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R-solver and periodic solutions of the Navier-Stokes 

equations 

Yoshihiro Shibata* 

1 Introduction 

Since Kato-Fujita theory, the N avier-Stokes equations have been stuided by a lot of mathematicians based 

on analytic semigroup properties of Stokes equations. Since the Navier-Stokes equations are a system 

of semi-linear parabolic equations, and so the analytic semigroup approach has yielded many fruitful 

results. On the other hand, in many flow problems, for example a falling drop problem, ocean problem, 

nuclear power, energy conversion technique, envilonment issues, bood flows ... , we meet free boundary 

problem for the Navier-Stokes equations, which is formulated in an unknown time dependent domain. 

Under suitable transformation from a time dependent unknown domain with free boundary to a known 

domain with fixed boundary, the equations become a system of quasilinear parabolic equations with 

non-homogeneous boundary conditions. The basical tool of proving the local in time existence theorem 

for such problems is the maximal regularity for the Stokes equations with non-homogeneous boundary or 

transmission conditions. There are a lot of works have been done by Solonnikov and his colleagues since 

the early of 1980 in the HBlder spaces, c2+a,1+a/2 (a> 0), and Sobolev-Slobodetskii spaces W ' 2H1H/2 

(1/2 < R, < 1), by Jan Pruess and his colleagues in the anisotropic W£'1 space since the early of 2000, and 
w 2,1 by Shibata and his colleagues in the anisotropic q,p space also since the early of 2000. From technical 

point of view, their approaches are different, and in this note I would like to explain an approach based 
on R-solver of the generlized resolvent equations for the Stokes operator with non-homogeneous free 

boundary conditions, which gives a systematic study of a system of quasilinear parabolic equations with 

non-homogeneous boundary conditions. 

2 Framework based on R-solvers 

I would like to formulate R-solvers for free boundary problem without surface tension in mind. Let me 

consider an initial-boundary value problem formulated as follows: 

u -Au = f, Bu = g for t > 0, ult=O = uo, (2.1) 

where t is the time variable, u denotes the time derivative of u, and Bu = f denotes a boundary condition. 

• Let X and Y be two UMB Banach spaces and Y C X. 
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• Let Z = (X, Y)[i/21 be a complex interpolation space of order 1/2. 

• Let A E£,(Y,X), £,(Y,X) denoting the set of all bounded linear operator from Y into X. 

• Let BE£,(Y, Z) n£,(Z, X). 

Example 1. The following two sets of equations are typical example in the setting of this note: 

枷
i; —• v=/inOx(O,oo), ―=  g on 80 x (0, oo), vlt=O = vo, av 

where n is a domain, 80 is its boundary, △ denotes the Laplace operator and v denotes the unit outer 
normal to叩 (Neumannoperator); 

V―△v十▽p=f, divv=O inOx(O,oo), 

(D(v) -pl)v = g on 80 x (0, oo), vlt=O = vo 

In these cases, for 1 < p < oo, I set X = Lp, Y = HJ, Z = H};. 

In what follows, for E E (0, 1r /2) and入。＞〇江，入。 denotesa subset of IC defined by setting 

刃€，入。＝｛入 E IC¥ {O} I I arg入I:S 7r - E, I入12:柚｝．

And, let me consider a generalized resolvent problem corresponding to (2.1) as follows: 

入u-Au = f, Bu = g (2.2) 

for 入 E~,,入。， where"generalized" means the non-homogeneous boundary condition. 

A main tool in my approach is Weis's operator valued Fourier multiplier theorem [7], and so I introduce 

the notion of R boundedness of operator families. 

Definition 2. Let£,(X, Y) denote the set of all bounded linear operators from X into Y. A family of 

operators, Tc£(X, Y), is called R-bounded if there exists a constant C and an exponent p E [1, oo) 

such that for all m E N, {Tk}k=l c T, and {祉};;'=1C X, there hold the inequalities: 

m m 

区立砂k :SC区r砂k
Lp((0,1),Y) 

k=l k=l 
Lp((0,1),X) 

Here, the Rademacher function rk, k EN, are given by rが [O,1]→ {-1, 1}, t H sign(sin(2knt)). The 

smallest such C is called the R-bound of Ton£(X, Y) which is written by Rc(X,Y)(T) in what follows. 

In the following, I consider the situation that for any 入 E~<,入。， fEX  and g EX  n Z, problem (1) 

admits a unique solution u E Y possessing the estimate: 

lluly+II入ullx:s: C(ll/llx + llgllz + II入112gllx), (2.3) 

which has been studied since 1950's as parameter elliptic problems. My concern is to prove the generalized 

resolvent estimate in terms of'R-norms instead of standard norms, 11・llx, 11・IIY, and 11・llz・

For any Banach space U, let Ho! (~E, 入。， U)denote the set of all U valued holomorphic functions 

defined on~,, 入。.Below, I assume the existence of an operator family 

M(入）： XxXxZ→ Y; X X  X X  zう (Fi,F2,F3)→M(入）(F1,F2む） EY 

for every入=1 +iT E~,, 入。 with

M(入） E Hol(~,, 入。，£(XxX x  Z,Y)), 入M(入） E Hol(~,, 入。，£(XxXx  Z,X)) 

such that 
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(i) for every入EI:,,入。， fE X  and g E Z, u = M(入）(f, 入112g,g) is a solution of problem (2.2); 

(ii) M(入） satisfies 

図 XxXxZ,X)({ (喝）£(入M(入）） I 入€ 江叫 ::C::Tb, 

図 XxXxZ,Y)({(Tor/M(入） I 入 E~,,入。}::; 乃，

for£= 0, 1 with some constant rか

(2.4) 

Remark 3. Such an operator family M(入） is called an R-solver for equations (2.3). Since R boundedness 
implies the standard boundedness (in the m = 1 case in Definition 2), the estimate (2.3) is derived 
automatically from (2.4). 

I now consider the following time dependent problem: 

u -Au= f, Bu= g (t > 0) ult=O = uo. 

The compatibility condition is: 

glt=O = Buo 

、
_
＇
、
_
’
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which is obtained from the boundary condition Bu = g at t = 0. Set u = v + w, where v and w are 
solutions of the following equations: 

v -Av = f, Bv = g for t E股，

心ー Aw=0, Bw = 0 fort E (0, oo), wlt=O = uo -vlt=O・ 

(2.7) 

(2.8) 

I first consider equations (2.7). First of all, let f and g be extended tot< 0. Since f is not required 

to be differentiable in time, and so I is extended by 0, that is lo = I for t > 0 and lo = 0 for t < 0. 
On the other hand, g is usually required to be differentiablity at le邸 tof some fractional order on t and 
so here it is assumed that g is defined for t > 0, and then go(t) = g(t) and go(t) = 1.p(t)g(-t), where 
1.p(t) E C00(恥） which equals one fort > -1 and vanishes fort < -2. Instead of (2.7), I consider the 
following equations: 

v -Av = Jo, Bv = go for t E恥

Applying the Laplace tr皿 sformto equations (2.9) yields that 

入v-Av= ii。, Bv=§o. 

Here, the Laplace transform i) is defined by setting 

孤入） = Joo e叫 (t)dt = f00 e-叫叫(t)dt = F[e―"(tv](T) 
-oo -oo 

(2.9) 

(2.10) 

with入='Y+ iT EC, where F denotes the Fourier transform. Using the R-solver M(入）， iJis represented 
byiJ=M(入）(i, 入112g,g). By the Laplace inverse transform, 

v(t) =£ ―l[M(入）(i, 入1/2§,g)](t) =上Joo凶+iT)tM(入）F[e―1¥fo, A¾l2g, g)](T) dT 
271" -00 

= e'tF-1[M(入）］汀e―,tuo,A¾f2g, g)] (T)] (t), 

1/2 where A, g is defined by setting 
A戸g=£―1 [入1/2£[g](入）l (t). 

I now quote the Weis operator valued Fourier multiplier theorem [7]. 
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Theorem 4. Let X and Y be two UMD Banach spaces and let 1 < p < oo. Let m be a Junction in 
び(JR.¥{O}, C(X, Y)) such that the following conditions are satisfied: 

図 x,Y)({m(r),rE艮¥{O}}) = ""o < oo, 

脳 x,Y)({m(r),rE尺¥{O}}) = ""1 < oo. 

Let an opemtor Tm acting on elements of F-1ゆ（艮，X)]be defined by setting 

[7伍/](t)= F―1[m(r)F[/](r)](t) for f with F[J] E'D(股，X),

where'D(艮，X)denotes the set of all X-valued C0(股） functions. Then, the opemtor Tm is extended to a 
bounded linear opemtor fromら（股，X)intoら（民，Y)with norm 

IITmllccLp(IR,X),Lp(IR,Y)) ::,; C(lio + li1) 

with some constant depending only on p, X, and Y. 

Applying Theorem 4 to the formulas: 

yields that 

e―咋＝戸［入M(入）F[e―,t(fo,A戸g,g)]](t),

e―,tv = F-1[M(入江[e→t(fo,A戸g,g)]](t) 

lie―内濱viら(11!.,X)+ lie―,tvllら(11!.,Y)

::; C(lle―,tf Iら（恥，x)+lle―叫tA戸glら（恥，x)+ lie―古tglら（瓦，z)),

which is the maximal Lp regularity theorem for problem (2.7). 
Problem (2.8) is solved by c0 analytic semigroup T(t), whose generation is obtained with the help 

of the R-solver. In fact, the underlysing space社， theoperator A and its domain D(A) are defined as 
follows: 

1i=X。, D(A) = {x E YI Bx= O}, Ax= Ax for x E D(A). 

Problem (2.8) is formulated by 

心ー Aw=0 (t > 0), wlt=O = uo -vlt=O・ 

The corresponding resolvent problem to (2.11) is 

畑ー A心 =f, Bw = 0 (t > 0). 

(2.11) 

(2.12) 

with f = uo -vlt=O・Since the R boundedness implies the boundedness, by the first estimate in (2.4) 
implies that for any 入€ 江，入。 problem(2.12) admits a unique solution心EY possessing the estimate: 

|入Ill心llx+ llwl Y :<::: 2rbllfllx, 

Thus, there exists a c0 analytic semigroup {T(t)}貶osuch that for any f EX, w = T(t)f gives a unique 
solution of problem (2.12). Moreover, if f E (X,'D(A)h-l/p,p which is an real interpolation space between 
X and'D(A), then w satisfies the estimate: 

le―叫viiら((O,oo),X)+ lie―7twllら((O,oo),Y)<::: Cl Jllcx,Y)i_,;p,p 
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for any 1 >入。， whereC is a constant depending solely on入。 andE. By the compatibility condition 

(2.6), B(uo -vlt=o) = Bua -glt=O = 0, and so f = uo -vlt=O E (X, D(A))し l/p,pprovided that 

uo E (Xの(A))し l/p,p・Infact, a real interpolation theorem yields that v E C([O, oo), (X, Y)し l/p,p)and 

Thus, we have 

SUp llv(t)llcx,V(A)h-1/p,p'. こC(lle―'1vlLp((O,=),X) + lie―'1V ILp((O,=),Y))-
tE[O,=) 

lie―礼心Iら((O,=),X)+ lie―叫1wllら((O,=),Y)

~C(luollcx,Y),_,;p,p + lie→ 1v ILp((O,=),X) + le―'1vl1Lp((O,=),Y)}-

Then, u = v + w is a requred solution to problem (2.5). 

Summing up, I have proved the following theorem. 

Theorem 5. Let l < p < oo and X, Y and Z be th柁 eUMD Banach spaces. If冗 solverM(入） exists 

for 入€ 江，入。， thenproblem (2.5) admits a solution u with 

e―11u E Lp((O, oo), Y) n H以(0,oo),X)

for any"(>入opossessing the estimate: 

lie吼 ullL.((O,oo),X)+ lie—"flullL.((O,oo),Y)~C(luo l(x,Y),_11 •. P 

+ le―-yt f IILp((O,oo),X) + lie―-yt A3/2位9o)IIら(IR,X)+ lie―-yt四 ollLp(IR,z)}-

3 Framework for periodic solutions with the help of R-solver and 

transference theorem 

Now, let me consider periodic solutions of equations: 

v -Av= f, Bv = g fort E (0, 21r) ='ll', 

where it is assumed that f(t + 21r) = f(t) and g(t + 21r) = g(t) fort E恥.Let 

加：=F1r[f](k) =上/"e―iktf (t) dt, Fil[(a砂屁z](t):= I:e•kt 
271" 

aゎ

゜ kEZ 

Lp,per((O, 27r), X) = {J(t) E Lp,loc(恥，X)I J(t + 27r) = J(t) (t E恥）｝．

Applying Fourier transform gives that 

ikv -Av= }(k), Bv = g(k). 

Applying R-solver M(入） gives that 

v(k) = M(ik)(}(k), (ik)112g(k),g(k)) 

for lk 2': 入。， becauseik E~E, 入。 forlkl 2': 入。.The following theorem was obtained in [2]. 

(3.1) 

(3.2) 
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Theorem 6 (Either-Kyed-Shibata). Let X, Y be Banach spaces and p E (1, oo). Assume that Y is 

reflexive. If 

Tm[/]= 戸[m(~)F[f](~)] =上]00ei~tm(~)F[f](O d~for f with F[f] Eわ(JR,X) 
21r -oo 

is a bounded linear operator from与（民，X)into Lp(民，Y),that is 

then 

II Tm[/] IILp(IR,Y) :S Mp 11/IILp(IR,X), 

Tm,1r[g] :=写り(mlz(ik)左 [g](ik))kEz]=区eiktm(k)石 [g](k) for g E Lp,per((0,27r),X) 
kEZ 

is also a bounded linear operator from Lp,per((O, 21r), X)) into Lp,per((O, 21r), Y) with essentially the same 
bound. Namely, we have 

IITm,'ll'[g] I Lp((0,2,r),Y) :'SらMpllYIIら((0,2,r),X)

for some constant Gp depending solely p. 

Let <p(T) E C00偉） which equals 1 for ITI 2入。+1/2 and O for ITI :'S入。+1/4. Set 

Vcp =}元―1[(<p(k)M(ik)(}(ik), (ik)112[J(k), [J(k)))kEZ] 

where h(ik) = F'II'[h](k). And then, Vcp satisfies the equations: 

OtVcp -Avcp = F―1[(<p(k)}(k))kEzl, Bvcp = F一1[(<p(k)[J(k)hEz]. 

By the transference theorem, Theorem 6, 

ll8tv<pl1Lp((0,2,r),X) + I v'Pll1勺， ((0,2,r),Y))~こC(ll!ll1勺，((0,2,r),X)+ llgllH~/2((0,2,r),X) + lg 11」p((0,2,r),z))- (3.3) 

A solution v of equations (4.29) is given by 

where vk a.re solutions of the equations: 

V= 区 ikt毀 +v'P

lkl→ o+l/2 

ikvk -Avk = ](k), B既 =§(k).

(3.4) 

(3.5) 

The part, vcp, of v in (3.4) is called the high frequency part, and the estimate (3.3) is the maximal Lp 
regularity of the high frequency part. 

4 One phase problem for the Navier-Stokes equations 

The material here is taken from my joint paper [1] with Thomas Eiter and Mads Kyed. Free boundary 

problem for the Navier-Stokes equations is formulated as follows: Let rlt be a time dependent domain in 

the N-dimensional Euclidean space艮N(N 2'. 2), which is unknown. Letじbethe boundary of rlt and 

llt the unit outer normal to I't. It is asssumed that rlt is occupied by some incompressible viscous fluid of 
unitm邸 sdensity whose viscosity coefficient is a positive constantμ. Let u = T (u1(x, t), ... , uN(x, t)) be 
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the velocity field and p = p(x, t) the pressure field and then u and p satisfies the Navier-Stokes equations 
in nt with free boundary condition as follows: 

｛二□三こ二;:こ— pl)~f :. ~~' (4.1) 

Vr, = u. llt on rt 

fort E (0, 21r). Here, f = f(x, t) is a prescribed 21r time periodic external force; H(rt) denotes the N -1 

fold mean curvature ofrt which is given by H(rt)nt =△ぃxfor x E rt, where△ r, is the Laplace-Beltrami 
operator on rt; Viぃtheevolution speed of rt along nt; a a positive constant representing the surface 
tension coefficient; D(u) the doubled deformation tensor given by D(u) =▽u十丁▽u; and I the N x N 
identity matrix. For any N x N matrix of functions K whose (i,j)th component is K;j, Div K denotes 

an N-vector whose ith component is区如む底 andfor any N-vector of functions v = T (v1, ... , 叩），
・th 

V・ ▽ v denotes an N vector of functions whose i component is N 区j=l鴫 Vi,whereむ={)j{)xj. 

Our problem is to find flt, rt, u and p satisfying the periodic condition: 

flt= nt+2rr, い=rt+21r, u(x, t) = u(x, t + 21r), p(x, t) = p(x, t + 21r) (4.2) 

for any t E艮

4.1 Assumptions 

1-th 
Let Pi= ei = T (0, ... , 0, 1 , 0, ... , 0) for i = 1, ... , N and Pe (£= N + l, ... , M) be one of叩ej-x炉
(1 :s; i,j :s; N). It is known that an N-vector of functions, d, satisfies D(d) = 0 if and only if dis 
represented as a linear combination of Pi (i = 1, ... , M). The unknown domain flt will be constructed 
such that the following three conditions are satisfied: 

det (/" (Pe, p叫o,dt) =J 0, 
O£,m=l,  …，M 

(4.3) 

["(向J。,xdx) dt = 0, (4.4) 

⑬ l=IB州 forany t E (0,21r). (4.5) 

In what follows, the following symbols will be used: 

H};,per((0,27r),X) = {J(・,t) E Lp.Ioc(恥X)I j E Lp,per((0,27r),X)}; 

H畠 ((0,27r),X)= {f(・,t) E Lp.1oc(哀.,X)IF. デ[((1+炉）l/4/(k))kEZ] E Lp,per((0,27r),X)}; 

II! ILp((0,2,r),X) := (/" I f(t)II文dt)11P< oo; 

゜11/IIH戸((0,2,r),X):= I町 [((1+炉）114 /(k))kEZ] Iら((0,2,r),X)i

(f,g)a = j f(x)・応dx, (f,g)aa = j f(x)元 du.
a aa 

Let Ot, u and p satisfy equations (4.1) and periodic condition (4.2), and then the divergence theorem 
of Gauss implies that 

((μD(u) -pl)nt, e;)r, = u(△ぃx,e;)r,=―u(▽ r,x, ▽ r,e;)r, = O; 

((μD(u) -pl)nt, xiej―Xjei)r, = a(△ r,x,xiej―Xjei)r, 

= -a(▽ r,Xj, ▽r凸加 +a(▽r,xi, ▽ r, 巧）r, = 0. 

(4.6) 
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Since 
d 

dt 
-(u,p如＝（知+(u・v')u, Pc)n, = (Div (μD(u) -pl), Pc)n, + (f, Pc)n, 

as follows from the first equation in (4.1) and divu = 0, it follows from (4.6) that 

d 
-(u,pc)n, = (f,pc)n,-
dt 

Assumption on f. There exists a domain D c flt such that suppf(x, t) c D for any t E艮．ロ

Thus, the periodic condition (4.2) together with (4.7) yields that 

j2"(j f(x,・)・pc(x)dx)dt=O for£=1, ... ,M. 
0 D 

Instead of problem (4.2), we consider the following equations: 

知+u• ▽ u -Div (pD(u) -μI)+ I: f2" (u(•, t), p砂n,dtpk = f 
k=l ゜divu = 0 

(μD(u) -μI)nt = aH(rt)Dt 

Vぃ=U・Dt 

in 0ぃ

in Ot, 

on rゎ
on rt 

(4.7) 

(4.8) 

(4.9) 

for t E (0, 27r). In fact, if flt, u and p satisfy equations (4.9), the assumption (4.3), and the periodic 
condition (4.2), then by (4.8) we have 

d 
(f,p如＝西(u・,t),p伽＋凸f21r(u(・, t), Pk)fl, dt(pk, P瓜

k=l ゜Integrating this formula on (0,27r) and using the periodicity and the assumption on f, (4.8), gives 

乳fo2"(u(•, t), Pk)n, dt fo2" (Pk, Pt)n, dt = 0, 

which, combined with (4.3), yields that 

/"  (u(-, t), Pk)o, dt = 0. 

゜
(4.10) 

Thus, flt, u and p satisfy the first equation in (4.1). 

4.2 Hanzawa transform 

Since Dt is unknown, the problem should be formulated in a fixed domain. For this purpose, the Hanzawa 
transform is used. Let~(t) be the barycenter point of Ot defined by setting 

網＝心k,xdx, (4.11) 

where the fact that⑬ I= IE州hasbeen used, which follows from the assumption (4.5). From the 
Reynolds transport theorem and div u = 0 it follows that 

羞W)= l;R k,(如 +u▽x) dx = ;RI lo, u(x, t) dx, ('(t) = l;RI lo, f(x, t) dx (4.12) 
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Let p(y, t) be an unknown periodic function with period 21r such that 

ft={x=y+R―lp(y, t)y十W)I y Es叫，

where SR = {x E股N I lxl = R} and R-1y is the unit outer normal to SR for y E SR. Let Hp be a 

suitable extension of p to JRN such that 

Let 

IHpllHt(知） ~Cl Pllw:-1/•csR) for k = l, 2, 3, 

訊HpllHt(BR)~Cl OtPllw:-11. ⑮)  fork= 1,2. 

flt= {x = y + R―1凡(y,t)y+W) y EB吐

几 ={x=y+R―1p(y,t)y+W)I y Es叫．
(4.13) 

Let J(t) be the Jacobian of the transformation: x = <l>(y, t) = y + R-1比(y,t)y 十 ~(t). Assume that 

sup IIHp(・, t) I H&,(BR) <'.'. 8 
tE(D,2吋

(4.14) 

with some small constant c5 > 0, which is chosen so small that the map x = <l>(y, t) is injective for any 
t E (0, 27r), and so the inverse map y = <1>-1(x, t) exists and has the same regularity property as that <I> 

has. 

4.3 Kinematic equations 

Let u(x, t) and p(x, t) satisfy equations (4.1), and let v(y, t) = u(<l.>(y, t), t) and q(y, t) = p(<l.>(y, t), t). An 
equation for v and pis derived from the kinematic condition : Vr, = u・Ilt on ft. From the fact that ft 

is represented by x = y + R-1p(y, t)y 十 ~(t) it follows that 

枷 8p
凡＝― ・llt= (-n 十 ((t))• nぃ

at at 
(4.15) 

where n = R-1y. To represent ((t), let me represent the Jacobian, J(t), of the map x = <I>(y, t) as 

J(t) = 1 + J0(t) with 

（ 
a 

Jo(t) = det妬十 R―1-(Hμ(y,t)yi)) -1. 
8y; i,J=l, …，N 

Thus, 

((t) = ;RI L, udx = ;RI LR v(y, t) dy + l;RI LR v(y, t)Jo(t) dy, 

which, combined with (4.16) and the kinematic condition: Vr, = v・nt, yields that 

1 
聾 (v- J IE引 転

v(y,t)dy) = d(v,p) (4.16) 

with 

d(v,p) = 1 j v(y,t)Jo(t)dy十翌n・(n-n1) + v・(nt -n). 
IE州 咋 8t 

(4.17) 



10

4.4 Mass conservation and Barycenter 

The the case where flt is close to BR is considerd below, and so△ぃ isa small perturbation from△年 9

where△ sR is the Laplace-Beltrami operator on SR. Thus, 

< H(ft)n心＞＝（知+(N-1)/R加ー (N-1)/R+nonlinear terms. 

Here, -(N -1)/R2 is the first eigen-value of the Laplace-Beltrami operator知 on紐 witheigen-
functions Yi/ R for y = (y1, ... , YN) E SR. To avoid the zero and first eigen-values of△ sR in this linear 
analysis, the following observation is useful: Since ft=狐={x = y + R-1p(y, t)y十W)I y E SR}, 

R+p(w,t) 
叩 =flt=j (j rN-1dr)dw=i h}R+p(w))Ndw 

SR 0 

N 

= ERi + fsR pdw十芦勺kfsRldw = 0, 

and so 

fsR pdw +言勺Kいdw=0, (4.18) 

where dw denotes the surface element of SR. The relations ft= 8r!t = {x = y + R-1 p(y, t)y十W)IYE 

絲}and W) =叫fo,x心 givesthat 

1 1 R+p 
O= IBR {(x―W))dx= IE州し(fa 心 dr)dw 

1 1 

叫 N+l SR 
= J (R+p)N+lwdw 

= 1 (j 
N+l 

pwdw+ L N+lCk 
IBR sR k=2 N + l hR lwdw), 

from which it follows that 

J年 fJWidw十冒芦ご;1紐凸dw=0 (4.19) 

for j = 1, ... , N. 

4.5 New kinematic equation 

Using these two formulas (4.18) and (4.19), one can see that the kinematic equation is equivalent to 

eq,mtfonc 8,p + L p dw +~(1紐,,,,. dwに— (v 一心 L vdy)• n~J(v.p) (4.20) 

on SR x (0,2吋with

N 
NCk 

N+l 

恥，p)= d(v, p) -L N J炉dwーこ悶汀(j心 dw)狐 (4.21) 
k~2 SR k~2 SR 
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4.6 Linearization Principle 

To prove the existence of (flt, u, p) satisfying (4.1), it is enough to prove the existence of periodic solutions 
to the following equations: 
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in BR x (0, 21r), 

in BR x (0, 21r), 

on SR x (0, 21r), 

on SR x (0, 21r), 

(4.22) 

where G(y, t) =▽ i[>(y, t)f(剌y,t), t), F(v, p), g(v, p), g(v, p), and h(v, p) are nonlinear terms, and we 
have set 

M 1 加

LVS =2心 (vs,P砂11'Pk, Vs=云jv(・, s) ds, 
k=l ゜

Av=v一心 LRvdy; Mp= fsR pdw十立Jpw凸）Yki 
k=l SR 

N-1 
BRp= (△ SR+)p  = R-2(△ s1 + (N -l))p, 

R2 

where△ s1 is the Laplace-Beltrami operator on the unit sphere S1・

(4.23) 

4. 7 Main Result 

Theorem 7. Let 1 < p, qく ooand 2/p + N/q < 1. Let D be a domain C BR= {x E尺NIlxl < R}. 
Assume that 

• f E Lp,per((O, 27r), 伝(D)N)and suppf(•, t) c D for any t E (0, 27r), 

． 
/"(f(-,t),p加 dt= 0 for£= 1, ... , M, 

゜
(4.24) 

• there exists a small E > 0 such that llfllLp((0,2rr),L.(D)N) :S E. 

Then, there exist v(y, t), q(y, t), and p(y, t) with 

v E Lp,per((O, 21r), Hi(BR)N) n Hi,per((O, 21r), Lq(BR)N), 
q E Lp,per((0,21r),HJ(B叫 (4.25)

p E Lp,per((O, 21r), w:-l/q(BR)N) n HJ,per((O, 211一）， WJ-l/q(SR)),

such that the correspondence: x = <I>(y, t) := y + R-1凡(y,t)y 十 ~(t) is an injective map defined on BR 
and 

Ot = {尤=<I>(y,t) y EB叫，口 ={x=y+R―1p(y, t)y十W)yES叫，

u(x, t) = v(<I>-1(x, t), t), p(x, t) = q(<I>-1(x, t), t), 

where <I>―1(x, t) is the inverse map of the correspondence: x = <I>(y, t) for any t E (0, 21r), are unique 
solutions of equations (4.1) satisfying the periodic condition (4.2), where t(t) is a 21r periodic function 
which satisfies the equation: 

邸＝向k,xdx.
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Moた over,v and p satisfy the estimate: 

lvl1L.((0,21r),H印(BR))+訊viiら((0,21r),Lq(B叫）

+ IIPIIL.((o,21r),w; 一1/q(SR))+ ll8tPI Lp((o,21r),w'; 一1/q(SR))+ ll8tPIIL=((o,21r),wl-1/q(SR)) :CS: CE 

for some constant C independent of E. 

(4.26) 

4.8 Linearized equations 

The linearized equations for problem (4.22) are the set of the following equations: 
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in BR x (0,27r), 

in BR X (0, 27r), 

on SR x (0, 27r), 

on SR x (0, 27r). 

(4.27) 

The following theorem is the unique existence of periodic solutions of problem (4.27). 

Theorem 8. Let 1 < p, qく oo.Then, for any 

f E Lp,per ((0, 21r), ら(B叫州，

g E Lp,per ((0, 21r), HJ(B叫） nHi; ば~r ((0, 21r), 1召(B幻），

g E Hi,per ((0, 21r), Lq(BR)N), d E Lp,per ((0, 21r), WJ-l/q(SR)), 

h E Lp,per ((0, 21r), HJ(BR)N) n Hi;/er ((0, 21r), Lq(BR)N), 

problem (4.27) admits unique solutions v, q, and p with 

v E Lp,per ((0, 21r), Hi(BR)N) n Hi,per ((0, 21r), Lq(BR)N), 

▽ q E Lp,per((0,21r), ら(B叫州，

p E Lp,per ((0, 21r), w:-l/q(SR)) n Hi,per ((0, 21r), WJ-l/q(SR)) 

possessing the estimate: 

llvlら((0,2,r),H印(BR))+ ll81vl1Lp((0,2rr),Lq(Bゅ +II▽q 1Lp((0,2rr),Lq(B沿）

+ IPII ら((o,2rr),w~-,;q(SR)) + 11°tPIILp((o,2rr),w;-1/q(SR)) 

:c; C{ lfllLp((o,2rr),Lq(BR)) + lldl Lp((o,2rr),w;-11qcs叫）

+ llgl H};((o,2rr),Lq(BR)) + ll(g, h) IIH:12cco,2"),Lq(BR)) + I (g, h)llr、p((0,2rr),HJ(BR))}. 

In what follows, I will give an idea how to prove Theorem 8. 

4.9 R-solver and High frequency part 

For any periodic function, f, the stationary part fs and oscillatory part /per are defined by setting 

fs =~[1r !(・, s) ds, /per(・, t) = f(-, t) -fs(・). 



13

r
 

e
 

r
 

p
 

s

e

 f
p

h

 

ヽ
~

p
 

，
 

r

=

 

e
 

V

――
 

ヽ
~

f

S

h

I

l

d

p

n

 

r

‘

ーノ

―
―
―
-

e

_

-

e

r

 

p
 

p
 

n

P

 

、!／

n

q

R
 

ヽ
ー
，

ーs

s

-

r

.

 

:

q

P

)

e

r

B

 

s

p

e

(

 

-

R

e

r

g

P

 

W

B

p

 

>
 

>
 
I
 

110

幻

gsds

↓
2
d
i
A
l
n

o

v

>

―-
D

-

r

 

i

-

―

e
 

f

(

 

μ

r

p

 

d

n

m

(

 

s

(

e

p

q

 

a

s

p

.

r

e

 

d

μ

―-
s

q

>

p

p

-

i
d
e〗
9
8
A
v
い

D
i
→
M
リ

-

s

-

r

+

p

e

 

V

D

-
―
 

d

i

v

e

>

 

r

p

r

 

s
 

v

s

(

e

>

e

(

 

s

>

P

D

P

 

s
 

i

P

D

 

m
C
v
d
i
M

い

OtVdiVOtPu

4
|
｛
 

9
_

、
m
 

e
 

ーb
 ゜

r
 

p
 

，
 

n
 

e
 

h
 

t
 

d
 

d
 

n
 

n
 

A

a

 
inB凡

inB凡

on SR x (0, 21r), 

on SR x (0, 21r), 

in BR X (0, 21r), 

in BR x (0, 21r), 

on SR x (0, 21r), 

on SR x (0,21r), 

(4.28) 

(4.29) 

In this subsection, I consider problem (4.29) for the high frequency part. 
According to Sect. 3, I consider the generalized resolvent problem: 

入u-Div (μD(u) -pl) = f in B凡

div u = fj = div g in B凡

切+Mry -(Au)・n = d on S凡

(μD(u) -μI)n -(B研）n= h on SR 

for any 入 E~,,入。 withany E E (0, 1r /2) and some large positive number入。 dependingon E. And then, 
from the result due to Shibata [4, 5], the following theorem follows. 

Theorem 9. Let 1 < qく ooand 0く E<rr/2.Let 

Xq(BR) = {(r,d,fi,[J,g) 1 r E Lq(BR)N, d E w; 一l/q,h E 1な(BR)N,

{J E H~(B叫， gE ら（記）勺，

品(B幻={F = (Fi,F2, ... ,F1) I F1,F: ふ F7Eら(B叫凡恥 EWi一lfq(S砂

F4 E H~(BR)N, Fs Eら（御）， F5E H~(rl)}. 

(4.30) 

Here, F1, F2, F3, F4, F5, F5, and F7 are corresponding variables to f, J, 入1;2fi,fi, 入112§,fj, and入g,
respecitively. 

Then, there exist a constant入。>0 and operator families A(入）， P(入）， and1-l(入） with 

2A(入） E Hol(~e, 入。，.C(ふ(BR)尻 (B訳）），

P(.>.) E Ho! (~e, 入。，.C(Xq(BR),HJ(B叫）），

印） E Hol(~e, 入。,.C(品(BR),WJ-lfq(SR))), 

where, H?l ,(~e,.\。, X) denotes the set of all X -valued holomorphic functions defined on~<, 入。， suchthat for 

any (f,d,h,fj,g) Eふ(BR)and 入 E~e,.\。， v=A(入）F.¥, q=P(入)F.¥and rJ = 1-l(入)F.¥,where 

芯 =(r,d, 入i/2fi,fi, 入1/2§,fj位），

are unique solutions of equations (4.30), and 

陀因(B叫，H戸（加）Ni({(喝）¥入m/2A(入）） I 入 E~叫）こ加

炭因(B叫 q(BR)N)({(喝）£▽P(入） I 入 E~<,入。}):s: 加

冗
C(心(B叫，w:-n-l/q(SR))({(喝）£(入呪（入）） I 入 E 刃€，入。 })'.S rb 

(4.31) 

for£= 0, 1, m = 0, 1, 2 and n = 0, 1 with some constant rb, where入=1+iTE刃E,入。 cc
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Let ko be a natural number such that入。<ko and匹aC00償） function which equals one for lkl ?: ko+ 1 

and zero for lkl~ko + 1/2. Let 

F'P = Fi1[(r.p(k)fper (ik))kEZ], G'P = J石―1[(ゃ(k)!Jper(ik))kEZ], G'P = Fi1 [(r.p(k)gper (ik))kEZ], 

D'P = Fi1[(r.p(k)dper (ik))kEZ], H'P = Fiビ(r.p(k)hper(ik))kEZ]-

Let 

v'P = Fil[(ゃ(k)A(ik)Fk)kEZ], q'P = Fi1[(ゃ(k)P(ik)Fk)kEZ], P'P = Fi1[(r.p(k)1-l(ik)Fk)kEZ], 

where Fk = (fper (ik), dper (ik), (ik)112hper (ik), hper (ik), (ik)112!Jper (ik),!Jper (ik), ikgper (ik)). Then, Vや9

q'P and p'P are unique solutions of equations: 

with 

恥 'P-Div (μD(v'P) -q'PI) = F'P in BR x (0, 21r), 

div v'P = G'P = div G'P in BR x (0, 21r), 

8心 +Mp'P―(Av'P)・n= D'P on SR x (0, 21r), 

(μD(v'P) -q'PI)n -(BRん）n = H'P on SR x (0, 21r), 

Yep E Lp,per ((0, 27r), H;(BR)N) n HJ,per ((0, 27r), Lq(lR.N)N), ▽ q"'E Lp,per((0,27r),Lq(B叫州，

Pep E Lp,per((0,27r), w:-lfq(SR)) nH  

Moreover, the following estimate holds: 

llv"'Iら((o,21r),Hi(BR))+ ll81v』伍((0,2rr),Lq(知）） +II▽ q"'II柘 ((0,2,r),Lq(BR))

+ I P"'tp≪o,2司，w;一1/q(SR))+ ll8tP'PIIHJ((0,2rr),w;-1/q(SR)) 

~C{IIF'PIILp((D,2rr),Lq(BR)) + IID'PIILp((0,2rr),W; 一l/q(SR))+ II (G<p, H'P) IIH~/2((0,2,r),Lq(BR)) 

+ ll(G<p, H'P)IILp((0,2rr),HJ(BR)) + ll8tG<p 1Lp((0,2rr),Lq(BR))} 

for some constant C > 0. To estimate the right side of (4.33), we use the inequality: 

I Fi1[(cp(k)}(ik))kEz]IILp((0,2rr),X)~Gp If 1Lp((0,2rr),X) 

(4.32) 

(4.33) 

where X is a UMD Banach space, which follows from Weis'operator valued Fourier multiplier theorem, 

Theorem 4. 

4.10 Low frequency part 

I now consider the generalized resolvent problem corresponding to (4.29) for k E [-k。,ko]- Namely, I 

consider the following equations: 

ikvk -Div (μD(vk) -Pkl) = fper (ik) in B凡

div Vk = g(ik) = div ii;per (ik) in B凡

ikpk + Mpk -(Avk)・n = dper (ik) on S凡

(4.34) 

(μD(vk) -Pkl)n -(BRPk)n = hper (ik) on SR 

fork E [-k。,k0] ¥ {0}. Then, the following theorem holds. 
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＾ Theorem 10. Let 1 < qく ooand k E Z with 1~lkl~ko. Then, for any fper (ik) E Lq(BR)凡
[/per (ik) E HJ(BR), dper (ik) E wJ-l/q(SR), hper (ik) E HJ(BR)N, and gper (ik) E 1召(BR)N,problem 

(4.38) admits unique solutions Vk E II, 点和）凡 qkE HJ(BR), and 7/k E w:-l/q(S) R possessing the 
estimate: 

llvk I府(BR)+II咋 II伝(BR)+ll'//kllw;-11•cs叫
(4.35) 

:S: C(llfper (ik)IIら(BR)+lldper (ik)llw: 戸 (SR)+ll(?Jper (ik), h(ik))II男(BR)+llgper (ik)II伝(B叫

for some constant C > 0 independent of k with lkl :::; ko. 

Remark 11. To estimate the right side of (4.39), we use the inequality: 

加 k)llx:::;(27r)ー 1/1r I f(s)I xds :S: (27r)ー l/p'llfllL.((0,21r),X)

゜for any f E Lp((0,27r),X), where Xis a Banach space and 11・llx is its norm. 

To prove Theorem 10, in view of the Riesz-Schauder theorem, Fredholm alternative principle, it 

is sufficien to prove the uniqueness in the L2 framework. Let w E H名(BR)凡qE H:}(BR) and ( E  
3-1/2 

W2 (S幻satisfyth e homogeneous equations: 

ikw -Div (μD(w) -qi)= 0, divw = 0 

ik(+ M(-(Aw)・n = O 

(μD(w) -ql)nーび(!3瓜）n=O 

inB凡

on S凡

on SR・

Recall: M(= fsR (dw 十芦r~l (JSR (Wk dw)狐 andAv= v一団JBRv dy. We first prove that 

（し l)sR= 0, (ふゲsR= 0 for j = 1, ... , N. 

(4.36) 

(4.37) 

Integrating the second equation of equations (4.40) and applying the divergence theorem of Gauss gives 

that 

0 = ik((, l)sR + ((, l)sRISRI -j div Awdx = (ik + IS川）((, l)sR, 
BR 

where we have set IS州=f痒 dwand we have used the fact that divw = 0 in BR. Thus, we have 

（し l)sR= 0. 
Multiplying the second equation of equations (4.40) with Xj, integrating the resultant formla over SR 

and using the divergence theorem of Gauss gives that 

0 = ik((, Xk応＋（＜心K応（吹心）SR―J div(叫 w)dx,
BR 

because (x1心 K因=0 for jヂk.Since 

J転山v(叫 w)dx=h転 (wk-l;RI kR w砂x)dx = 0, 

we have (C心k)SR= 0, because (x如咋）SR= (R2/N)IS州>0. Thus, we have proved (4.37). In particular, 

MC= o in (4.40). 
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We now prove that w = 0. Multiplying the first equation of (4.40) with w and integrating the 

resultant formula over BR and using the divergence theorem of Gauss gives that 

0 = ikllwllLcB叫― O'(B砥，n・w)sR+~11D(w)IILcB炒

because divw = 0 in BR, By the second equation of (4.40) with M(= 0, we have 

N 

c,(B砥，n・w)sR= c,(B砥，ikく）SR心心 LRWjdt(B砥，R―も）s即

where we have used n = R-1x = R-1(x1, ... , 屯v)for x E SR. Thus, 

N-1 
(B瓜，巧応＝（し（△SR+ )Xj応=0. R2 

Moreover, since (satisfies (4.37), we know that -(B砥，く）SR :::,. CI(12 
伍 (SR)for some pos1t1ve constant c, 

and therefore we have w = 0. And then, ▽ q = 0, which yields that q is a constant. Since T3ぷ— q=O

on SR, integrating this formula on SR, we have qlS州=0, because (B砥 l)sR= (N -l)W2(しl)sR= O, 
and so q = 0. 

Finally, combining BR(= 0 on SR and ((, l)sR = ((, Xj)SR = 0 gives that (= 0. This completes the 
proof of the uniqueness. 

4.11 Stationary solution 

Let me consider the following stationary problem: 

£vs -Div (μD(vs) -qkl) = fs in B凡

div vs= gs= div gs in B凡

Mrys -(Avs)・n = ds on S凡
(4.38) 

(μD(vs) -qsl)n -(BRTJs)n = hs on SR. 

The following theorem holds. 

Theorem 12. Let 1 < qく oo. Then, for any fs 
2-1/ 

Eら(B叫凡 gsEH:(御）， dsE Wq q(SR), hs E 

H:(BR)N, and gs E Lq(BR)N, problem (4.38) admits unique solutions vs E H~(BR)N, qs E H:(BR), 

and PS E wJ-lfq(S) R possessing the estimate: 

llvsllH名（知） +II▽ qsllら(BR)+ I Psllw:-1/•cs叫

:":: C(llfsll1、.(BR)+lldsl w;-•l•csR) + ll(gs,hs)IIHJ(BR) + lgsllL.(BR)) 
(4.39) 

for some constant C > 0. 

To prove Theorem 12, in view of the Riesz-Schauder theorem, Fredholm alternative principle, it 

is sufficien to prove the uniqueness in the L2 framework. Let w E明(B幻凡 qE HJ(BR) and (E 
3-1/2 児 (SR)satisfy the homogeneous equations: 

£w -Div (μD(w) -qi)= 0, divw = 0 in B凡

M(-(Aw)・n = 0 on S凡 (4.40) 

(μD(w) -ql)n -a(l3ぷ）n = 0 on SR. 
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Employing the same argument as in Subsec.4.10, we have 

((, l)sR = 0, (く，巧）sR = 0 for j = 1, ... , N. (4.41) 

We now prove that w = 0. Multiplying the first equation of (4.40) with w and integrating the 

resultant formula over BR and using the divergence theorem of Gauss gives that 

0 = (£,w,w)BR―a(B瓜，n・w)sR+~IID(w)lli2(B砂

because divw = 0 in BR. Recalling that£vs= 21r区已(vs,Pふ Pk,we have 

M 

(£w,w加＝区l(w,p虚記．
k=l 

Employing the same argument as in Subsec.4.10, we have 

Thus, 

N 

叫(B砥，n・w)sR=区
k=l 

M 

l;RI LR Wj dt(B瓜，R―1xj)SR= 0. 

0= 区 l(w,p叫記 +~IID(w)IIL(B砂
k=l 

which yields that w = 0. And then, ▽ q = 0, which shows that q is a constant. Thus, B瓜一 q= 0 on 

SR. Integrating this formula on SR, we have qlS州=0, and so q = 0. 

Finally, combining BR(= 0 on SR and ((, l)sR = ((, 町）sR = 0 gives that (= 0. This completes the 
proof of the uniqueness. 

Proof of Theorem 8. Since solutions v, q and p of equations (4.27) are represented as 

(v, q, p) = (v<p, q<p, p'P) +区 (vk,qゎPk)+(vs, qs, Ps), 

1'.Slkl'.Sko 

applying estimate (4.33), Theorem 10, and Theorem 12 yields Theorem 8. ロ

5 Proof of Theorem 7 

Theorem 7 is proved by the standard Banch fixed point theorem. Let E > 0 be a small number determined 

later and let Ie be an underlying space defined by setting 

Ie = {(v,p) IVE Lp,per((0,211一），H:(BR)N)n Hi,per ((0, 21r), Lq(BR)N), 

p E Lp,per ((0, 2吋，wJ-lfq(SR))n Hi,per ((0, 加），w;一lfq(SR))n H~,per ((0, 2吋，wJ-lfq(S幻）， (5.1)

sup IIHp IH5o(B沿<:::8, E(v,p) <::: E}, 
tE(0,2,r) 

where we have set 

E(v,p) = llvlら((0,2,r),HJ(BR)N)+ I vllHJ((0,2,r),Lq(BR)り
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+ IIPI Lp((o,21r),wg-11"(SR)) + IPIIHJ((o,21r),w;-11"(SR)) + IIBtPII応 ((0,21r),Wi-l/q(S叫）．

Let (v, p) E Ie and let u, q and T/ be solutions of linear equations: 
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in BR X (0,21r), 

in BR x (0, 21r), 

on SR x (0, 21r), 

on SR x (0, 21r), 

(5.2) 

(5.3) 

with 

£(v, p) = IIF(v, p)IIら((0,2,r),Lq(Bn))+直(v,P)IILp((0,2rr),w; 一1/q(Sn))+ llg(v, P)IIHJ((O年），Lq(B叫）

+ II (g(v, p), h(v, p)) I H~/2((0,2rr),Lq(Bn)) + ll(g(v, p), h(v, p)) 11Lp((0,2rr),HJ(B叫）・

To estimate l8tTJII 1-1/q 
ら ((0,2rr),Wq (Sn))' 

the followmg estimate 1s used: 

ll8tTJIIら ((0,2,r),W:』-1/q(Sn))S C(IMPIIL=,Wi-1/q(Sn)) + llvllL叫 (0,2,r),HJ(Bn))+ 11J11ら ((0,2rr),Wi-,;q(Sn))), 

which follows from the third equation of equations (5.2). The main task is to prove that 

t:(v,p) + II刈|L叫 (0,2,r),Wi一l/q(Sn))―< CE2 (5.4) 

with some constant C > 0 independent of E. In the proof, it is assumed that N < qく oo,2 < p < 00 

and 2/p + N/q <. In particular, the first assumption is to use Sobolev's immbedding theorem. In fact, 

the following inequalities are used: 

IIJIIL=(B叫 sCl fl HJ(B砂

llfg IHJ(Bn) S Cl fl HJ(Bn)ll9IIHJ(Bn), 

llf9IH弓(Bn)S C(IJIIH弓(Bn)ll9IIHJ(Bn)+ IIJIIHJ(Bn)I 9IIH弓(Bn))

llf gllw:-1/q(s叫 sCl JI w:』-1/q(Sn)lgllw:-1/q(Sn)' 

llfgllw; 一 1/q(Sn)S C(lfllwg-1/q(Sn) llgllw:-1/q(Sn) + II! llwJ-1/q(Sn) Ilg lwg-1/q(Sn)), 

which follows from the Sobolev inequality and the fact that lulsnllwJ-1/q(S叫 SCllullHJ(B沿 foru E 

H:(B砂 Toestimate the lower order derivatives of v and p, the following inequalities are used: 

IV IL=((o,2rr),B;S}-1/P)(Bn)) S C(llvl1Lp((0,2rr),HJ(Bn)) + l8tvl1Lp((0,2rr),Lq(Bn))), 

IIPIIL=((0,2rr),wJ,;'/p-1/q(Bn)) S C(IIPIILp((0,2rr),wJ-1/q(Bn)) + ll8tPI Lp((0,2rr),w; ―1/q(B叫）），

which follows from real interpolation theorem. In particular, to obtain▽ v E L00, it is used the assump-

tion: 2/p + N/q < l. 
To estimate ll(g(v, p), h(v, p))IIH~/2((o,2rr),l勺 (Bn)) + ll(g(v,p),h(v,p)) 1Lp((0,2rr),HJ(Bn)), the following 

two lemmas are used: 
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Lemma 13. Let l < pく ooand N < qく oo.Let 

a E Ifよ，per((0, 21r), 伝(BR))n L=,per ((0, 21r), HJ(B叫），

b E Hi;ier ((0, 21r), Lq(B幻） n Lp,per ((0, 21r), H~(B叫）．

Then, 

labllH戸((0,2,r),Lq(Bn))+ llabllら((0,2,r),HJ(B叫）

:::; C(lallH~((0,2,r),Lq(Bn)) + llal L叫 (0,2,r),HJ(B叫））11211a11Z~((0,2,r),HJ(Bn)) 

X (llbllH戸((0,2,r),Lq(B叫） + llblら((0,2,r),HJ(Bn)))-

Remark 14. This lemma holds for more general domains. 

Proof. The lemma follows from the following complex interpolation relation of order 1/2: 

Hi~2er ((0, 21r), Lq(BR)) n Lp,per ((0, 21r), H~l2(BR)) 

= (Lp,per ((0, 21r), Lq(BR)), Hi,per ((0, 21r), Lq(BR)) n Lp,per ((0, 21r), Hi(BR))h;2-

口

Lemma 15. Let l < p, q < oo. Then, there exists a constant C such that for any u with 

u E Hi,,per((0,21r),l々1(BR))nLp,per((0,21r),H 

we have 

llullH炉((0,2,r),男(B叫） S C(I ullHJ((0,2,r), ら(BR))+llullら((0,2,r),HJ(BR)))

for some constant C > 0. 

Remark 16. This lemma holds for more general domains. 

Proof. For a proof, refer to [6]. 

Proof of Theorem 7. Combining (5.3) and (5.4) yields that 

E(u,ry) S CIIGIIら((O,oo),Lq(B叫） +CE2 

for some constant C > 0 independent of E. Thus, choosing E > 0 so small that CE< 1/2 yields that 

口

E(u, TJ) :S CIIGIIら((0,oo),Lq(B叫）十 E/2.

Choosing f so small that C11 G Iら((0,2,r),Lq(BR))さE/2yields that E(u,'1)):::; E, and so (u,ry) E IE. Let W 
be a map acting on (u,p) E IE defined by W(u,p) = (v,'I)), and then Wis a map from IE into itself. It 
also can be proved that 

E(IJ!(v1, Pl) -IJ!(v公 P2))::;伍 E((v1,P1)-(v2,P叫）

for any (vぃPi)EI, (i = 1, 2). Choosing E > 0 smaller if necessary, we may assume that CE< 1, and so 

IJ! is a contraction map from I, into itself. Thus, there exists a unique fixed point (v, p) E Ie, which is a 

required unique solution of equations (4.22). 
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Finally, we define e(t) by setting 

t l t 

罰 =la ((s)ds+c= IBRI l lR v(x,s)(l+Jo(x,s))dxds+c 

where c is a constant for which 

fo2" e(s) ds = 0, that is, C = -21rl~ 州l["(l1知 (v(x,s)(l + Jo(x, s)) dxds) dt 

We define 01 and rt by the formulas in (4.13). And then, setting u(x, t) = v(<I>―1(x, t), t) and p(x, t) = 

q(<I>―1(x, t), t), we see that 01, ft, u(x, t) and q(x, t) satisfy the equations: 

紐+u -Vu-Div(μD(u)-μI) + t f2"(u(-,t),Pk)n, dtpk = f, divu = 0 
k=l ゜

in Ot, 

(μ(D(u) -μI)nt = aH(rt)nt on ft, 

In particular, div u = 0 implies that叫 isa constant, and so we set IOI = B祉 Andalso, we see that 

W) = J xdx, 
n, 

and so by (4.18), (4.20) and (4.21), 

如ー Av・n= d(v,p). 

Thus, the kinematic condition: Vjぃ=u・Dt holds on ft. Finally, the assumption on f implies (4.10), 

and therefore, u and p satisfy equations (4.1). This completes the proof of Theorem 7. For the detailed 

proof, see Eiter, Kyed and Shibata [l]. 
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