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1 Introduction 

Zika virus has been known as a mosquito-borne disease, that is transmitted to humans by the bites of infected mosquitoes 
[l]. Evidence indicates that Zika can also be transmitted by sexual contact, yet the role of sexual transmission is 

not well-understood. Recently Gao et al. introduced a deterministic mathematical model that considered Zika as a 
mosquito-borne and sexually transmitted disease, and investigated the spread and control of Zika by analyzing the pro-
posed model [3]. The analysis done in [3] provided the crucial information that prevention and control efforts against 
Zika should target not only mosquito-borne but also sexual transmission routes. Concerning the spread and transmis-
sion of Zika virus involve uncertainties, the goal of this work is to develop and study a mathematical model of Zika 

virus epidemic taking into account randomness due to fluctuations of environments. 
Since the zika virus can be transmitted between humans, from humans to mosquitoes, and from mosquitoes to 

humans during the incubation period, we consider an SIR type of structure for humans and an SI type of structure for 
mosquitoes by combining their respective exposed and infected groups. In addition, since sexual transmission of zika 

from asymptomatically infected humans has not been documented and mosquitoes are not infected by biting them, we 

consider both the asymptomatically infected humans and the recovered humans as the removed. 
Letx,(t), ゃ(t)and巧 (t)be the population of susceptible, symptomatically infected and removed humans, respec-

tively, and let YI (t), y2(t) be the population of susceptible and infectious mosquitoes, respectively. Then a simplified 
version of the model proposed in [3] reads 

山：l

dt 
-apx1y2 -1(x1x2, (1) 

dx2 
8 (apx1Y2 + 1Cx1x2) -rゃ，

dt 
(2) 

d.x3 
(1-8) (apx1y2 + 1CX区2)+rx2, 

dt 
(3) 

dy1 
{3(y, +y2)-aqy心— {3y,,

dt 
(4) 

dy2 
aqy区2-f3yz. 

dt 
(5) 

The parameter values are a :::, 0: mosquito biting rate per human, p E [O, 1]: transmission probability from an infectious 
mosquito to a susceptible human per bite, q E [O, I]: transmission probability from a symptomatically infected human to 

a susceptible mosquito per bite, IC ::>: 0: average transmission rate from symptomatically infected humans to susceptible 
humans, y ::>: 0: the recovery rate of infected humans, o E [O, 1]: the proportion of symptomatic infections and /3 ::>: 0: 
the production and the death rate of mosquitoes. 

In the above model the total numbers of humans and mosquitoes are both assumed to be constant over time. While 
such an assumption is acceptable for humans, it is less well-justified for mosquitoes as the population of mosquitoes is 
more sensitive to the season and the environment (e.g., weather changes, mosquito treatments) and thus clearly varies 

with respect to time. In this work we assume that both the reproduction rate and loss rate of mosquitoes vary randomly 

and can be different, modeled by two random processes /3 (知） and v(0,ro), respectively. Note that here v(0,ro) 
stands for the collective loss rate of mosquitoes including natural death, mosquito treatments, migration out from the 

region, etc. In addition we include random external forces g1 (~ ゅ） and g2 (01 ro) to incorporate all non-reproduction 
type increase in the mosquito population, such as migration into the region. Furthermore, we assume that /3 (~ ゅ），
v(0,ro) and g1(0,ro) (j = 1,2) are continuous, non-negative, and essentially bounded, i.e., there exist non-negative 

constants m13, M13, mv,Mv, m8 andM8 such that 

m13~/3(0,ro)~M13, mv~v(0,ro)~Mv, m8~g1(0,ro)~M8(j=l,2). (6) 
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The equations (1) -(5) then become the following system of random ordinary differential equations (ROD Es) [2]: 

d.x1 (t, co) 

dt 
d.x2(t, ro) 

dt 
d.x3 (t, CO) 

dt 
dy1 (t, co) 

dt 
dy2(t, ro) 

dt 

-apx1y2 -1CX1x2, 

8(apx1y2+1CX区2) —加，

(l-8)(apx1y2+1CX心）+y: 功，

/3(0,w)(yi +y2)-aqy1x2 -v(0,w)y1 + g1(0,ro), 

aqy江2-v(B,w)yz十 即(0,w).
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2 Basic properties of solutions 

For the above RODE system (7)-(11), the following theorem is obtained. 

Theorem 2.1 For any w E Q, to E恥 andinitial data 

(x1(to),x2(to),x3(to),y1(to),y2(to)f = (xf,xg,x~,yf ,ygf := uo E恥i,

the RODE system (7)---(11) admits a unique non-negative global solution u(-;to, w, uo) E°eff'([to,00), 酎）with u(to;to, ro, uo) 

=UQ. 

3 Long term dynamics of Zika virus 

It is straightforward to check that the unique solution u(t; to, ro, uo) proved in Section 2 satisfies 

u(t+to;to,W,uo) = u(t;0,0,0ro,uo) 

for all to E lR,t 2': t0,ro En and u0 E記.This allows us to define a mapping <p(t,ro, •), which is a random dynamical 
system (RDS), as 

cp(t,ro,uo) = u(t;O,ro,uo), Vt:;:> 0, uo E酎， OJE Q. 

From now on, we will simply write u(t; w, uo) instead of u(t;O, w,uo). 
Throughout this section, denote by H be the total population (susceptible, symptomatically infected, removed) of 

human beings in the region of zika virus prevalence under consideration. To simplify notations, let 

μ,:=aqH+mv, Y1(t)+y2(t)=Y(t), Y?+外=Yo.

To investigate the long term dynamics of the solution, we introduce next theorem. 

Theorem 3.1 The RDS { cp(t, w) h2-o,roEn possesses a random attractor咋＝｛紐(w):w E Q} providedM/3 < mv, 

The above theorem proves the existence of a random attractor for the full RODE system (7) -(11) under the 

assumption mv > M/3. In the subsections below we will discuss detailed dynamics of mosquito and human being 
populations, respectively. 

3.1 Dynamics of mosquito population 

In this subsection we will discuss dynamics of mosquito population, in particular, population of infected mosquitoes 

y2(t, ro), in two scenarios: (1) mv > M13; and (2) m13 > Mv. 
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Theorem 3.2 Assume that mv > M/J. Then the population of infected mosquitoes satisfies 

mg 2aqHMg Mg 

Mv― 
- < limyz(t,ro) <:: ． 

t→ =μ(mv-Mp)  /1 

Corollary 3.1 Assume that mv > Mp. Then the attractor咋 forthe RDS generated by solutions to (7Hl 1) consists 
of nontrivial component sets provided 

mg 2aqHMg Mg 
ー く ＋ー・
Mvμ(mv-MfJ)μ 

Theorem 3.3 Assume that for every ro E Q there exist CJ > 0 and !8 > 0 such that 

『(f!(0,w)-v(0,w))dseo :Scr, j g(0sro)ds:SI8 Vt~O. 

゜Then the population of infected mosquitoes satisfies 

m8 aqHcr M 
面―e年 (t)'.S (Yo+I8)+ユ+e, Vt四Te,

/l /l 

In summary we have the following corollary on the population of infected mosquitoes. 

Corollary 3.2 For any t~0 and ro E Q, the following bounds for yz (t, ro) hold: 

Y2(t,w) 

Y2(t,ro) 

Y2(t, ro) 

;::,: (外一竺)e-Mvt +竺
Mv 叩

:c:; Yo+ 
2M8 

ifM 
mv-M13' 

/3 <mv 

＜外+aqH鴫+lg)'if{ 屈 g(~ゅ）ds :c:; /8 and 
μ 『(/3(0,ro)-v(0,ro))dse o :c:::; rr 

3.2 Dynamics of human being populations 

In this subsection we investigate the long term dynamics for human beings. For simplicity, let 

叶=x?el臨叶昴）1. 

Lemma 3.1 The population of susceptible human beings satisfies 

叫t,())) :::: 対-e-ap訊1,'efroEO.

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

The above Lemma states that the populations of susceptible human beings will exponentially decay to zero. This 
will be used to investigate the sufficient conditions under which population of infected human beings decreases mono-

tonically to zero. To simplify notations, let 

:92=max{Yo+ g 
2M 。aqHcrYo+I 

況＋
(g)  

mv-M13μ}・  
(19) 

Throughout the rest of this subsection it is assumed that either 

(I) mv > M13, or 

(II) there exist cr > 0 and lg > 0 such that the assumption (13) holds. 
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Theorem 3.4 The population of infected human beings x2(t, ro) always decays to zero as t→ oo. In particular 

叫t,ro)→ 0 monotonically provided 

緯 (IC+了） :Sr< ap臼 (20) 

The theorem above states that when mv > MJJ, or the assumption (13) holds for some cr > 0 and lg> 0, the Zika 

virus will always die out given a long enough time. Moreover if Assumption (20) holds, the prevalence of virus 

decreases monotonically to zero, i.e., the Zika virus is controlled. In the theorem below we construct conditions under 

which there is an outbreak or epidemic of Zika virus, in the sense that infected human beings increase for a certain 

period of time before eventually decaying to zero. 

Theorem 3.5 The population of infected human beings x2(t, ro) keeps increasing for at least up to some TM > 0, 

provided 

rく碕 (K+靡外）． (21) 

4 Numencal expenments 

In this section, we will simulate the system (7) -(11) numerically and verify that the long term dynamics of infected 

mosquitoes satisfy Corollary 3.2 and the population of susceptible human being satisfies Lemma 3.1. In addition, we 

confirm that the population of infected humans均 (t,w) decreases monotonically under the condition (20) and increases 

for a while before decreases under the condition (21). 

To this end we transform the system (7) -(11) with four independent Omstein-Uhlenbeck (OU) processes Zj(t) 

into a system of RODE-SODE pair [2]: 

x,(t) -apx1y2 -Kx1x2 

゜x2(t) 8(ax,y2 + 1et1x2)-rx2 

゜di 巧 (t) (1-8)8(ax1y2 + 1CX1x2) +加2

゜dt十
l゚dWi, Y1(t) /J(Zz)(y, +yz)-aqy区2-v(Z1)Y1+g1(Z3) 

Yz(t) aqy1x2 -v(Zi)y2 + g2(Z4) 

゜Zj(t) 。J,1-01,2ZJ 0j,3 

where j = 1,2,3,4. The loss and the production rates of mosquitoes v(Z1) and /3(Z2) and the external forces modelling 

random environments g, (Z3) and g2(Z4) are assumed to distribute in a finite interval or have switching effect. 
The following figures illustrate theoretical results under scenario (I) and (II). 

s cenar10 (I) With parameters a=  O.l, p = 0.2, q = 0.3, JC= 0.05, 8 = 0.01, r= 0.16, v = 0.3, r, = 0.1, ii= O.l, 

r2 = 0.1, 釦=3.5, r3 = 0.2, 面 =3.5 and r4 = 0.2 satisfying Assumption (20), the population of infected human beings 

decreases monotonically. 
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Scenario (II) With parameters a= 0.3, p = 0.2, q = 0.3, IC= 0.00005, 8 = 0.9 and = 0.08, v = 0.9, r1 = 0.1, R 
/3 = 0.1, r2 = 0.1, 釦=3, r3 = 0.9, if2 = 5 and r4 = 0.9 satisfying Assumptions M13 < mv and (21), the population of 
infected human beings first increases before it decreases. 
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