, where Fy denotes the equality
modulo finitely many places. We may regard the existence of a set of representatives
of 2¥/Ey as a weaker choice principle. See [2, Section 3] for more information.

Proof. Let A be a set of representatives for the quotient set 2 /Ey. Define a function
p from “2 to 2 in the following way. For s € “2, let ¢ be the unique element of A
with s Eg ¢, and let p(s) = 1if |{n € w: s(n) # t(n)}| is an odd number and p(s) =0
otherwise. It is easily checked that this p works. O

It is easy to generalize the theorem above to the one asserting the existence of a
parity function on A for any infinite cardinal A.

3 Strategies

This section is devoted to the construction of successful strategies in Devil’s infinite
chessboard puzzles.

Let k be a cardinal, either finite or infinite, and we deal with the case when Alice
sends Bob a message 1 € #2 using a o € ("?2 as a medium. We call such a puzzle a
®2-chessboard puzzle.

Theorem 3.1. For any cardinal , there is a successful strategy for a “2-chessboard
puzzle.

Proof. Fix a cardinal xk and a parity function p on *2. For a function 7 € (N?)Q, we
define a function 7, € #2 in the following way. For each a € &, define [7], € (22 by
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letting, for each n € %2,

() = {Tm) if n(0) = 1,
0 otherwise.

Then define 7, € "2 by letting 7, () = p([r]a) for each o« € k. Observe that,
if two functions 7,7 € ("2)2 take different values only at one point ¢ € ©2, then
7 (a) # w0 () if and only if ((«) = 1. This property will help Alice find the right
place to flip.

Suppose that Alice has a medium o € ("?2 and wants to send Bob a message
we 2.

Let (5., = 75 + g1, and o, be the function which is obtained from o by flipping the
value at (, ,. By the observation, we have 7, (a) = p(a) for all a € .

Therefore, the following strategy is successful: Alice and Bob share a parity function
p on 2% in advance. Alice calculates 0, and send it to Bob, and Bob regains p by
calculating 74, (o) for all a € k. O

Now we turn to the case when Alice sends Bob a message m € w using a medium
o € “2. We call this an w-chessboard puzzle.

Theorem 3.2. There is a successful strategy for an w-chessboard puzzle.

We will present two proofs. The first proof, due to Shohei Tajiri (in a private
communication), uses a selection of representatives of the quotient set 2¢/Fy. The
second proof only uses a parity function on w.

First proof. In the beginning Alice and Bob share a set A of representatives of 2/ Ej.
For f,g € “2 with f Ey g, let N(f,g) = min{N < w : f(n) = g(n) for all n > N}.
Suppose that Alice has a message m € w and a given medium o € 2. Find the

unique h € A with h Eg o, and | = N(h,0). Let ¢ is the function obtained from o by

flipping the value at N 4+ m. Note that N(h,5) = N + m + 1. Alice sends Bob the
function &.

Now Bob can decode the message m from & in the following way. Find the unique
R € A with b Ey . Let I” = N(h/,5). Clearly b’ = h, and hence Bob can regain o
from & by flipping the value at I’ — 1, and also find [ = N (h, o). Finally Bob obtains
m=(-1)-1 O

For the second proof we employ the binary expression of natural numbers. For
f €“2 such that f~'({1}) is finite, we define £(f) = >_,,, f(i)2". For the other way
round, for each n € w, (n) denotes the unique f € “2 with n = {(f), (n), = f(i) for
each i, and lh(n) = min{N € w: f ' ({1}) C N}.

Second proof. In the beginning Alice and Bob share a parity function p on w. We
set an encoding and decoding scheme which is similar to the one in the proof of the
preceding theorem. For a function 7 € “2, we define a function 7, € “2 in the



following way. For each a € w, define [7], € “2 by letting, for each k € w,

L (k) = {T(k) if (k), =1,

0 otherwise.

Then define 7, € “2 by letting 7, (a) = p([7]a) for each a € w. If two functions
7,7 € “2 disagree only at one point z € w, then 7, (a) # m(a) if and only if
(2), = 1. Note that flipping the value of 7 at z € w does not affect values of 7, at
n > 1h(z).

Suppose that Alice has a message m € w and a given medium o € “2. Let N, =
lh(m) and m = (2m + 1) - 2¥=. Note that

0 if i < Ny,
N 1 if i = N,
(m); = . .
(m);_ w41y N +1<8<2Np +1,
0 if 2N, +1 < 4.

Alice will embed m into o in a similar, but slightly different, way as in the proof
of the preceding theorem.
Define a function z,,, € 2 by

(i) (i) + (m), ifi <2Np, +1,
Zg.m (1) =
o 0 otherwise.

where + is calculated in Zs. Let o, € “2 be the one obtained from ¢ by flipping the
value at #(2,.m). Alice sends Bob the function .

Bob calculates m,, = 75, (a) for all @ € w and regains N,,, = min{a € w : m, = 1}.
Then Bob obtains the message m by calculating

2N”!L

S a2 e,

i=Npm+1
which concludes the proof. O

It seems natural to ask, for an infinite cardinal )\, if there is a successful strategy
when Alice wants to send Bob a message ;1 € A using a given o € *2 as a medium.
Theorem 3.1 applies in the case when A\ = 2% holds for some cardinal . Also, when
2<* = X holds, it is not so hard to modify Theorem 3.2 to fit in this case. AC will
be used only to ensure the existence a parity function on A, and Alice and Bob will
share two bijections: one is 1) : A — <*2, and the other is ¢ : k x 2 — & such that, for
any 0 < k, p“(B8 x 2) is bounded in k. Details are left to the reader as an exercise.
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