
132

Chang's conjecture and mouse 

reflection 

Dominik T. Adolf 

Bar-Ilan University 

We discuss a particular roadblock in a hypothetical proof of PD from 
(N3, N2)→ (N2, Nリ，thequestion of mouse reflection. Unfortunately, other 
issues keep us from properly testing our ideas. Thus we will change focus 
to a related property (related to "Nw is Jonsson") to make our case. We 
hope these ideas will some day help us to better understand the strength of 
Chang's Conjecture. 

1 Introduction 

Let入，X,ts, ts'be regular cardinals with入>ts and X > ts'. We take (入， K)→ （入I,K1) tO 
mean: for any structure (in a countable language) on入thereexists a substructure X 
with Card(X) = X but Card(X n ts) = ts'. 

Originating in Model Theory this seemingly innocuous property has significant large 
cardinal strength. Its most basic form (often known simply as the Chang conjecture), 

（殴N1)→（図R。)in our notation, is equiconsistent with an w1-Erd6s cardinal. 
The exact consistency strength of the analogous property (巡N2)→ （殴 N1)has 

proved more elusive. Though it is known to be consistent relative to the existence of a 
huge cardinal by an argument of Kunen's [5]. 
In this article we want to explore an approach towards establishing lower bounds for 

this property. For this purpose inner model theorists have developed a general method 
called the Core Model Induction. In the section following this introduction we will lay 
out the general framework that a typical core model induction would follow. As part of 
this framework we will introduce the concept of mouse reflection which will be the focus 
of our efforts in this article. 

In the third section we will go through the first few steps of a core model induction 
on (Nふ N2)→ （殴 N1)and present an idea of how mouse reflection might work in this 
context. The serious flaw of this part lies in the fact that core model induction is usually 
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attempted for properties which are already known to imply the existence of inner models 
with Woodin cardinal. This is not known for (巡叩→ （殴灼．
The author would feel ashamed were he to leave the reader with naught but castles 

in the sky. Hence we will in Section 4 discuss a related property which ,by work of the 
author, is known to imply the existence of inner model with Woodin cardinals. This 
other property thus provides an environment in which we can test our ideas about mouse 
reflection in the hope that these might one day be applicable to the Chang's Conjecture 
as progress is made. 
We will finish the article with one last property which appears to be significantly 

weaker but admits the same general approach. 
While we are discussing a rather big topic in the field of inner model theory we would 

hope that at least the beginning parts of this article may be comprehensible to the 
lay man and/ or woman. The only things we really assume as a base line is a general 
knowledge of Descriptive Set Theory ([4] is a good primer) and the basics of inner model 
theory (rudimentary function, the basic properties of L). 

2 The Core Model Induction 

Core model induction is a method developed by Hugh Woodin to mine consistency 
strength from a given hypothesis (the interested might consult [8]). A rough outline of 
the method is as follows. 

(1) One is given a determined scaled pointclass r。・

(2) Using Det(ro) (and possibly the hypothesis) produce a next scaled pointclass r1. 

(3) Using the hypothesis show that几 isdetermined. (The loop then resets to (1) 
with r1 replacing r。・

Moving from (1) to (2) generally relies heavily on the use of descriptive set theory. For 
example in the realm of projective sets one would appeal to Moschovackis's Periodicity 
Theorems. Moving from (2) to (3) involves the core models from which this technique 
takes its name. 
Let us explain: from r 1 one would extract an operator F with the following properties. 

• F is defined on a cone, i.e. there is a E HN1 such that dom(F) = {b E HN1 la E 
い(b)};

• F(b) is a mouse (see below) for all b E dom(F); 

• F(b) is minimal for all b E dom(F), i.e. F(b) satisfies心(a,b) (for some ~1 formula 
心inthe language of premice) but no initial segment of it does; 

• F(b) is sound for all b E dom(F), i.e. every element of F(b) is ~ 1-definable from 
some parameter in L1(b); 
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• F(b) "captures" r。 •

A mouse for our purposes is a model taking the form (M; E, B, E2 G) where M is 

generated by repeatedly closing under rudimentary functions, x r-+ xnB, and yr-+ ynE, 
so M is constructed using a variant of Jensen's constructible hierarchy. G is an amenable 
predicate. 
Two mice M, N satisfy comparison, i.e. there exists partial maps i : M → M* and 

j :N→ N* such that 

• M*'.SJ N*, i is total and均 elementary,or 

• N*'.SJ M*, j is total and江 elementary.

Remark: The maps i and j are generated from extenders coded into the sequences 
associated with the mice. M is an initial segment of N (written M'.SJ N) if the associated 
predicate sequences are.) 

Note then that by comparison F(b) is uniquely determined by its properties of sound-
ness and minimality. 

Given our operator F the path forward then goes through a core model dichotomy 
theorem. A core model dichotomy is a statement of the form: if Det(い） fails there must 
exist for some b E Hw1 an F-closed core model KF(b) over b. 
What do we mean by core model? We cannot go into much detail here but stated 

simply, a core model is a mouse that is both maximal in the mouse order (generally 
restricted to some subset of mice, say those closed under the operator F) and sound. 
Note this notion of soundness is necessarily different from that satisfied by some F(b), 
the core model in our case must be an uncountable model so not every element can 
be definable from some countable set of parameters. Be that as it may, this alternative 
notion of soundness serves fundamentally the same purpose, namely to identify a minimal 
model within an equivalence class of mice. 

Remark: During the course of this article we might use language similar to "show the 
F-closed core model does not exist". As inner model theorists we would like to think 
that, of course, there is some "true" core model that reflects the true nature of the 
universe. Such an object being universal should be F-closed. 
What we are actually saying when we use this language then is that some specific 

procedure involving the operator F fails to produce a core model. That does not mean 
that another more sophisticated procedure couldn't produce the core model instead. 

So it would not be surprising to find that such a core model would be uniquely deter-
mined. Additionally, we would expect such a model to exemplify properties similar to 
those known from Jensen's covering theorem. 

Theorem 2.1 (Jensen): E.ractly one of the following is true: 

• Q# exists; 
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• cof((a予） 2 Card(a) for all a 2殴

The core model would indeed have these properties. And this sh叫 din theory give 
us great leverage in our attempt to show Det(い） holds, but there is a problem. An 
F-closed core model for an operator F only defined on hereditarily countable sets could 
not contain any uncountable sets, but the covering lemma can only apply at points above 

図
So we need to devise some way to extend the operator F to act on uncountable sets. 

This is the purpose of mouse reflection. We say mouse reflection holds at (代，入） (here 
K, 入areuncountable cardinals) if and only if any "nice" operator F defined on a cone in 
凡 extendsto a "nice" operator F'defined on a cone in H,x. 

Remark: We will not define "nice", but keep two things in mind. One, all operators 
appearing in the course of the core model induction are "nice". Two, "nice" extensions 
of "nice" operators are uniquely determined. We will generally use the same notation 
for the original operator and its extension. 

Unfortunately, mouse reflection is not a ZFC-theorem. Generally, we utilize our given 
hypothesis to prove versions of mouse reflection appropriate to our situation. 

Using mouse reflection we can thus envision a more accurate idea of core model in-
duction. 

(1) One is given a determined scaled pointclass r。•

(2) Using Det(r。)(and possibly the hypothesis) produce a next scaled pointclass r 1. 

(3) Use the scale property of r1 and Det(r0) to produce a mouse operator F defined 

on a cone of HN1. 

(4) Use the hypothesis to prove that mouse reflection holds at (NぃK)for some carefully 
chosen K; extend then F to act on a cone of If応

(5) Utilize the hypothesis to show that there cannot be an F-closed core model. 

(6) Conclude that by core model dichotomyいisdetermined. (The loop then resets 
to (1) with r1 replacing r。.)

There are indeed core model inductions that use this framework. ([10]) But often 
the situation is more complicated. The problem is that often we cannot prove mouse 
reflection holds at (Nぃ1,,)for any K greater than N1, but perhaps we are able to prove 
mouse reflection holds at (K, 入） for some K, 入greaterthan N1・

Of course, determinacy as a notion does (so far) have no natural extension to the 
realm of the uncountable. But there is a rather elegant solution to this conundrum. 
Work in V [g] where g C Col(w, <K). Consider then pointclasses in V [g]. 
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This solves a lot of our problems but also introduces some new ones. We start the 

argument with a hypothesis about our original universe. That hypothesis is quite pos-

sibly false in the forcing extension. So we need t? consider ways we can relate operators 

F defined on a cone of H~[g] to some operator F defined on a cone of If. 応
The way this is done depends on the operator F but note that in many cases, certainly 

those appearing later in this article, the operator is naturally defined over the original 

universe. With this final complication we arrive at a complete picture of core model 

induction. 

(1) One is given a determined scaled pointclass r。inV [g] where g C Col(w, <t£) is 
generic over V, some carefully chosen /'£. 

(2) Using Det(r。)(and possibly the hypothesis) produce a next scaled pointclass r1 

in V [g]. 

(3) Use the scale property of r1 and Det(f0) to produce a mouse operator F defined 
V[g] 

on a cone of H . Pull back F to some operator P defined on a cone of H"' 
N1 

(4) Use the hypothesis to p~ove that mouse reflection holds at (t£, 入） for some carefully 

chosen入；extend then F to act on a cone of H入 (thiswill also extend F to act on 
H[[gJ). 

(5) Utilize the hypothesis to show that there cannot be an F-closed core model above 

any b E H~[gJ . 

(6) Conclude that by core model dichotomy□ is determined. (The loop then resets 
to (1) with r1 replacing r。.)

Let us now dispense with theory and take a look at how this method might work in 

practice. 

3 CMI and Chang's Conjecture 

Recall the hypothesis we are most interested in is (Nふ N2)→ (N2, N1). Looking back 

to our core model induction framework the most important decision we have to make 

is to carefully pick K, and入，twouncountable cardinals such that we can reflect mouse 

operators from one to the other. 

With this particular property the choice almost forces itself upon us. We shall pick 

K, = N2 and入=N3. Let us see if this works. 

Work in V [g] where g C Col(w, N1) is generic over V. The first pointclass in any 

core model induction are the Borel sets. By a theorem of Martin this is a determined 

pointclass, so (1) is satisfied. 
The next scaled pointclass is II~ . Our operator is simply [b rt J1(b)] and the core 

model KF(b) = L(b). (Note: Of course, L(b) always exists, but it is not always a core 
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model. So, if our framework tells us to prove that" KF (b) does not exist 11, this translates 
to"L(b). 1s not a core model .) 
L(b) is not a core model if and only if b# does exist. (b# is a witness that L(b) is not 

universal.) By a theorem of Martin if b# exists for all b E HN1 then Det(IID. So this is 
our core model dichotomy theorem. 
The task then is clear. 

Lemma 3.1: Assume (褐邸→ （殴い thenb# exists for all b E H廣

PROOF: Let b E HN2-We can take some X --< (HN3; E, L叫b))with b E X and 
Card(X) = N2 but Card(X n卵=N1. We can choose X such that otp(X n褐）＝応
Let 7rx: Hx→ X be an isomorphism where Hx is transitive. We do have 7rx(b) = b, 

so by condensation "ゞ[L叫b)]= L叫b).
As N2 is a cardinal 7rx「LN2(b) then generates the required indiscernibles. ([3, 18.27])---j 

We can thus conclude that Det(IID holds in V [g]. (Or can we? We do actually need 
V[g] 

that b# exists for all b E H . Consider such a b. There exists then a name b for it in N1 
伽 Wecan then compute b# from (附[g].)This means we have successfully completed 
the first loop in our core model induction framework. Note that in this particular case 
mouse reflection was trivially true. Yet, keep in mind that we did need to consider L(b) 
up to its Nぶsstage in the above argument, so its use was in some way required. 

Moving on we can identify our next pointclass均 andoperator [b→ 伊].We have 
V[g] 

just shown that our operator is defined over H so no further work is required in that N1 
regard. Finally, we have to consider the question of mouse reflection. We do so in two 
steps. 

Lemma 3.2: Assume HN2 is closed under sharps. Let b E H応 ,let /3 := (Card(b)+)L(b)_ 
If cof(/3) <殴 thenb# exists. 

This is a general lemma (used in many core model inductions e.g. [91) that does not 
require the use of our hypothesis in any way, so we shall skip the proof. The proof 
utilizes long ultrapowers to lift up structures, a common technique whose use goes at 
least as far back as the proof of the covering lemma. 

Lemma 3.3: Assume HN2 is closed under sharps. Let b EH応 ,let /3 := (Card(b)+l(b)_ 

If (N3, N2)→（殴 N1),then cof(/3) < N2 (and thus b# exists). 

PROOF: Assume towards a contradiction that cof(/3) :::. 応 LetX --< (Hw3; E, L叫b))
with b E X and Card(X) = N2 but Card(X n叩＝灼 Wecan choose X such that 

otp(X n Nり＝応
Let訳： Hx→ X be an isomoEphism where Hx is transitive. Let 7rx(b) = b, so by 

condensation町"[L叫b)]= L竺2(b). 
Crucially, this implies that /3 :=バ(/3)is the real£-successor of Card(bl(b). Also, 

by elementarity its cofinality is uncountable. 

But b E HN2, so肪 exists.But this implies that cof(/3) = w (防=LJ fn" [正]where 
n<w 

f n : bmn→ L(b) and fn E L(b)). Contradiction! ---j 
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Let us now consider our core model dichotomy. 

Lemma 3.4: Assume (巡N2)→ （巡い letb E HN3-Then K町b)exists or there 
exists a sharp for an inner model with a Woodin cardinal containing b called M[(b). 

By a result of Neeman's ([6]) the existence of M[ (b) for all b E如 impliesDet(均）
as required. 
Let b EH泌.The task is to show that K#(b) does not exist. Assume it does. 
Let X-< (Hw3; E, K町b))with b EX  and Card(X) = N2 but Card(X n叩＝灼 We

can choose X such that otp(X n N3) =応

Let冦： Hx→ X be an isomorphism where Hx is transitive. We have 1rx(b) = b. 

Write心"[K町b)]:= K(b). 
The idea is to compare K(b) with K町b)which we can do as they are both mice above 

a common set. (This is the general idea of the covering argument.) We would expect 
the following two facts to hold. 

• K町b)is universal, so it "wins" the comparison; we also expect it to "drop" to a 
sizeく巡mousein the iteration; 

• K(b) remains idle in the comparison, i.e. if M* is the last model produced by the 
iteration on K町b),then K(b)ヨM*.

Unfortunately, so far Inner Model Theorists have failed to produce M[ from the 
Chang's Conjecture. Previous attempts have fallen short (rll,[71). But let us, just for a 
moment, pretend we could show that M[ (b) exists for all b EH巡

＃ Our next task would be to show that M1 (b) exists for all b E H応 .So let us take some 
such b. Assume that M[(b) does not exist. Then we do have a core model K#(b). Let 
us now take a hull of the right type, i.e. a witness to the Chang's Conjecture containing 
relevant objects. 

K町b)then collapses to some K(b). Note that we cannot compare these two model as 
these are potentially mice above two different sets. Instead, we have b E H応 soMf'(b) 
exists. Let us then compare民(b)and M[. 
叩 (b)must win this comparison. This is because by assumption K町b)fell short of 

M罰(b)and so by elementarity does K(b). Also M閂） has sizeく応

So in some ways M↑ (b) fulfills the same role that the core model did previously. We 
might hope that the (pretend) solution to our previous problem could in some slightly 
modified form help us reach the desired contradiction. 
This idea so far stands on illusory ground. But we might consider that there are 

perhaps other properties similar to Chang's Conjecture in which the same idea could 
find solid footing. 

4 Strenghtenings of Chang's Conjecture 

Consider (N2, Nふ N4,...)→ (N1, N2, N3, ...), i.e. the property that there are stationarily 
many X C凡 suchthat Card(X n Nn+i) =ぬ forall n~1. 
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Lemma 4.1: Assume (殴巡娼．．．）→ (Nぃ殴巡...), then b# exists for all b E HNw・

PROOF: Proof by induction. Let b E HN2, note that we have (巡N2)→ so then b# 

exists by Lemma 3.1. Now let n 2 1 and assume that HNn+i is closed under sharps. 

Let b E HNn+2'note that we have (Nn+2, Nn+r)→ (Nn+l, Nn) and so then b# exists by 
Lemma 3.2 and Lemma 3.3. --j 

So far everything from before adapts beautifully. The crucial difference lies in the 

next lemma. 

Lemma 4.2: Assume (殴巡図．．．）→ （州巡巡...)and 2N。=N1. Then for any 

b EH応 9い (b)does not exist. 

PROOF (SKETCH): Fix b. Assume K町b)exists. Let X---< (HNw; E, K町b))with b EX  

such that otp(X nい） = Nn for all n 2 1. 
Let 1rx: Hx→ X be an isomorphism where Hx is transitive. Let K(b) := 7rx1" [K町b)].

We compare K(b) and K#(b). We know two things. 

• By work of Schindler we can assume that K町b)does drop to a mouse of sizeく応

• K(b) does not move. 

(This uses a weak form of countable closure of X which follows from the fact that X 
contains all the reals.) As a consequence of the former we know that there are threads 

going up to Nn (n 2 2), i.e. there exists a club Cn C Nn such that la,NJa) = Nn for all 
a E Cn. Here la,(3 : Ma→ M13 is the iteration embedding between the a-th and {3-th 
model in the iteration. 

This implies that Nn (n 2 2) is a limit cardinal in K(b). We can then show that each 
of those Nn's is a cutpoint of the iteration. Assume not, say the (3-th extender ((3 2 Nn) 
gets applied to the a-th model (a< Nn)-We then have (c:rit(E13)+)k(b) < Nn a.c; the latter 

is a limit, so then clearly cof(lh(E)) = cof((crit(E13)+)K(b)くぬ Butlh(E) 2 Nn is a 

successor cardinal in K(b) so this contradicts the covering lemma. (This uses that K(b) 
does not move in the iteration, as otherwise lh(E) would only be a successor cardinal in 

an iterate of that model where covering might fail.) 

As iteration embeddings must be continuous at successor cardinals, we then have 

cof((翌）瓜））＜ぬ Onthe other hand because of the covering lemma, we have 
cof((況）K(b)) 2ぬ.The two models clearly disagree on the successor ofぬ So,this 

means whenever we move out of MNn during the iteration, a drop must ensue. 

As Nn (n 2 2) are cutpoints the final branch (moving up to MNJ moves through all 
of them. Therefore infinitely many drops occur along this branch. Contradiction! --j 

So this lemma fixes the gap in our previous induction. We conclude that Mf (b) exists 

for all b E HN2-Can we lift this up to HN3? 
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We apply the idea from before. Let b E H応 besuch that Mf (b) does not exist. So we 
have K町b).Let us take X--< (H幻 E,K町b))with b E X  such that otp(XnNn+r) = Nn 
for all n > 2. 

---= 
Let K(b) := 7rx1" [K町b)].We have b E HN2 and so Mf(b) exists. We compare K(b) 

and Mf (b). Mf (b) must win this iteration and it is a small (<叩 mouse.This was one 
of the ingredients in the preceding proof, the other is that K(b) has covering which it 
has as it is the preimage of a core model. 
The last requirement is that K(b) does not move in the comparison. The author 

admits that he has not fully investigated this but he thinks that it is not unreasonable 
to assume that this will turn out to be correct. If it is we can extend this core model 
induction beyond the projective level. 

5 Weakenings of Chang's Conjecture? 

We have seen that a property like (巡巡．．．）→ (N1, 巡...)is in many ways a good 
candidate for a core model induction, but it has one major flaw. It is not known to be con-
sistent. (In fact, as far as the author is aware not even (応，応，N4,Ns)→ (Ni, 応，応，N4)
is known to be consistent.) 

Let us instead consider (Nw+2, Nw+3, Nw+4, ...)→ （図応，巡...)• This is known to be 
consistent relative to large cardinals below a supercompact cardinal ([2]). Curiously, it 
seems that this property could be weaker than (Nか N2)→ (N2, N1) which we know is 
consistent relative to a huge cardinal. (The above mentioned paper actually improves 
this bound but not significantly.) 

Could this property work instead of (殴巡ぬ，．．．）→ (Nぃ応，巡...)?We claim it 
does. 

Theorem 5.1: Assume (Nw+2, Nw+3, Nw+4, ...)→ (N1, 褐，応，...),CH and 2Nw+l = Nw+2・ 
Then Mf (b) e.1:ists for all b E H既

PROOF: We adapt previous arguments. Lemma 4.1 adapts in a straightforward fashion. 
For Lemma 4.2 we have to consider the core of the argument. This core is that we 
compare a small (<N叫mousewith a large one (2:N』thathas covering properties yet 
the small mouse outstrips the large one in the comparison. Both of these things are given, 
the large mouse is the pullback of the core model under some suitable chosen hull X a 
witness to our hypothesis, the small mouse is an initial segment of the core model. (The 

. f . contmuum unctron restnctrons are there so we can assume that (X n H心+i)wC X.) ---j 

Similarly, the same considerations carry over when considering the problem of mouse 
reflection for Mf's. This gives us a good shot at projective determinacy from this 
property. Could we go farther? Likely, but mouse reflection would keep being a problem. 
The approach we have presented here works at succesor points. In essence, we use the 
core model dichotomy from stage a to prove mouse reflection for station a + 1. Limit 
points in the induction will require some other idea. 
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