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THE IIi↓ LOWENHEIM-SKOLEM-TARSKI PROPERTY OF  

STATIONARY LOGIC 

SEAN COX 

ABSTRACT. Fuchino-Maschio-Sakai [7] proved that the Lowenheim-Skolem-
Tarski (LST) property of Stationary Logic is equivalent to the Diagonal 
Reflection Principle on internally club sets (DRPrc) introduced in [4]. 
We prove that the restriction of the LST property to (downward) reflec-
tion of IIi formulas, which we call the IIi↓ -LST property, is equivalent 
to the internal version of DRP from [2]. Combined with results from [2], 
this shows that the IIi↓ -LST Property for Stationary Logic is strictly 
weaker than the full LST Property for Stationary Logic, though if CH 
holds they are equivalent. 
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1. INTRODUCTION 

Stationary Logic is a relatively well-behaved fragment of Second Order 

Logic introduced by Shelah [12], and first investigated in detail by Barwise 

et al [1]. Stationary Logic augments first order logic by introducing a new 

second order quantifier stat; we typically interpret "statZの(Z,...)" to mean 

that there are stationarily many countable Z such that <f>(Z, ...) holds.1 The 

quantifier aa stands for "almost all" or "for club many"; so 

aaZ <f>(Z, ...) 

is an abbreviation for 

, statZ , <f>(Z, ...). 
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The author thanks Hiroshi Sakai (JSPS Kakenhi Grant Number 18K03397) for travel 

support to the RIMS Set Theory Workshop 2019, and also gratefully acknowledges support 
from Simons Foundation grant 318467. 

10ther interpretations, e.g. for uncountable Z, or for filters other than the club filter, 
are often considered too. 
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Section 2 provides more details. 
By structure we will always mean a first order structure in a countable 

signature. The question of whether every structure has a "small" elementary 

substructure in Stationary Logic was raised already in [1]. One cannot hope 
to always get countable elementary substructures; e.g. if K, is regular and 

uncountable, then (t;,, E) satisfies "E is a linear order and 

aaZヨxx is an upper bound of Z", 

but no countable linear order can satisfy that sentence. In a footnote in [1], 
it was observed that even the statement 

"Every structure has an elementary (w .r. t. Stationary Logic) 
(LST) 

substructure of size ::::; w1" 

carries large cardinal consistency strength. 2 The quoted statement above is 

now typically called the Lowenheim-Skolem-Tarski (LST) property of Sta-
tionary Logic. 3 

Fuchino et al. recently proved that LST is equivalent to a version of the 

Diagonal Reflection Principle introduced in Cox [4]: 

Theorem 1.1 (Fuchino-Maschio-Sakai [7]). LST is equivalent to the Diag-

onal Reflection Principle on internally club sets {DRP砂

The purpose of the present note is to prove the following variant of The-

orem 1.1 involving II! formulas in Stationary Logic (defined in Section 2 

below) and the principle DRPinternal from [2]: 

Theorem 1.2. The II! ↓ -LST property of Stationary Logic (see Definition 

2.2) is equivalent to the principle DRPinternal・ 

Cox [2] proved that DRP1c is strictly stronger than DRPinternal・This 
was obtained by forcing over a model of a strong forcing axiom in a way 

that preserved DRPinternal while killing DRP1c (in fact killing RP1c; the 
argument owed much to Krueger [10]). Furthermore, if CH holds, then 

DRP1c is equivalent to DRP;nternal・Combining those results with Theorem 
1.2 immediately yields: 

Corollary 1.3. The LST property of Stationary Logic is strictly stronger 

than the II! ↓ -LST property of Stationary Logic. 

However, if the Continuum Hypothesis holds, they are equivalent.4 

2See Definition 2.2 for precisely what is meant by "elementary substructure" in this 
context. 

3The weaker assertion that every consistent theory (in Stationary Logic) has a model 
of size w1, on the other hand, is a theorem of ZFC, as proven in [l]. 

4 One doesn't act叫 lyneed the full continuum hypothesis for this equivalence to hold, 
but rather a variant of Shelah's Approachability Property, namely that the class of inter-
nally stationary sets is the same (mod NS) as the class of internally club sets. See Cox [2] 
for more details. 
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FIGURE 1. An arrow indicates an implication, an arrow with 
an X indicates a non-implication 

MM++ C、 DRPrcご,Stationary Logic has 
the LST property 

(these 4 statements 
are equivalent if CH holds) 

Martin's —@• DRPinternal •—• Stationary Logic has 
Maximum the II札LSTproperty 

We note that while the technical strengthening MM++ of Martin's Maxi-
mum implies DRP1c (see [4]), recent work of Cox-Sakai [6] shows that Mar-
tin's Maximum alone does not imply even the weakest version of DRP. Fig-
ure 1 summarizes the relevant implications and non-implications discussed 
in this introduction. 

Section 2 covers the relevant preliminaries, and Section 3 proves Theorem 
1.2. Section 4 ends with some concluding remarks. 

2. PRELIMINARIES 

Recall that S~[A]w is stationary if it meets every closed, unbounded 
subset of [A杞(inthe sense of Jech [9]). By Kueker [11] this is equivalent 
to requiring that for every f : [A]<w→ A there is an element of S that is 
closed under f. 

In what follows, we will use uppercase letters to denote second order vari-

ables/parameters, and lowercase letters to denote first order variables/parameters. 
We will also use some standard abbreviations; e.g. if our language includes 
the E symbol, v is a first order variable, and Z is a second order variable, 
"v = Z" is short for 

Vx x Ev ⇔ Z(x). 

Given a structure別=(A, ...) (which we always assume to have a count-
able signature), the satisfaction relation in Stationary Logic is defined re— 
cursively by: 

別FstatZ cp(Z, U1, ... , U.e,P1, ... ,Pk) 

⇔ 

{z E [A]w : 別Fcp(Z, U1, w ... , U.e,P1, ... ,Pk)} 1s stat10nary m [A] . 
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We define a hierarchy of formulas in Stationary Logic that mimics the 
us叫 hierarchyin Second Order Logic. Since 

aaZ cp(Z, ...) 

roughly translates as 

ヨC C is club and VZ EC  cp(Z, ...), 

the aa quantifier will correspond to the existential second order quantifier 
when constructing the hierarchy. Similarly, since 

statZ¢(Z, ...) 

roughly translates as 

VG C is club ⇒ ヨZEC  cp(Z, ...), 

the stat quantifier will correspond to the universal second-order quantifier. 

Definition 2.1. A formula in Stationary Logic without second order quan-

tifiers will be denoted by瑞 or115. For n > 0, a formula of the form 

statZ1 ... statZk cp(Z1, ... , Zk, ...) 

where cp is I: い willbe called a II~formula, and a formula of the form 

aaZ1 ... aaZk 心(Z1,... ,zゎ．．．）

whereゆisIIい willbe called a況 formula.

For example, if中(Z。,Z1, v1, ... , vg) has no stat or aa quantifers, then 

statZ。aaZ1 cp(Z。,Z1,v1, ... , 附）

is a II§formula. 

Definition 2.2. We say that the LST property holds for Stationary 
Logic iff for every structure辺=(A, ...)5 there exists a W こAof size ::; w1 
such that for all formulas cp in Stationary Logic with no free occurrences of 
second order variables, and all first order parameters Pl, ... ,Pk E W, 

別F叫計 if and only if叫Wp==疇．

We say that the II½ ↓ LST property holds for Stationary Logic iff for 
every structure辺=(A, ...) there exists a W S:::: A of size ::; w1 such that 
for all II! formulas cp in Stationary Logic with no free occurrences of second 
order variables, and all first order parameters Pl, ... ,Pk E W, 

if辺pep[月， then叫Wp==疇．

Remark 2.3. Note that in the definition of the IIf↓ LST property, we only 
require that IIf formulas reflect downward. If there is always an w1 sized 
substructure that reflects IIf formulas both upward and downward, then the 
full LST property holds. This issue is discussed further in Section 4. 

5Recall we always assume countable signature, though for everything discussed in this 
paper an w1 -sized signature would still be fine. 
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We consider variants of the Diagonal Reflection Principle introduced 
in Cox [4] and [2]. We use the following definition, which by Cox-Fuchs [5] 
is equivalent to the definitions from [4] and [2]: 

Definition 2.4. DRPinternal asserts that for every sufficiently large regular 
0, there are stationarily many W Eゅ叫恥） such that: 

● I WI = w1 C W; and 
• Whenever A E W is uncountable and S E W is a stationary subset 

of [A]竺theset Sn W n [W n A]w is stationary in [W n A]竺

The "internal" part of the definition refers to the fact that we require that 
snwn[WnA杞isstationary, not merely that Sn [W n A]w is stationary. 
Definition 2.4 is simply the diagonal version of an internal variant of WRP 
introduced in Fuchino-Usuba [8] (see Cox [2] for a discussion). 

3. PROOF OF THEOREM 1.2 

We prove a slightly stronger variant of Theorem 1.2. The proof below is 
strongly influenced by Fuchino et al [7]. 

Theorem 3.1. The following are equivalent: 

{1} DRPinternal・ 
(2) For every structure辺=(A,...), there is a W~A of size at most w1 

such that for every finite list Pl, ... , Pk E W n A and every formula 
¢without 2nd order quantifiers, 

（辺 p==statZ¢[Z, 月） ⇒ (如W p== statZ¢[Z, 月）．
(3) The IIi↓ -LST property holds of Stationary Logic (as in Definition 

2.2}; 
(4) For every structure辺=(A, ...) , there is a W こAof size at most w1 

such that for every formula心in2nd order prenex form with no free 
occurrences of second order variables, and every finite list Pl, ... , Pk 

of elements of W, if 

辺仁心［月

then, letting~be the formula obtained from 1/J by changing all aa 
quantifiers to stat quantifiers, 

叫Wp==的［月．

Before proving the theorem, we remark that in parts 2, 3, and 4 of The-
orem 3.1, we only mentioned first order parameters from W n A. If the 
structure別 issufficiently rich then it often makes sense to also speak of 
second-order parameters that are elements of W. But in general (e.g. when 
辺isa group) it is more natural to only speak of first order parameters from 
WnA. 
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Proof. (of Theorem 3.1): (4) t;ivially implies (3), since if心isrepresented 

as a prenex II! formula, then心＝心 (becausethere are no aa quantifiers in 
the original formula at all). Similarly, (3) trivially implies (2) because if¢ 
has no second order quantifiers, 

statZ¢ 

is obviously a II! formula. 
To see that (2) implies (1), assume (2) and suppose 0 is a regular cardinal 

2: w2. We need to find a W -< (H,。,E) such that IWI = w1 C W and for 
every s E W that is a stationary collection of countable sets, 

w 

snwn [wnい]is stationary. 

Consider辺=(H0, E). Let WC  H,。beas in the statement of (2). Fix any 
s E W that is a stationary collection of countable sets. Then 

辺FstatZヨpp = Z n LJ s and p E s 

and hence, since s E Wand the only second order quantifier in the (prenex) 
formula above is a stat quantifier, 

剥W p== statZヨpp = Z n LJ s and p E s. 

Unravelling the definition of the satisfaction relation, this means that 

{ Z E [Wt : Z n LJ s E W n s} is stationary in [Wt 

and it follows that W n s n [W n LJ s] w is stationary in [W n LJ s]竺
To see that叫 CW, it suffices to show that W n w1 is uncountable (since 

by first-order elementarity of W in (H,。,E), W n w1 is transitive). Now 

別巨 statZ::lpヨa (p = Z n w1, a < w1, and a is an upper bound of p), 

so by assumption on W, this statement is also satisfied by叫W (note that 
the parameter Wt is an element of W because Wt is first-order definable in Qt 
and W is at least first-order elementary in辺）. If W n Wt were countable, say 
W n Wt = c5 < Wt, it would follow that for stationarily many Z E W n [W]竺
there is an a < W n Wt = c5 such that a is an upper bound of Z nふ

This would be a contradiction, since due to the countability of 8, the set of 
Z E [W]w such that c5こZis a club. 

Finally, to prove that (1) implies (4): fix a structure辺=(A, ...) and 
let 0 be a sufficiently large regular cardinal with辺 E H,。.By (1) there 
is a W -< (H,。,E, Qt) witnessing DRPinternal・We prove by induction on 
complexity of formulasゆin2nd order prenex form that if Pt, ... ,Pk E WnA 
and 

辺ヒ叫冽

then, letting砂bethe result of replacing all aa quantifiers with stat quan-
tifiers, 

剥(WnA)F匂冽．
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We actually need to inductively prove a slightly stronger statement: namely, 
that wheneverゆisa 2nd order prenex formula, Pl, ... , Pk E W n A, and 
Z1, ... ,Zg E wn  [A]竺

(1) 辺仁心[i,司 ⇒ 叩(WnA)F~[i, 祠．

So suppose 

(2) 別FQZ c/>[Z, U1, ... , uk,P1, ... ,Pel 

where Q is either the aa or stat quantifier, U1, ... , Uk are each elements of 
Wn[A]竺Pl,... ,P£E W n A, and the inductive hypothesis holds of the 
formula¢. 

Now regardless of whether Q is the aa or stat quantifier, 

•一QZ cp三 statZ¢.

and by (2) (since the aa quantifier is stronger than the stat quantifier) 

辺巨 statZcp[Z, U1, ... , Uk,Pl, ... ,pg]. 

Hence, by the definition of the stationary logic satisfaction relation, 

s := { Z E [At : 辺Fcp[Z, U,p]} is stationary in [A]竺

Note that since U, が，¢,and辺areelements of W, it follows that s E W. 
Since W is internally diagonally reflecting, 

s n W n [W n A]w is stationary in [W n A]竺

Consider for the moment an arbitrary Z E s n W n [W n At. Then 

別仁の[Z,fJ,pJ 

and it follows by the induction hypothesis (and that Z, tJ, andがareeach 
elements of W) that: 

叫(WnA)F忍[Z,fJ,列．

Hence, we have shown that 

snwn [WnAtこ{zE [WnAt : sitl(WnA) F忍[Z,tJ,司｝．

Since the set on the left side is stationary, the set on the right side is too. 
So by the definition of the satisfaction relation, 

叫(Wn A) F statZ箪[Z,U,が］．

This completes the proof of the (1) ===} (4) direction. 

ロ
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4. CONCLUDING REMARKS 

We remark that it is straightforward to show, in ZFC alone, that: 

Lemma 4.1. For every structure別=(A, ...) there exists a W~A of size 
at most w1 such that 

如W ふ1
↓ 

1 別

(i.e. such that~i formulas satisfied by別 arealso satisfied by叫W).
In fact, if 0 is a regular cardinal such that辺EHe, and 

W -<1st order (He, E, sil) 

is such that IWI =叫 and

(3) W n [W n At contains a club in [W n A]w 

(this always holds for stationarity many W, e.g. for those W that are inter-
nally approachable), then 

叫(WnA)ぞ辺．
We briefly sketch the proof of the lemma; more details, and other related 

results, can be found in Cox [3]. One proves by induction on complexity 

of formulas, making use of (3), that if </> is叫， Pl,・・・,PkE WnA, and 
Z1, ... ,Zg E wn  [A]竺then

if別 p==</>[Z,祠， then叩(WnA)F </>[Z, 刃．

This was basically part of the proof from Fuchino et al [7] that DRPrc 
implied the 1ST for Stationary Logic. See [3] for some other related ZFC 
theorems. 

So by Lemma 4.1 one can always get an w1 sized substructure that reflects 
all :Ei statements downward. And if DRPinternal holds, one can also get an 
w1 sized substructure that reflects all II! statements downward. But it is 
consistent that both of these are true, yet no single w1 -sized substructure 

downward reflects all II! and all :Ei statements. In particular, in any model 
where DRPinternal holds and DRPrc fails, Theorem 1.2 tells us that there 
is a structure such that no w1-sized substructure reflects all II! and all叫
statements (though there are structures that reflect one or the other). 

Another way to view this phenomenon, in terms of DRP-like principles, 

is that DRPinternal yields stationarily many W E 炉w2(He)such that the 
transitive collapse Hw  of Wis "correct about stationary sets"; i.e. whenever 
s E Hw  and Hw p== "sis a stationary set of countable sets", then V believes 
this too. However, if Wis not internally club, it is possible (by [2]) that Hw 
is correct about stationary sets, but is not correct about clubs; i.e. there can 
be a c E Hw  such that Hw巨"cis a club of countable sets", but V does 
not believe this. If, on the other hand, W witnesses DRPrc, then Hw is 
correct about both stationarity and clubness. 
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