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1 Introduction 

In the present paper, we consider the productivity of sugars in formose chemical reaction networks 

(FCRNs) involving the formation of the sugars from formaldehyde in two types of reactors, namely, the 

batch reactor (BR) and the continuous stirred-tank reactor (CSTR) [l]. Here, a BR is a closed system 

without the in-flow and out-flow of species in a chemical reaction network (CRN), while a CSTR is an 

open system with them [1][2]. 

In order to analyze the mathematical structure of FCRN s more clearly, we propose a generalized formose 

chemical reaction network (GFCRN) on the basis of characteristic network structures of the networks. 

By analyzing the ordinary differential equations (ODEs) that describe the dynamics of concentrations 

of all species in GFCRN in the two reactors, we theoretically clarify the productivity of sugars in them. 

In particular, in order to employ external effects to the networks, we assume time-varying kinetics for a 

reaction [3][4]. 

First, by using the techniques given in [6] and [7], we show that any positive solution to the ODE for the 

GFCRN in the BR converges to an equilibrium point on the boundary of positive orthant, that is, all sugars 

in the FCRNs cannot be produced in the BR at their steady states. Next, by giving some assumptions to 

the kinetics of reactions and utilizing the concept of a semi-lockings set of a CRN proposed in [3] and 

[4], we show that any positive solution to the ODE for the GFCRN in the CSTR is bounded globally in 

time and does not approach to the boundary of positive orthant, that is, the concentrations of all species 

in the network do not converge to zero. This result implies that all sugars in the FCRN s can be produced 

in the CSTR at their steady states, in contrast to the case of the BR. 

From the above results, it is concluded that the productivity of sugars in the FCRN s in the CSTR is 

higher than it in the BR. 

2 Chemical Reaction Networks 

A chemical reaction network (CRN) in the sense of Feinberg [2] is mathematically defined by a triplet 

(S,C沢），wherethe elements S, C and'R are defined by 

S: the set of n species in the network, denoted by S := {Xi, X2, ... , X, ふ
C: the set of all complexes y in the network, 

'R: the set of all chemical reactions y→ y'in the network. 
Here a complex y E C means a linear combination of species, y = yふ ＋・・.+Ynぶ withcoefficients 
of non-negative integers, Y1,Y2, ... ,Yn, and a chemical reaction y→ y'denotes that a complex y'is pro-
duced from y. Here we may associate y with the vector of these coflicients, (y1, Y2, ・ ・ ・, Ynl E配， andy

and y'are called a reactant and a product, respectively. 
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We consider the time-evolution of the vector composed of molar concentrations of all species in a net-

work(S,C沢）• This vector is defined by x = (x1心2,... ぷ）T E Rn ;,O . Here x; is the molar concentrat10n 
of the species X; E S and四 isthe non-negative orthant of配.The time-evolution of xis given by the 
following non-autonomous ordinary differential equation (ODE) [3]: 

叩=I Ky→ y'(t, x(t))(y'-y), t~0, (1) 
y→ y'E'R. 

where Ky→ y': [0, +oo) X配
以〇
→ R, which is called the kinetics of the chemical reaction y→ y', is a 

non-negative continuous function on [O, +oo) X翌0.Furthermore, we assume the following condition 
[2]ー[5]:There exist functions Ky→ y'K ：配→ R such that , -y→ y';,O 

K.y→ y,(x)~Ky• y,(t,x)~Ky• y'(x), Vx E配0, Vt E [0, +oo). (2) 

Here, Ky→ y'(x) (resp.K_y→ Y,(x)) is a non-negative function of C1(R似；R) satisfying that, for any x E R~0, 

Ky→ y'(x) (resp.K_Y→ Y,(x)) > 0 if and only if supp(y) c supp(x), where supp(z) for z E配 isdefined by a 

subset of S such that X; E supp(z) if and only if z; -:f. 0. 

It has been proved that Eq.(1) is non-negative (resp. positive), that is, any solution x(t) to Eq.(1) with 

an initial value x(O) E即 (resp.x(O) E配）
;,O >0 

remains m即;,O (resp. R:0) for all t~0 [8]. 

3 Generalized Formose Chemical Reaction Network in Batch Reactor 

We consider a generalized formose chemical reaction network in the batch reactor, which is given by 

the following CRN (S1,Cぃ即：

n-1 n-1 

S1 = {X1,X2, ... ,Xn}, C1 = {2X2ぃLJ{X1+X, い LJ{X;},'R.1= LJ{X1 +ふ→X;+d U {Xn→ 2Xサ．
i=l i=2 i=l 

where m~2 is a positive integer number, and species X1 and Xn correspond to formaldehyde and a 
sugar, respectively. 

By using the techniques given in [6] and [7], we have the first main result of the present paper. The 

proof of the theorem will be given in Section4. 

Theorem 3.1 Any positive solution x(t) to Eq.(1) for the CRN (S1,C訊 1)with an initial value x(O) E 

配。 convergesto an equilibrium pointヌE8変。 onthe boundary of positive orthant記。.Here, ヌisa 
vector in BR贔suchthatヌ1and Xn are zero, and at least one of困(i= 2, ... , n -l) is not zero. 

4 The Proof of Theorem 3.1 

First of all, we show in the following lemma that any positive solution x(t) to Eq. (1) for the CRN 

(S1, Ci,'R.1) is bounded globally in time. 

Lemma 4.1 Any positive solution x(t) is bounded globally in time, that is, lim sup1→ 00 llx(t)II < +00. 

Proof Let us define a linear function T1 : 配→ JR defined by 
2,0 

n 

T1(x) := 3x1 + 3ふ +~x;, VxE配o・
i=2 

n-2 

(3) 

Taking the time derivative of this function along the positive solution x(t), we have 

d 
-T1(x(t)) = -5K2x1→ x2(t, x(t)) -Kxn→ 2x2(t,x(t))-Kふ+Xn-1→Xn(t,x(t))-3 I Kふ+X,→ x,+i (t, x(t)), Vt ?: 0, 
dt i=2 
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which implies that T1 (x(t))~T1 (x(O)) for all t?: 0. Hence we have O~x;(t)~T1 (x(O)) for all t?: 0 and 
i = l, ... , n. Therefore, it holds that lim supt→ 00 llx(t)II < +oo. ロ

By using the linear function T1 in the proof of this lemma, we obtain the following lemma, which 

guarantees the convergence of any positive solution x(t) to Eq. (1) for the CRN (S1, C1凡）．

Lemma 4.2 For any positive solution x(t), the following limits exist: 

lim『
t→00 。Kx,+x, → X;+i (s, x(s))ds, i = l, ... , n -l, lim f K_ふ→2x,Cs, x(s))ds, (4) 

t→00 。
屈』旦X;→ X;+i (x(s))ds, i = l, ... , n -l, 阻fKふ→2x,(x(s))ds. (5) 

Proof Integrating (10) from Oto t, we have 

T1(x(O)?: ft Kふ→2x2(s, x(s))ds,』tKふ+X;→ x,+i (s, x(s))ds, i = 1, ... , n -l, Vt?: 0. (6) 

Moreover from the assumption (2) of the kinetics for a reaction we obtain 

T1 (x(O) ?:』こzx2(x(s))ds, fぶ1+X,→ x,+i (x(s))ds, i = 1, ... , n -l, Vt ?: 0. (7) 

Hence we see from monotonically increasing of these integral functions (6) and (7) with respect tot 

that (4) and (5) hold. ロ

The convergence of any positive solution x(t) to Eq.(1) for the CRN (S1,C1凡）is proven, immediately. 

Corollary 4.1 For any positive solution x(t), the following limits exist: lim1→ooぶ(t)=困， i= 1, ... ,n, 
where x =ぽJ,... 品）is a non-zero vector in配:,.Q・ 

Next, we determine the convergence values x; (i = 1, ... , n). In order to show that the variables x;(t) (i = 
l, n) converge to zero as t→ +oo, we start with proving the following lemma. 

Lemma 4.3 For any positive solution x(t), it holds that 

limK 
t→OO ＿ふ+X;→ X1+1 

(x(t)) = 0, i = 1, ... , n -l, lim K (x(t)) = 0. —Xn• 2X2 t→OO 
(8) 

Proof We see from Lemma 6.1 and the assumption of a function K.y→ Y,(x) that for ally→ y'E灼

SUPt:>-0 ldK.y→ Y,(x(t))/dt < +oo. Therefore, from Barbalat's lemma [6] and Lemma 4.2 the limit (8) 

holds. ロ

Together with this lemma and the assumption (i) of a function Ky→ y'(t, x), we have the following theorem 

with respect to the convergence of the variables均(t)(i = 1, n). 

Theorem 4.1 For any positive solution x(t), it holds that limt→oo均(t)= 0, i = 1, n. 

Proof Let us consider the case of i = l. We assume that lim sup1→00功(t)if:. 0. This means that there exists 
a sequence {tz}/EN satisfying limz→ "" tz = +oo such that limz→ooふ(tz)= lim supt→00功(t)> 0. Hence, we 

see from continuity of the functionふX1→x2 (x(t)) with respect tot that lim1→00ふX1→x/x(tz)) > 0, which 
is a contradiction with (8). 

The other variable Xn can be proved in the same way as the above, hence the proof is omitted here. ロ

Finally, we show at least one of the limits of the variables x; (i = 2, ... , n -l) is not zero. 
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Theorem 4.2 For any positive solution x(t), at least one of the limits limi→oo均(t),i = 2, ... , n -1 is not 

zero. 

Proof We assume that lim1→oo均(t)= 0 for all i = 2, ... , n -I. Now, let us define the linear function 

乃：配→ 釦byT2(x) := Lい forall x E覧。.Taking the time derivative of this function T2 along the 
positive solution x(t) from Lemma 4.2, we have 

屈乃(x(t))= T2(0) +凸叶 k訊→x2(s, x(s))ds十言肥』駅，→2x,(s, x(s))ds > 0. (9) 

Now we see from continuity of the function T2(x(t)) with respect tot that lim1→DO乃(x(t))= 0, which 

is a contradiction with (9). 

Therefore at least one of the limits lim1→ "" x;(t), i = 2, ... , n -1 is not zero. ロ

The proof of Theorem 3.1 is completed from Thereoms 4.1 and 4.2 

5 Generalized Formose Chemical Reaction Network in Continuous Stirred-
Tank Reactor 

We consider a generalized fonnose chemical reaction network in the continuous stirred-tank reactor 

(S2, C2,'R.2) given by 

n 

ふ：= S1, C2 := C1 u {0, X汁，危：='R1 U {0→Xい U凶→0}. 
i=I 

where O denotes the zero complex, of which entries are all zeros. Here, we assume that the func-

tion Ko→ x,(t,x) = ao→ x, (t), where a continuous function a0→ x, (t) satisfies that there exist constants 
止→x,,M。→x, > 0 such that払）→x, < ao→ x,(t) < Mo→ x, for all t~0, and the function Kx, → 0(x) 
satisfies that limふ→+ooK.x, → 0(x) = +oo as坊→ +oo. 
The second main result of the present paper is in the following theorem, the proof of which will be 

given in Section6. 

Theorem 5.1 Any positive solution x(t) to Eq.(1) for the CRN (S2, C2爪2)with an initial value x(O) E 

配。 isbounded globally in time. Moreover, the following inequality holds: liminf1→ooぶ(t)> 0, i = 
1, ... ,n. 

6 The Proof of Theorem 5.1 

First, we show the first part of Theorem 5.1 that any positive solution x(t) to Eq.(l) for the CRN 

(S2,C2沢ガisbounded globally in time. 

Theorem 6.1 Any positive solution x(t) is bounded globally in time. 

Proof Taking the time derivative of the function T1 defined by (3) along the positive solution x(t), we 

have 
d 

n 

訊 (x(t)):,; -l: Kx; → o(t,x(t)) + 3ao→ x,(t):,; -IKx, → 0(x(t)) +石， Vtz 0, (10) 
i=l i=l 

where we put石：= 3supた0ao→x, (t). 

Let us define a subset B~ 即 byB := { x E JR.~。 lg(x):,;石},where g(x) :=江ふ，→0(x). Since 
it follows from the assumpuon of a function fix; → o(x) that g(O) = 0 and g(x)→ 十ooas llxll→ +oo, 

the subset B is non-empty and compact on配.Putting冗：= maxxEB T1 (x) < +oo we see that O :,; 
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T1(x(t))~max{T1, T1(x(O))} for all t 2". 0. Hence we have O~xi(t)~max{冗,T1(x(O))} for all t 2". 0 and 
i = l, ... , n, which implies that lim supt→ 00 llx(t)II < +oo. ロ

Next, in order to prove the second part of Theorem 5.1, we give the definition of a semi-locking set of a 

CRN (S, C,'R) and a lemma [3] 

Definition 6.1 For a network (S, C,'R), a non-empty subset'W of S is called a semi-locking set if 

'W n supp(y) -:f:. 0 for any reaction y→ y'E'R such that'W n supp(y') -:f:. 0. 

Lemma 6.1 Consider the Eq. (1) for (S, C,'R). Let W c S be a non-empty subset. If there exists an 

initial value x(O) E配。 suchthat w(x(O)) n Lw -:f:. 0, then'Wis a semi-locking set. Here w(x(O)) is an 
omega limit set of x(O), and伍 isa subset of配 definedby伍：= {x E配凶 =0⇔ Xi E'W}. 

Theorem 6.2 For any positive solution x(t), it holds that lim inft→OOぶ(t)> 0, i = 1, ... , n. 

Proof Theorem 6.1 means that the omega-limit set w(x(O)) is a non-empty, compact and invariant subset 

of鰐。 [6].Moreover, we see that (S2,C訊 2)does not have a semi-locking set, and hence it follows 
from Lemma 6.1 that w(x(O)) c阻悶_0.Therefore, since any positive solution x(t) approaches to w(x(O)) 
as t→ +oo [6], from the compactness of w(x(O)), the proof of Theorem 6.2 is completed. ロ

The proof of Theorem 5.1 is completed from Thereoms 6.1 and 6.2. 
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