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1 Introduction 

An increasing number of geo-spatial data are becoming available in these days. Such data includes 

climate-related data and land cover data observed from satellites, socio-economic data by municipal 

units, and people flow data observed through human sensors. Regression is widely applied to these 

spatial data to reveal patterns behind geographical phenomena such as disease spread, economic 

development, and extinction of life in each region. 

In spatial regression, spatial heterogeneity is considered as a key factor (Anselin, 2010). Spatial 

heterogeneity means that parameters characterizing spatial phenomena can vary over space (see, 

Brunsdon et al., 1998). For example, Figure 1 shows correlation plots between median household 

income and the ratio ofresidents speaking English (Eng_rat). This figure shows that Eng_rat has a 

strong positive impact on income in the California state, a moderate positive impact in the New York 

state, and a weak negative impact in the Louisiana state. In other words, relationship between variables 

vary over space. To capture such spatial heterogeneity, we need to allow for regression coefficients to 

vary over space. 
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Figure 1 Correlation plots between Eng_ rat and income in three states. 
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Figure 2 Correlation plots between Eng_ rat and income by counties across the US. 

Regression coefficients can also vary non-spatially. For example, Figure 2 is the correlation plot 

between Eng_rat and income over the United States (US). As illustrated in this figure, there is a 

positive linear relationship between these two variables ifEng_rat is between 0.0 and 0.9 whereas they 

have weak negative relationship ifEng_rat is between 0.9 and 1.0. The importance of considering such 

such non-spatial heterogeneity depending on covariate value has been suggested by Hastie and 

Tibshirani (1993) and many other studies. 

In short, consideration of spatial and non-spatial heterogeneity is required to appropriately analyze 

geographical phenomena. Given that, this study develops a regression approach estimating spatially 

varying coefficients (SVCs) capturing spatial heterogeneity, and non-spatially varying coefficients 

(NVCs) capturing non-spatial heterogeneity. Because spatial data are getting bigger and bigger 

recently, we reduce the computational cost as much as possible to make it work for large samples. 

2 Spatially and non-spatially varying coefficient (S&NVC) model 

We model the explained variable Yi observed at the i-th sample site using the following spatially and 

non-spatially varying coefficient (SNVC) model (see Murakami and Griffith, 2020): 

Yi=ミXi,k恥 +ei, 恥＝加+fs,k(s;; 叩+f, ふ，k;<fJi), e;-N(O, が）， (I)
k=l 

where xi,k is the k-th covariate, and e; is a disturbance with varianceが.This model defines the k-

th regression coefficient恥 ati-th site S; by [constant: bk] + [SVC: fs,k(s;; 8;)] + [NVC: 

fn(X;,k丸）]. The k-th SVC is defined by a spatial process fs,k(s汎）， whichhas a smooth map 

pattern. Likewise, the k-th NVC is defined by a function fn (x;,k; <fJ;), whose value varies smoothly 

depending on x;,k; the natural spline generated from xi,k is employed to the function. Each SVC 

process is defined by a linear combinations L (< N) spatial basis functions whereas each NVC is 

defined by the same with Lk (< N) natural spline functions. {Oi,••·,OK,'fJi, …，<fJK} are sets of 



84

variance parameters specifying structures of SVC and NVC. This model attempts to balance constant, 

SVC, and NVC in each of the regression coefficients by estimating these variance parameters. 

Unfortunately, estimation of the variance parameters is slow if for large samples. Roughly 

speaking, this is because we need to iteratively process a large matrix with dimension being 

N X (LK +別~k=l Lk) when estrmatmg the vanance parameters where N is the sample size. To lighten 

the cost, this study develops a fast restricted maximum likelihood (REML) estimation approach 

estimating the parameters by first replacing the large matrix with a (LK + I[=1 Lk) X (LK + 

If=山） matrix of inner products, and iteratively process the small matrix instead of the large matrix; 

because dimension of the inner product matrix is independent of the sample size (N), the estimation is 

done computationally quite efficiently even for large samples. 

In summary, the S&NVC model estimates or balances SVC and NVC computationally efficiently. 

3 Application 

We applied the developed S&NVC model to the Lucas housing price dataset with sample size of 

25,357. The explained variables are lagged housing prices and the covariates are building age (Age), 

number ofrooms (Rooms), and number of beds (Beds). 

The model estimation took 142.655 seconds. Table I summarizes estimated variance of the spatial 

and non-spatial variations in each regression coefficient. This table suggest that influence from Age 

varying spatially and non-spatially, the influence from Room varying spatially, and the influence from 

Bets varying non-spatially. 

Figure 3 plots the estimated coefficients (SVC + NVC). The estimated intercept sugges叫 lower

house price in the center. The estimated coefficients on Age demonstrated that oldness ofresidence is 

a strong negative factor in the city center located in the center of the map. While Rooms have positive 

impact on prices across the region, the influence is strong especially in the suburbs. Finally, influence 

from Beds have positive impact, and the impact gets strong in the center and the eastern area. 

Table 1 Estimated variance of the spatial (SVC) and non-spatial variations (NVC) in each /Ji,k・We 

assume spatial variation in the intercept. 

SVC 

NVC 

Intercept 

0.048 

N.A. 

Age 

0.073 

0.099 

Rooms 

0.006 

0.000 

Beds 

0.000 

0.007 
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Figure 3 Estimated coefficients 
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Concluding remarks 

This study explains the importance of considering spatial variation and non-spatial variation in 

regression coefficients, and empirically demonstrated that these two variations are present in real data. 

Approaches considering such variation includes geographically weighted regression models 

(Brunsdon et al., 1998), latent Gaussian models (e.g., Rue et al., 2009), and our spatial additive mixed 

models. These approaches will be further important together with the increase of available spatial 

dataset. 

The S&NVC model is implemented in an R package spmoran (Murakami, 2020; http~·/lrrnn r-

pmjrrt ore;/wrh/pl'lrlrnerヽ/~pmornn/inrlrx htm 1). 
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