R-solver and periodic solutions of the Navier-Stokes
equations
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1 Introduction

Since Kato-Fujita theory, the Navier-Stokes equations have been stuided by a lot of mathematicians based
on analytic semigroup properties of Stokes equations. Since the Navier-Stokes equations are a system
of semi-linear parabolic equations, and so the analytic semigroup approach has yielded many fruitful
results. On the other hand, in many flow problems, for example a falling drop problem, ocean problem,
nuclear power, energy conversion technique, envilonment issues, bood flows. .., we meet free boundary
problem for the Navier-Stokes equations, which is formulated in an unknown time dependent domain.
Under suitable transformation from a time dependent unknown domain with free boundary to a known
domain with fixed boundary, the equations become a system of quasilinear parabolic equations with
non-homogeneous boundary conditions. The basical tool of proving the local in time existence theorem
for such problems is the maximal regularity for the Stokes equations with non-homogeneous boundary or
transmission conditions. There are a lot of works have been done by Solonnikov and his colleagues since
the early of 1980 in the Hblder spaces, Crronlta/2 (o > 0), and Sobolev-Slobodetskii spaces VVQHE’I_*'U2
(1/2 < £ < 1), by Jan Pruess and his colleagues in the anisotropic sz i space since the early of 2000, and
by Shibata and his colleagues in the anisotropic WqZ, ‘pl space also since the early of 2000. From technical
point of view, their approaches are different, and in this note I would like to explain an approach based
on R-solver of the generlized resolvent equations for the Stokes operator with non-homogeneous free
boundary conditions, which gives a systematic study of a system of quasilinear parabolic equations with
non-homogeneous boundary conditions.

2 Framework based on R-solvers

I would like to formulate R-solvers for free boundary problem without surface tension in mind. Let me
consider an initial-boundary value problem formulated as follows:

t—Au=f, Bu=g fort>0, ul—o=uo, (2.1)
where t is the time variable, % denotes the time derivative of u, and Bu = f denotes a boundary condition.

e Let X and Y be two UMB Banach spaces and Y C X.
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o Let Z = (X,Y)[/9 be a complex interpolation space of order 1/2.
o Let A€ L(V,X), L(Y,X) denoting the set of all bounded linear operator from Y into X.
e Let Be L(Y,Z)NL(Z, X).

Example 1. The following two sets of equations are typical example in the setting of this note:

v
— =g on I x (0,00), v|i=0 = vo,
o =9 (0,00),  wl=o =10
where € is a domain, 052 is its boundary, A denotes the Laplace operator and v denotes the unit outer
normal to 92 (Neumann operator);

0—Av=f in Q x (0,00),

v—Av+Vp=1f divv=0 inQ x (0,00),
(D(v)—phr=g on IQ x (0,00), V|=o = Vo
In these cases, for 1 <p < oo, Iset X =L,, Y = Hg, Z = H;'
In what follows, for e € (0,7/2) and A\g > 0 X, denotes a subset of C defined by setting
Sero ={A€C\{0} | |arg\| <7 —¢, [A> Ao}
And, let me consider a generalized resolvent problem corresponding to (2.1) as follows:
A—Au=f, Bu=g (2.2)

for A € ¥ \,, where "generalized” means the non-homogeneous boundary condition.
A main tool in my approach is Weis’s operator valued Fourier multiplier theorem [7], and so I introduce
the notion of R boundedness of operator families.

Definition 2. Let £(X,Y) denote the set of all bounded linear operators from X into Y. A family of
operators, 7 C L(X,Y), is called R-bounded if there exists a constant C' and an exponent p € [1,00)
such that for all m € N, {T},}7", C T, and {z}}; C X, there hold the inequalities:

m m
H; rkakaLp((o,U,y) < CH; TkmkHLp((O,l),x)'

Here, the Rademacher function ri, k € N, are given by ry: [0,1] — {~1,1}, ¢ — sign (sin(2¥nt)). The
smallest such C' is called the R-bound of 7 on £(X,Y’) which is written by R,y (T) in what follows.

In the following, I consider the situation that for any A € ¥ ,, f € X and g € X N Z, problem (1)
admits a unique solution u € Y possessing the estimate:

llully + Mullx < CULfllx + lgllz + [Xglx), (2.3)

which has been studied since 1950’s as parameter elliptic problems. My concern is to prove the generalized
resolvent estimate in terms of R-norms instead of standard norms, || - || x, || - ||y, and || - || 2.

For any Banach space U, let Hol (X ,,U) denote the set of all U valued holomorphic functions
defined on ¥ ),. Below, I assume the existence of an operator family

MA): XXX XZ—=Y; XxXXxZ>3(F,F),F;)— MMN(F,F),F;)eY
for every A\ = v+ it € X 5, with

M(A) € Hol (B p, L(X x X X Z,Y)), AM(X) € Hol (X, 5y, L(X x X x Z, X))
such that



(i) forevery A€ Xy, f € X and g € Z, u = M(N)(f, \/?g, g) is a solution of problem (2.2);
(if)  M(X) satisfies
Rexxxxz,x) {10 AMN)) [ X € Sep} < 7o,
RL(XXXXZ,Y)({(T&F)ZM(/\) [ A€ Xt <,

for £ = 0,1 with some constant ry,.

(2.4)

Remark 3. Such an operator family M()) is called an R-solver for equations (2.3). Since R boundedness
implies the standard boundedness (in the m = 1 case in Definition 2), the estimate (2.3) is derived
automatically from (2.4).

I now consider the following time dependent problem:
t—Au=f, Bu=g (t>0) ul=0=muo. (2.5)
The compatibility condition is:
glt=o = Bug (2.6)
which is obtained from the boundary condition Bu = g at t = 0. Set v = v + w, where v and w are
solutions of the following equations:
v—Av=f, Bv=g forteR, (2.7)
w—Aw=0, Bw=0 forte (0,00), wl=0=1up— v|=o. (2.8)
I first consider equations (2.7). First of all, let f and g be extended to t < 0. Since f is not required
to be differentiable in time, and so f is extended by 0, that is fo = f for ¢ > 0 and fp = 0 for ¢ < 0.
On the other hand, g is usually required to be differentiablity at least of some fractional order on ¢ and
so here it is assumed that g is defined for ¢ > 0, and then go(t) = g(t) and go(t) = p(t)g(—t), where
p(t) € C(R) which equals one for ¢ > —1 and vanishes for ¢ < —2. Instead of (2.7), I consider the

following equations:
v—Av=fy, Bv=gy forteR. (2.9)

Applying the Laplace transform to equations (2.9) yields that
o — Ab = fy, B = go. (2.10)
Here, the Laplace transform o is defined by setting
o(A) = / e~ My(t) dt = / e~ e () dt = Fle "w](r)

—00 —00
with A = v+ 1'7: € C, where F denotes the Fourier transform. Using the R-solver M(\), 0 is represented
by & = M(A)(f, A\'/24, §). By the Laplace inverse transform,

R 1 [ )

o) = £ MO390 = 5 [ EOMONFe o, 410, 9) () dr

—00

= ' FHMNFle " (fo. A %9, 9)1(7)](1),

where A#/ 29 is defined by setting
AYf%g = L7HNELIgI(N)(0).-

I now quote the Weis operator valued Fourier multiplier theorem [7].



Theorem 4. Let X and Y be two UMD Banach spaces and let 1 < p < oo. Let m be a function in
CHR\ {0}, L(X,Y)) such that the following conditions are satisfied:

Rexyy{m(r), 7 € R\ {0}}) = ko < o0,
Rex,yy({m(r), 7 € R\ {0}}) = w1 < oo.
Let an operator Ty, acting on elements of F ' [D(R, X)] be defined by setting
[T f)(t) = F (D) FIf0I)  for f with F[f] € D(R, X),

where D(R, X) denotes the set of all X -valued C§°(R) functions. Then, the operator Ty, is extended to a
bounded linear operator from Ly(R, X) into L,(R,Y) with norm

1Tl 2z, ®.5),L,@® 1)) < Clko + K1)
with some constant depending only on p, X, and Y.
Applying Theorem 4 to the formulas:
e = FUAMN)Fle " (fo, AY?9,9)]1 (1),
ey = FHMNFle " (fo, AY g, 9)]](2)
yields that
e " 0wl x) + lle” " 0llL,@®y)
< C(le fllz,@x) + le A ?gll, ® x) + e gllz,@®.2),

which is the maximal L, regularity theorem for problem (2.7).

Problem (2.8) is solved by C° analytic semigroup T'(t), whose generation is obtained with the help
of the R-solver. In fact, the underlysing space H, the operator A and its domain D(A) are defined as
follows:

H=Xy, DA ={xeY|Bx=0}, Az= Ax for z € D(A).
Problem (2.8) is formulated by
w—Aw=0 (t>0), wl=o=up— v|i=0- (2.11)
The corresponding resolvent problem to (2.11) is
Mb—Aw=f, Bw=0 (t>0). (2.12)

with f = up — v]y=¢. Since the R boundedness implies the boundedness, by the first estimate in (2.4)
implies that for any A € ¥, 5, problem (2.12) admits a unique solution @ € Y possessing the estimate:

Aol x + [[@fly < 2rllfllx,
Thus, there exists a CV analytic semigroup {7'(¢)}s>0 such that for any f € X, w = T(t)f gives a unique

solution of problem (2.12). Moreover, if f € (X,D(A))1_1 ), which is an real interpolation space between
X and D(A), then w satisfies the estimate:

lle™ |1, ((0.00).x) + e Wl L, (0.000.7) < CUFI Y11/



for any v > Ao, where C' is a constant depending solely on Ag and e. By the compatibility condition
(2.6), B(uo — v|i=0) = Bug — gli=o = 0, and so f = ug — v|t=0 € (X,D(A))1_1/p, provided that
g € (X, D(A))1-1/pp- In fact, a real interpolation theorem yields that v € C([0, ), (X,Y);_yp,) and

, S[gp ) [Nl x D1/ < CUE™ 0L, ((0,00),5) + €770l L, ((0,00),¥))-
€10,00

Thus, we have

lle™ || 1, ((0,00),%) + e wl| £, ((0,00),7)

< Clllwollx.v)s_1jpp + 16770 L ((0.00).) + 1€ 0] L, ((0,00).7) -

Then, u = v + w is a requred solution to problem (2.5).
Summing up, I have proved the following theorem.

Theorem 5. Let 1 <p < oo and X, Y and Z be three UMD Banach spaces. If R-solver M(X) exists
for X € B¢, then problem (2.5) admits a solution u with

e Mu € Ly((0,00),Y) N H;((O7 0), X)
for any v > Ao possessing the estimate:
e |1, ((0,00) ) + le” 2l L, (0.00).v) < Cllluollx.xv),_, ),
e Fll .00y, + e AY 2 (0g0) Iz, .x) + e " @g0llL, r.2)}-
3 Framework for periodic solutions with the help of R-solver and
transference theorem

Now, let me consider periodic solutions of equations:

v—Av=f, Bv=g forte(0,2r)=T, (3.1)
where it is assumed that f(¢t + 27) = f(¢) and g(t + 27) = g(¢) for t € R. Let

. 1

f(k) = Frlf](k) = 5~ /O Cep(nydr, F(aneeal(t) = 3 ety

ke

Ly per((0,27), X) = {f(t) € Lpioc(R, X) | f(t +27) = f(t) (t€R)}.
Applying Fourier transform gives that
ikt — Ab = f(k), B = j(k). (3.2)
Applying R-solver M(\) gives that
o(k) = M(ik)(f (k). (k)24 (k), §(k))

for [k| > Ao, because ik € X 5, for |k| > Ag. The following theorem was obtained in [2].



Theorem 6 (Either-Kyed-Shibata). Let X, Y be Banach spaces and p € (1,00). Assume that 'Y is

reflexive. If
1

Tulf) = F O FIAO) = 5

| eSm@FUN e for £ with FIf] € DR X)
is a bounded linear operator from Ly(R, X) into L,(R,Y), that is

1Tl A1l 2,2y < MpllfllL, @z x)s
then

Ton1lg) := Fp [(m\Z(zk)fT [9](ik)) kez] Zem k)Frlgl(k) for g € Lpper((0,27), X)
keZ

is also a bounded linear operator from Ly per((0,27), X)) into Ly per((0,27),Y) with essentially the same

bound. Namely, we have
1T w91l 2, 0,2m).7) < CpMpllgllL,((0,20),%)

for some constant C,, depending solely p.

Let ¢(1) € C*°(R) which equals 1 for |7| > X\g + 1/2 and 0 for |7| < Ao + 1/4. Set
vy = Fr (0 (k) M(ik)(f(ik), (ik)/3(k), 3(k)) nez]
where h(ik) = Fr[h](k). And then, v, satisfies the equations:
0o, — Avy = F M (p(k) f(k))kez],  Bvp = F M (0(k)§(k))rez]-
By the transference theorem, Theorem 6,
18evell, ((0,2m),3) + Vgl Ly 0,201, 0) < CUSNLp(0.0m,5) + 190 172020y, 57 F 1902 (0,27),2))-
A solution v of equations (4.29) is given by

v = E ey, + Uy
[E|<Xo+1/2

where vy are solutions of the equations:

ikvy, — Av, = f(k), Bog = g(k).

(3.3)

(3.5)

The part, vy, of v in (3.4) is called the high frequency part, and the estimate (3.3) is the maximal L,

regularity of the high frequency part.

4 One phase problem for the Navier-Stokes equations

The material here is taken from my joint paper [1] with Thomas Eiter and Mads Kyed. Free boundary
problem for the Navier-Stokes equations is formulated as follows: Let €2 be a time dependent domain in
the N-dimensional Euclidean space RN (N > 2), which is unknown. Let I'; be the boundary of €, and
n; the unit outer normal to I'y. It is asssumed that €2; is occupied by some incompressible viscous fluid of
unit mass density whose viscosity coefficient is a positive constant . Let u = T (uy(z,t),...,uyn(z,t)) be



the velocity field and p = p(z,t) the pressure field and then u and p satisfies the Navier-Stokes equations
in €y with free boundary condition as follows:

Ou+u-Vu—Div(gD(u) —pI)=f  inQ,
divu=0 in Q,
(uD(u) = pI)n, = o H(Ty)ny on I'y,

Vr,=u-ny on I';

(4.1)

for t € (0,27). Here, f = f(x,t) is a prescribed 27 time periodic external force; H(T';) denotes the N — 1
fold mean curvature of I'; which is given by H(I';)n; = Ap,z for « € T'y, where Ap, is the Laplace-Beltrami
operator on I'y; Vp, the evolution speed of I'; along n;; o a positive constant representing the surface
tension coefficient; D(u) the doubled deformation tensor given by D(u) = Vu+ "Vu; and I the N x N
identity matrix. For any N x N matrix of functions K whose (i,7)'" component is K;;, Div K denotes
an N-vector whose ™ component is Z’;:l 0;K;j and for any N-vector of functions v = T(vl, S L, UN),

v - Vv denotes an N vector of functions whose i component is Zj\;l v;0jv;, where 9; = 0/0x;.

Our problem is to find Q, I';, u and p satisfying the periodic condition:
Qt, = ﬂt+27‘r7 Iy = Iit+2ﬂ'7 u(:c, t) = u(xﬁt + 271—)) p(lv t) = p(iL,t + 27T) (42)
for any ¢t € R.

4.1 Assumptions

i—th
Let pj=e; = '(0,...,0, 1,0,...,0) fori=1,...,Nand py (( =N +1,...,M) be one of z;e; — z;e;
(1 <i,j5 < N). It is known that an N-vector of functions, d, satisfies D(d) = 0 if and only if d is

represented as a linear combination of p; (i = 1,..., M). The unknown domain Q; will be constructed
such that the following three conditions are satisfied:
21
d t( P dt) 0, 43
[ epaad), 7 (43)
2 1
/ (—/ a-dar) dt =0, (4.4)
o Ml Jq,
|| = |Bgr| for any ¢ € (0,2). (4.5)

In what follows, the following symbols will be used:
Hg,per((o-, 2m), X) = {f(-.1) € Lpoc(R, X) | f € Ly per ((0,27), X)};
Hyloer((0,27), X) = {f (1) € Lpioc(R, X) | Fr ' [((1 + k*)Y* f(k))rez] € Lpper ((0,27), X)};

p,per

21 1/p
I 2pc0.2m,5) = (/0 LF@I dt) " < oo
1AW 172 0.2y 500 = IFE 1+ B f (k) kez)l 1 (0,2m),);

uwaaémwﬂﬂmﬁumm:AJWMEm

Let ©¢, u and p satisfy equations (4.1) and periodic condition (4.2), and then the divergence theorem
of Gauss implies that

((ND(U) - )JI)Ilt, ei)F: = U(A]"tl’, ei)Ft = *U(Vrtfﬂ, thei)Ft =0
((D(w) — pI)ng, ziej — xj€i)r, = o(Ar,z, vie; — Tj€)r, (4.6)
= _U(VFLJ"JF VFLIi)FL + U(VFL'/L"” VFL'Tj)FL =0.



Since

2w po)a, = @+ (w-V)u,pi)a, = (Div (uD(w) ~ D), po)e, + (£, o)

as follows from the first equation in (4.1) and divu = 0, it follows from (4.6) that

%(u? pl)QL = (fzpf)ﬂt' (47)

Assumption on f. There exists a domain D C €, such that suppf(z,t) C D for any t € R. O
Thus, the periodic condition (4.2) together with (4.7) yields that

27T
/ /f da:)dt:O for £=1,..., M. (4.8)

Instead of problem (4.2), we consider the following equations:

du+u-Vu—Div(uD(u) — pI) + Z/ ).Pr)o, dtpr =f in Q,

diva=20 in €, (4.9)
(uD(u) — pI)n, = cH(Ty)ny on I'y,

Vr,=u-n on I';

for t € (0,27). In fact, if Q;, u and p satisfy equations (4.9), the assumption (4.3), and the periodic
condition (4.2), then by (4.8) we have

d
(£, po)e, = (1), po)a, + Z/ ), Pr)a, dt(Pr, P,

Integrating this formula on (0,27) and using the periodicity and the assumption on f, (4.8), gives

M 27 2m
> [ e poedt [ prpoodi =0,
0 JO

k=1"

which, combined with (4.3), yields that

/ 2W(u(n t), Pr)a, dt = 0. (4.10)
0

Thus, €, u and p satisfy the first equation in (4.1).

4.2 Hanzawa transform

Since € is unknown, the problem should be formulated in a fixed domain. For this purpose, the Hanzawa
transform is used. Let £(¢) be the barycenter point of Q; defined by setting

1

where the fact that |Q¢| = |Bg| has been used, which follows from the assumption (4.5). From the
Reynolds transport theorem and divu = 0 it follows that

%ﬁ(t) - (Ox +u-Vz)de = ! u(z,t)dz, ¢&"'(t) = b

f(z,t)de. 4.12
Bal Jo, (w,t) (4.12)

|Br| Ja, 1Bl Jo,



Let p(y,t) be an unknown periodic function with period 27 such that

Ty={z=y+R 'p(y.t)y+£t) |y € Sk},

where Sp = {z € RY | |z| = R} and R~y is the unit outer normal to Sg for y € Sg. Let H, be a
suitable extension of p to RY such that

1Hpll g8y < Cllpllys-1agg,,y  for k=1,2,3,
10eHpl s () < CllOtpllyyyi-1/0g,y  for k=1,2.

Let
Y ={x=y+ R Hyy,t)y +£(t) | y € Br},
Iy={z=y+R 'p(y, )y +£(1t) |y € Sk}

Let J(t) be the Jacobian of the transformation: x = ®(y,t) =y + R~ H,(y,t)y + £(t). Assume that

(4.13)

sup || Hp(- )|y (Br) <6 (4.14)
te(0,2m)

with some small constant 6 > 0, which is chosen so small that the map z = ®(y,t) is injective for any
t € (0,27), and so the inverse map y = ®~1(z,t) exists and has the same regularity property as that ®
has.

4.3 Kinematic equations

Let u(z,t) and p(z,t) satisfy equations (4.1), and let v(y,t) = u(®(y,t),t) and q(y,t) = p(P(y,t),t). An
equation for v and p is derived from the kinematic condition : Vp, = u-n; on I';. From the fact that I';
is represented by = =y + R~ p(y,t)y + £(t) it follows that
Ox 0 :
Vi, = 57 me = (G €(0) my, (4.15)
where n = R™'y. To represent &'(t), let me represent the Jacobian, J(t), of the map z = ®(y,t) as
J(t) = 1+ Jo(t) with

., 0
Jo(t) = det(6;5 + R 16—%(Hp(g,/,t)yj))m:1 _____ N L
Thus,
¢y = [ wde=— [ vty + —— [ v D(t)dy
=15 =15 1 3 T 1 3 0 5
|Bgr| Ja, |Br| /g |Br| /5,

which, combined with (4.16) and the kinematic condition: Vp, = v - ny, yields that

op—(v—5= [ vly,t)dy) =d(v,p) (4.16)
|Br| /5,
with 5
Av.p) = a7 [, VOl dy + S0 (- n) v (n ). (4.17)
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4.4 Mass conservation and Barycenter

The the case where € is close to Bpg is considerd below, and so Ar, is a small perturbation from Ag,,
where Ag, is the Laplace-Beltrami operator on Sg. Thus,

< H(Ty)ng,n, >= (Ag, + (N —1)/R*)p— (N —1)/R + nonlinear terms.
Here, —(N — 1)/R? is the first cigen-value of the Laplace-Beltrami operator Ag, on Sg with eigen-

functions y;/R for y = (y1,...,yn) € Sg. To avoid the zero and first eigen-values of Ag, in this linear
analysis, the following observation is useful: Since I'y = 99 = {x =y + R p(y,t)y +£(t) | y € Sk},

RA-p(w,t) 1
_ _ N1 1 N
mal =10l = [ (] i) o= 5 [ (R ol

. N o
k k
= 1Bl + [ paae SN [ a0,
Sk kZ:Z N Sk
and so

/pdw—l—ZNCk/ pF dw = 0, (4.18)
SR SR

where dw denotes the surface element of Sg. The relations Ty = 90Q; = {z =y + R 'p(y, )y +£(t) |y €
Sk} and £(t) = ﬁ Jo, x dz gives that

- (x—&(t)de = ! </R+p7‘Nwdr)dw

~ |Bgl Ja, |Brl Jsy,
1 1

- - - R N+1 d
\BR|N+1/SR( to) Wl

1 N+1N L

+1C% k
=— pw dw + —/ pwdw),
\BR|(/SR ZH N+1 /s,

from which it follows that

N+1 N+1

/ pw]dw-i-z
Sk

k=2 k=2

pkwj dw = (4.19)
Sk

forj=1,...,N.

4.5 New kinematic equation

Using these two formulas (4.18) and (4.19), one can see that the kinematic equation is equivalent to
equation:

N L .
Btp—O—/Sdew-i-;(/sn pwkdw)yk - (v— @ andy) -n=d(v,p) (4.20)

on Sg % (0,27) with

NCy & N+lck i
d(v,p) =d(v,p) — Z / dw N+1</ pwdw)yk. (4.21)



4.6 Linearization Principle

To prove the existence of (£, u,p) satisfying (4.1), it is enough to prove the existence of periodic solutions
to the following equations:

v + Lvg — Div (u(D(v) — qI) = G + F(v,p) in Br x (0,27),
divv = g(v,p) = divg(v,p) in Br x (0,27), (4.22)
dp+Mp—Av-n=d(v,p) on S x (0,2m),
(1D(v) = q)n — (Brp)n = h(v, p) on Sg x (0,2m),

where G(y,t) = VO®(y,t)f(D(y,t),t), F(v,p), g(v.p), g(v,p), and h(v,p) are nonlinear terms, and we
have set

M 21
1
Lvg =2m ;(V&pk)'ﬂ“ Pi, Vs =5 v(-,s)ds,
1 al (4.23)

Av=v - — v dy; Mp:/ pdw + / pwr dw | yx; ’

|Br| /By, Sr ;(s ' >k

-1

Brp = (Asy + —55—)p = R *(As, + (N = 1))p,

R2
where Ag, is the Laplace-Beltrami operator on the unit sphere S;.

4.7 Main Result

Theorem 7. Let 1 < p,q < oo and 2/p+ N/q < 1. Let D be a domain C Bg = {z € RN | |z| < R}.
Assume that

o f€ Lyper((0,21), Ly(D)N) and suppf(-,t) C D for any t € (0,27),

21
/ (£(-,t),pe)pdt =0 fort=1,...,M, (4.24)
0

o there exists a small € > 0 such that ||£||1,(0,2m),L,(0)N) < €.

Then, there exist v(y,t), q(y,t), and p(y,t) with

Ve LP PCY((O’ 27’!’) HZ(BR)N) n H;; per((07 27T)7 L(](BR)N)-,

q € Lpper((0,2m), H, (BH)), (4.25)

pe LP,PCT((O’ 27{'), W3 1/q(BR)N) N Hz},per(((]? 271'), Wq?il/q(SR))’
such that the correspondence: x = ®(y,t) := y + R™ H,(y,t)y + £(t) is an injective map defined on Br
and

Y ={z=2(y.t)|y€Br}, Ti={z=y+R 'ply.t)y+£(t)|ye Sr},
u(z,t) = v(eHx,1),0), plr,t) = (@ (2,1),1),

where ®~1(x,t) is the inverse map of the correspondence: x = ®(y,t) for any t € (0,27), are unique

solutions of equations (4.1) satisfying the periodic condition (4.2), where £(t) is a 2m periodic function

which salisfies the equation:
1
)= — | zdux.
€] Jo,

11
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Moreover, v and p satisfy the estimate:

IVl (0.2m),52(BR)) + 106Vl L,((0,27), Lo (BR))

(4.26)
+ Hp”Lp((O,Qw),W,?_l/”(SR)) + H(?t/’HLp((0727r)7qu—1/q(sm) + ||8tp"Lw(([)’%),wa—l/q(sn)) < Ce
for some constant C' independent of e.
4.8 Linearized equations
The linearized equations for problem (4.22) are the set of the following equations:
v+ Lvg — Div(p(D(v) —qI) =f  in B x (0,2m),
divv=g=divg in Br x (0,27), (4.27)
Op+Mp—Av-n=d on Sg x (0,2m),
(#D(v) —aq)n— (Bgp)n =h on Sp x (0,2m).

The following theorem is the unique existence of periodic solutions of problem (4.27).

Theorem 8. Let 1 < p,q < oo. Then, for any

f € Lyper ((0,27), Ly(Br)™),
g€ Lp,per ((O, 277)aH;(BR)) N le,/p2er ((0>2W)»Lq(BR))7

€ H;,per (07 27T)7 Lq(BR)N)7 d € Lp,per ((07 277)7 qu_l/q(SR))7

h e LP,PCY ((07 271—)7 H;(BR)N) n Hg},/p2er ((07 271—)7 LQ(BR)N)v

problem (4.27) admits unique solutions v, q, and p with
Ve LP«,DCY ((07 271'), Hg (BR)N) n H}},per

Vq € Lyper ((0,2m), Lq(BR)N)7
p € Lpper ((0,2), ngl/q(SR)) n H;

((0,27), Lo(Br)™),
per ((07 271')., ngl/Q(SR))

possessing the estimate:

IVllz,(0,2m), 12(BR)) F+ 106V Il L, (0,20, 10 (Br)) F IVl L, (0,27), Lo(BR))

TP 0.2y w7350y T 19PN 0 2m), w2 7905
< CllE L, (0,2m),La(Br) T 14l (0 2my w2179

+ 118l m1(0,20), L4 (Br)) T 1195 h)||H;/2<(012ﬂ)1Lq(BR)) + 19, W)L, (0,2m), 11 (Br)) }-

In what follows, I will give an idea how to prove Theorem 8.

4.9 R-solver and High frequency part

For any periodic function, f, the stationary part fs and oscillatory part fpe; are defined by setting

2T
fs= oo [ fCas)ds, fu(n8) = FC) — f5().

:271'0



And then, problem (4.27) is divided as follows:

Lvg —Div (pu(D(vg) — qsI) = fg in Bg,
divvg = gs =divgg in Bg,
ivvg = gg ivgs in Bg (4.28)
Mps—AVS~l‘l:dS on SRX(O,QTF),
(1D(vs) —qs)n — (Brps)n =h(v,p)s  on Sk x (0,2m),
and
OrVper — Div (u(D(Vper ) — dper I) = fier in Bg x (0,27),
div Vper = gper = div per in Bg x (0,27), (4.20)
Oipper + Mpper — AVper 11 = dper on Sg x (0,27), '
(uD(Vper ) — dper )10 — (BrPper )11 = hiper on Sg % (0,27),
In this subsection, I consider problem (4.29) for the high frequency part.
According to Sect. 3, I consider the generalized resolvent problem:
Au - Div (uD(u) —pI) =f  in Bpg,
divu=g=divg in Bp,
R (4.30)

A+ Mn—(Au)-n=d  on Sg,
(uD(u) = pIn — (Bgpn=h  on Sg

for any A € X5, with any e € (0,7/2) and some large positive number \g depending on e. And then,
from the result due to Shibata [4, 5], the following theorem follows.

Theorem 9. Let 1 < g < oo and 0 < e < /2. Let
X¢(Br) ={(f,d.h,3,8) | f € Ly(Bp)", de W}V, he H}(Bp)",
§ € Hy(Br), &€ Ly(RV)N},
Xy(BR) ={F = (F\,F,...,F) | Fi,F5,Fr € Ly(Bg)~, Fy € W2'/4(Sp),
Fy € H)(Bg)", Fs € Ly(Bg), Fs€ H,(Q)}.
Here, F\, Fy, F3, Fy, F5, Fgs, and F; are corresponding variables to f', (f, )\l/zfl, fl, )\1/2[], g, and \g,
respecitively.
Then, there exist a constant N\g > 0 and operator families A(N), P(X), and H(N) with
2A(N) € Hol (Scx. L(X,(Br). Hy (Br)V)),
P(A) € Hol (S x,, £(Xy(Br), Hl(BR)))
H(A) € Hol (Sexg, £(Xy(Br), Wi~ /*(SR))),
2 PIA(Z ,X) denotes the set of all X -valued holomorphic functions defined on 5, such that for
any (f,d,h, g ) € Xy(BRr) and X € ¢ \,, v =AN)Fy, q=P(N)Fx and n = H(\)Fx, where
Fa = (£,d,\?h, b, A2, g, \g),

where

are unique solutions of equations (4.30), and
R iy ey (L (FO AN | X € Eerg}) < 1
RL(X,Z(BR),LQ(BR)N)({(TaT)ZVP()‘) | A€ Den}) <
a9\ \n
R, LA (Br) W l/q(SR»({(qu—) (A"HN) [ A e B }) <7

for£=0,1, m=0,1,2 and n = 0,1 with some constant r,, where A = v+ it € X 5, C C.

(4.31)
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Let ko be a natural number such that A\g < ko and ¢ a C*°(R) function which equals one for |k| > ko+1
and zero for |k| < kg + 1/2. Let

Fy = Fr ' [(p(k)fper (ik))kezl, Gy = F ' [(0(K)dper (ik))rez), Gy = Fi ' [(0(k)&per (ik))rez),
Dy = Fp'[(p(k)dper (ik))kez], Hy = Frt[(o(k)hper (ik))rez]-

Let
vo = Fr (k) A(iR)Fi)rez),  ap = Fr ' [(o(k)P(ik)Fi)rezl.  pp = Fr (k) H(ik)Fr)kez),

where Fy = (Fper (i), dper (i), (ik) Y/ *hper (ik), Dper (ik), (k) 2Gper (ik), Gper (ik), ikEper (ik)). Then, v,
q, and p, are unique solutions of equations:

Ovy — Div (uD(vy) — q.I) = F,, in Br x (0,27),

divv, = G, = divGy, in Bg x (0,27),

Opp+Mp, — (Avy,) -n=D,  on Sgx(0,27),

(uD(vy) — q.I)n — (Brpy)n = Hy, on Si % (0,2m),

(4.32)

with
VLP € Lp,per ((07 27T)7 H(?(BR)N) N H;,per ((07 27T)7 LQ(RN)N)v Vqtp € Lp,per ((07 Qﬂ)v Lq(BR)N)7
P € L per ((0,27), WE9(SR)) N H) ey (0, 27), W7 1/9(Sp)).

p,per

Moreover, the following estimate holds:

Vel (0.2m),52(BR)) + 106Vl Ly ((0,2m),Lq(Br)) + IV el L,y ((0,27), Lo (BR))
FlPellL, 02mwi1/asay + 19Pel iy 0.0m w2 1/25m) (4.33)
< CUIFl L, (0.20), Lo (BR)) T HDvHLP((O’%),qu—l/q(SR)) + (G, Hga)HH;/z((O’Q,r)’Lq(BR))
+ (G Ho)ll L, 0,2m), 12 (Br)) T 10:Geoll L,y ((0,27), Lo(BR))

for some constant C' > 0. To estimate the right side of (4.33), we use the inequality:

IF2 (o (k) F (i) kez)ll,(0.20),%) < Collf Il (0,20),%)
where X is a UMD Banach space, which follows from Weis’ operator valued Fourier multiplier theorem,
Theorem 4.
4.10 Low frequency part

I now consider the generalized resolvent problem corresponding to (4.29) for k € [—ko, ko]. Namely, I
consider the following equations:

in BR,

(4.34)

ikpr + Mp, — (Avg) -n = dper

(ik)

divvy, = §(ik) = div gper (ik)  in Bp,
(ik) on Sp,
(ik)

on Sp

for k € [—ko, ko] \ {0}. Then, the following theorem holds.



Theorem 10. Let 1 < ¢ < oo and k € Z with 1 < |k| < ko. Then, for any fper (ik) € Lq(Br)N,
Gper (ik) € HY(BR), dper (ik) € Wy U(Sr), Tper (ik) € HY(BR)N, and gper (ik) € Ly(Bg)", problem
(4.38) admits unique solutions vy, € Hq?(BR)N, qr € H; (Br), and ny € W;il/q(SR) possessing the
estimate:

Vil Br) + IV Lor) + 108l yy3-1705,

s s e o (4.35)
< C([fper (Zk)”Lq(BR) + [|dper (Zk)”wg’l/q(SR) + [1(Gper (Zk)7h(lk))“Hé(BR) + ||&per (Zk)”Lq(BR))

for some constant C' > 0 independent of k with |k| < ko.

Remark 11. To estimate the right side of (4.39), we use the inequality:

R 2T ,
I @)l x < (27T)71/0 1£(s)llx ds < @m) P11 £ L2, 0,20, 5)

for any f € L,((0,27), X), where X is a Banach space and || - || x is its norm.

To prove Theorem 10, in view of the Riesz-Schauder theorem, Fredholm alternative principle, it
is sufficien to prove the uniqueness in the Ly framework. Let w € HZ(Bg)Y, q € Hi(Bg) and ¢ €
W;’ -y 2(5 r) satisfy the homogeneous equations:

ikw — Div (uD(w) —qI) =0, divw =0 in Bg,
ik(+M(—(Aw) - n=0  on Sg, (4.36)
(uD(w) — qI)n — o(Br¢)n =0 on Sp.

Recall: M( = fSR Cdw+ Y0, (-[93 Cwi dw) yp and Av =v — \B}TI fBR v dy. We first prove that

((1)sp =0, (C,xj)s,=0 forj=1,...,N. (4.37)

Integrating the second equation of equations (4.40) and applying the divergence theorem of Gauss gives
that

0= ih(C. sy + (G DsylSil = [ divAwda = ik + Sk (€ sy

where we have set |Sp| = st dw and we have used the fact that divw = 0 in Bg. Thus, we have

(€7 1)SR =0.
Multiplying the second equation of equations (4.40) with x;, integrating the resultant formla over Sg
and using the divergence theorem of Gauss gives that

0 =ik(C, zk) s, + (G, Th) 8k (Ths )55 — / div (zp Aw) dz,
Br
because (z;,zk)s, = 0 for j # k. Since

1
/ div (2 Aw) doe = / (W — —=— wy dx) de =0,
Br Br |BR| /B4

we have (¢, 7x)s, = 0, because (zy, z)s, = (R*/N)|Sg| > 0. Thus, we have proved (4.37). In particular,
MC =0 in (4.40).

15
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We now prove that w = 0. Multiplying the first equation of (4.40) with w and integrating the
resultant formula over Br and using the divergence theorem of Gauss gives that

, 1
0 = kW, 5, — o(Br¢m-w)s, + 5 IDW)IL, 5,

because divw = 0 in Bg. By the second equation of (4.40) with M( = 0, we have
N
. 1 1
o(Br¢,n - w)s, = o(BrC,ikQ)s, + Bl /B w; dt(BrC, R )5y,
i=1 R

where we have used n = R~'z = R™(zy,...,2x) for x € Sg. Thus,

(Br¢, )5, = (¢, (Asy + N1

7)%)5}2 =0.

Moreover, since ¢ satisfies (4.37), we know that —(Br(,()s, > c||§||iQ(SR) for some positive constant c,
and therefore we have w = 0. And then, Vq = 0, which yields that q is a constant. Since Br¢ —q =0
on Sp, integrating this formula on S, we have q|Sg| = 0, because (Br(,1)s, = (N —1)R™2(¢, 1)s, = 0,
and so q = 0.

Finally, combining Br¢ =0 on Sg and (¢, 1)s, = (¢, ;)s,; = 0 gives that ¢ = 0. This completes the
proof of the uniqueness.

4.11 Stationary solution
Let me consider the following stationary problem:
Lvg — Div (uD(vg) — qiI) = fg in Bg,
divvg = gs = divggs in Bg,

Mns — (Avs) n=ds  on Sg,
([LD(Vs) - qSI)n - (BRT]S)II = hS on SR.

(4.38)

The following theorem holds.

Theorem 12. Let 1 < q < co. Then, for any fs € Ly(Br)Y, gs € H(}(BR), dg € ngl/q(SR), hg €
H;(BR)N, and gg € Lq(BR)N, problem (4.38) admits unique solutions vg € Hg(BR)N, qs € H(}(BR),
and ps € W;il/q(SR) possessing the estimate:

IVsllizsr) + 1VaslLosa) + s lyya-170g,

(4.39)
< ClEs Ly + dsllyz-17ag,) + 195, Bl mp0) + IE5lLg(8R))

for some constant C > 0.

To prove Theorem 12, in view of the Riesz-Schauder theorem, Fredholm alternative principle, it
is sufficien to prove the uniqueness in the Ly framework. Let w € H2(Bg)Y, q € H}(Bg) and ¢ €
W; -Y 2(5 r) satisfy the homogeneous equations:

Lw — Div (pD(w) —qI) =0, divw =0 in Bp,
M¢C—(Aw)-n=0  on Sg, (4.40)
(uD(w) —gqI)n —o(Br¢)n =0  on Sg.
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Employing the same argument as in Subsec.4.10, we have
(€. Dse =0, (Cwj)sg=0 forj=1,...,N. (4.41)

We now prove that w = 0. Multiplying the first equation of (4.40) with w and integrating the
resultant formula over Br and using the divergence theorem of Gauss gives that

i
0= (LW7W)BR - U(BRC: n- W)SR + iHD(W)H%Q(BR)7

because divw = 0 in Bgi. Recalling that Lvg = 27 Z]]ﬂw:l(vs, Pk)T Pk, we have

M
(vaw)BR = Z ‘(vak)BR‘2~

k=1

Employing the same argument as in Subsec.4.10, we have

N
1
o(BrC,n-w = —_ w; dt(B A,R*la:- =0.
( I8 )SR ;|BR| /B‘R J ( RrC ])SR

Thus,
. H
0=">"[(w,px)s,|* + §HD(W)H%2(BR)7
k=1

which yields that w = 0. And then, Vq = 0, which shows that g is a constant. Thus, Bg( —q = 0 on
Spr. Integrating this formula on Sg, we have q|Sg| = 0, and so q = 0.

Finally, combining Br¢ =0 on Sg and (¢, 1)s, = (¢, z;)s, = 0 gives that ¢ = 0. This completes the
proof of the uniqueness.

Proof of Theorem 8. Since solutions v, q and p of equations (4.27) are represented as

(v,8,0) = (Vs G pp) + D (Vies @i 1) + (V5,055 p5),
1<|k|<ko

applying estimate (4.33), Theorem 10, and Theorem 12 yields Theorem 8. [J

5 Proof of Theorem 7

Theorem 7 is proved by the standard Banch fixed point theorem. Let € > 0 be a small number determined
later and let Z, be an underlying space defined by setting

T ={(v,p) | V € Lyper ((0,27), Hy (Br)") N Hy e ((0,2), Lo(Br)™),

p,per
pEe Lp,per ((07 271')7 W;_l/q(SR)) N H;,pcr ((07 27T)7 Wz;z_l/q(SR)) N H;o,pcr ((07 27T)7 W;_l/q(SR))7 (51)
sup [ Hpllgy () <0, E(v.p) <€},
te(0,2m)

where we have set

E(v.p) = IVIlz,(0.20),m28r)%) + IVIlE1((020), 20 (BR)Y)
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16l 02y -y 1 comm - Vagsiy + 100N o2y s sy

Let (v, p) € Z. and let u, q and n be solutions of linear equations:

Opu+ Lug — Div (p(D(u) — gqI) = G + F(v,p) in B x (0,2m),
divu = g(u, p) = divg(v, p) in Br x (0,27), (5.2)
o+ Mn—Au-n = d(v,p) on Sk x (0,27), ’
(uD(u) — q)n — (Bgn)n = h(v, p) on Sk x (0,27),
Applying Theorem 8 to equations (5.2) yields that
HVHLP«O,%),Hg(BH)N) + HVHHI‘,((O,ZW),LQ(BR)N)
+ HpHLP((OA,Zﬂ),Wg*l/q(SR)) + HPHH;((O,Zw),WqQ*l/q(SR)) (53)

< C(IGly(02m).LyBR) T EV,0)}

with
EV,p) = IF (v, Pl L, (02m).La(Br)) + 1AV, ), (2 w2 sy T Ig8(v: Pl 2((0,27), La(BR))
+ H(g v,p )7 h(v7p))HH;,/Z((OQW),Lq(BR)) + H( ( s P )7 h(v7p))”LP((O,27r),H(}(BR))'

To estimate |07l the following estimate is used:

oo ((0.2m). Wy /% (SR))’
||at77|| 0 ((0,27),W, 1*‘/‘1(512)) < C(”MpHLDC’W(}*'/q(SR)) + HVHLOO((OQW) 2(BRr)) + ”dHLoQ ((0,2), Wl 1/0(5 )))’
which follows from the third equation of equations (5.2). The main task is to prove that

E(v,p) + |d] <oe (5.4)

Lo ((0,27), W~ 9(SR))

with some constant C' > 0 independent of e. In the proof, it is assumed that N < ¢ < 00, 2 < p < 00
and 2/p + N/q <. In particular, the first assumption is to use Sobolev’s immbedding theorem. In fact,
the following inequalities are used:

1l Lo (Br) < CHfHqu(BRy

If9llmrmr) < Clfm B9l miBr)

Hf9||H§(BR) < C(||f|\Hg(BR)||9HH;(BR) + HfHH;(BR)HQHHg(BR))
I l-vasy < O ooy I9la-vags

1F9lly2=1/asy < CUF =170 19llyga-17a gy + 1 lgpimrsa g 9 lly2-1ra 5, )s

which follows from the Sobolev inequality and the fact that [luls,ll;,1-1/4 < Cllullmypy) for u €
q

(Sr)

H, ;(B r). To estimate the lower order derivatives of v and p, the following inequalities are used:

VI, 0.2m), 5209 8y S CUVIL(0,2m),12(Br)) + 106V Ly (0,27) L0 (BR)):

+ 0l

16l 0.2y w35 1/7= 1737y < CUPH L 0 2m) w3113(5) Lo((02m) W2 (B )

which follows from real interpolation theorem. In particular, to obtain Vv € L., it is used the assump-
tion: 2/p+ N/q < 1.

To estimate H (g(V, p)1 h(V, P)) HH,1,/2((0,27r),Lq(BR)) + H (g(v, P); h(V P)) ”Lp (0,27),H} (BR))* the fOHOWIHg
two lemmas are used:
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Lemma 13. Let 1 <p < oo and N < g < co. Let

@ € Hyg e ((0,27), Lg(BR)) N Loo,per (0, 27), Hy (Br)),

be HY2,((0,27), Ly(Br)) N Lyper ((0,27), Hy (BR)).

Then,

”abHH;/Q((0,27r)4,Lq(BR)) + Hab||LT)((O727T)1H(}(BR))

all)/2

< Clllallay (0.2m),Lo(Br)) F ol Loc(0.20), 12 (BR))) Lo ((0.27).H} (B)

X (”bHH;/Q((O,Qﬂ'),Lq(BR)) + HbHLP((O,Qﬂ'),Hl}(BR)))'
Remark 14. This lemma holds for more general domains.

Proof. The lemma follows from the following complex interpolation relation of order 1/2:

Hylotr ((0,2m), Ly(BR)) N Lp,per ((0,2m), Hy/*(Br))

= (Lpper ((0,2m), Lq(BRr)). Hp{per ((0,27), Lg(BRr)) N Lp,per ((0,27), H;(BR)))1/2~

O
Lemma 15. Let 1 < p,q < co. Then, there exists a constant C such that for any u with
u € Hp e ((0,27), Lo(Br)) N Ly per (0, 2m), Hy (BR)),
we have
HUHHII,/Q((O,ZW),H(}(B,{)) < Clllull ma(0,2m), Lo(Br)) T 1ullLy(0,20), 2 (BRY))
for some constant C' > 0.
Remark 16. This lemma holds for more general domains.
Proof. For a proof, refer to [6]. ]

Proof of Theorem 7. Combining (5.3) and (5.4) yields that
E(u,m) < ClGIlL,((0,00).Lo(Br) T Ce?
for some constant C' > 0 independent of e. Thus, choosing € > 0 so small that Ce < 1/2 yields that
E(u,n) < ClIGllL,((0,00),Lq(Br)) T €/2-

Choosing f so small that C||G/|z,((0.2r),2,(Br)) < €/2 yields that E(u,n) < ¢, and so (u,n) € Z.. Let ¥
be a map acting on (u, p) € Z, defined by ¥(u,p) = (v,7), and then ¥ is a map from Z, into itself. It
also can be proved that

E(Y(v1,p1) = ¥(v2,p2)) < CeE((vi,p1) = (v2,p2))

for any (v;, p;) € Ze (i = 1,2). Choosing € > 0 smaller if necessary, we may assume that C'e < 1, and so
¥ is a contraction map from Z, into itself. Thus, there exists a unique fixed point (v, p) € Z., which is a
required unique solution of equations (4.22).
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Finally, we define £(t) by setting
t 1 t
&) = / g(s)ds+c=—— / / v(z,s)(1+ Jo(z,s)) deds + ¢
J0O |BR‘ JO0 JBpg
where c is a constant for which
27 1 27 t
fsds:O,thatis,c:f—/ // v(z,s)(1+ Jo(z,s)) dxds) dt.
[ eo) 5y () [, (V@91 do(e.s)) dads)

We define €; and Ty by the formulas in (4.13). And then, setting u(z,t) = v(®'(z,t),t) and p(a,t) =
q(®1(z,t),t), we see that €, Ty, u(x,t) and q(z,t) satisfy the equations:

M o
8tu+u»Vu7Div(,uD(u)pr)—Q—Z/ (u(-,t),pr)o, dtpr =£f, divu=0 in €,
k=10

(1(D(u) — pI)ny = o H(I'y)ny on I',

In particular, divu = 0 implies that || is a constant, and so we set |Q2| = |Bg|. And also, we see that

£(t) :/Qtwdan

Op — Av -n=d(v,p).

and so by (4.18), (4.20) and (4.21),

Thus, the kinematic condition: Vp, = u - n; holds on I';. Finally, the assumption on f implies (4.10),
and therefore, u and p satisfy equations (4.1). This completes the proof of Theorem 7. For the detailed
proof, see Eiter, Kyed and Shibata [1].

References

[1] T. Eiter, M. Kyed, and Y. Shibata, On periodic solutions for one phase and two phase problems of
the Navier-Stokes equations, arXiv:1909.13558v1 [math.AP] 30 Sep 2019.

[2] T. Eiter, M. Kyed, and Y. Shibata, R-solvers and their application to periodiic L, estimates, Preprint
in 2019.

[3] K. de Leeuw, On Ly, multipliers, Ann. Math., 81(2) (1965), 364-379.

[4] Y. Shibata, On the R-boundedness of solution operators for the Stokes equations with free boundary
condition, Diff. Int. Eqns. 27(3-4) (2014), 313-368.

[5] Y. Shibata, On the R-bounded solution operators in the study of free boundary problem for the Navier-
Stokes equations, Springer Proceedings in Mathematics & Statistics Vol. 183 2016, Mathematical
Fluid Dynamics, Present and Future, Tokyo, Japan, November 2014, ed. Y. Shibata and Y. Suzuki,
pp-203-285.

[6] Y. Shibata, On the local wellposedness of free boundary problem for the Navier-Stokes equations in
an exterior domain, Comm. Pure Appl. Anal., 17 (4) (2018), 1681-1721, doi:10.3934/cpaa.2018081.

[7] L. Weis, Operator-valued Fourier multiplier theorems and mazimal Ly-regularity. Math. Ann. 319
(2001), 735-758.



