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A Remark on the Solvability of Plane Steady-State Exterior 

N avier-Stokes Problem 

for Arbitrarily Large Data 

Giov皿 niP. Galdi 

1 Introduction 

In his celebrated paper of 1933, J .Leray studied the existence of solutions to the boundary-value problem 
of Navier-Stokes equations in the complement, 0 c罠汽 ofa smooth two-dimensional compact set (the 
"obstacle"). In a suitable dimensionless form, the problem is formulated as follows: Given a vector 
v= E配， finda pair (v,p)-representing velocity and pressure fields, respectively-satisfying the following 
set of equations 

△ V = V・ ▽V十▽p

▽ ・V =。}in !1 
(1.1) 

V = 0 at 8!1 

along with the condition at infinity 
lim v(x) = v=. 

lxl→~ 
(1.2) 

The most significant contribution of Leray to the resolution of problem (1.1), (1.2) consisted in 
proving that, for any prescribed nonzero v= there is at least one solution to (1.1), which is also as 
smooth as allowed by the smoothness of !1. However, by his arguments, he was not able to infer that 
these solutions verify also the fundamental condition (1.2). Actually, the only "asymptotic property" he 
was able to show was that the velocity field v of his solution possesses a finite Dirichlet integral, namely, 

▽ VE L2(!1). (1.3) 

The question of whether solutions constructed by Leray or, more generally, solutions in the class 
(1.3), satisfy (1.2) has become the focus of deep researches by outstanding mathematicians. In particular, 
D.Gilbarg and H.Weinberger [10], [11] were the first to show that the solution constructed by Leray is 
bounded and that it converges at large distances, in the mean square over the angle, to a certain vector 
v0. More detailed information about convergence was provided later on by C.Amick [1], if the solution 
is symmetric. Specifically, a pair (w(x)三（叫(x),匹 (x)),p(x)), x = (xぃ四）， issaid symmetric if 

W1(X1,X叫=w1(x1, -x2), w2(x1,x2) = -w2(x1, -x2); p(x1,x2) = p(x1, -a. ど!)- (1.4) 

If n is symmetric around the xi-axis, namely, (x1, 四） E 80 implies (x1, ―四） E 80, and v= =入e,with 
e unit vector along x1, Leray's construction leads to a symmetric solution. In such a case, in [1] it is 
shown that v tends to v0 uniformly pointwise. This result has been recently improved by M.Korobkov, 
K.Pileckas and R.Russo [12], who relaxed the symmetry assumption. However, it is not known whether 
v= = vo (vo may even be zero!) and, consequently, the question of whether Leray's solution satisfies 
(1.2) remains open. 
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It must be observed, however, that existence of solutions to (1.1), (1.2), for small v00 and by methods 
completely different than Leray's, was shown by R.Finn and D.R.Smith [4], [5], [15], and, successively, by 
me [6], [?]. Moreover, these solutions are physically reasonable in the sense of Finn [15], and are locally 
umque. 

In view of all the above considerations, the fundamental question that remains still open is whether 
(1.1), (1.2) is solvable for arbitrary large v00. 

Denote by C the class of pairs constituted by a vector field w = (w1, w2) and scalar field p satisfying 
(1.4) and having a finite Dirichlet integral. More than 20 years ago, in [7] (see also [8, §4.3]), I proved 
the following result. 

Theorem 1. 1 Let fl be symmetric around the x1 -axis. Assume that the following problem 

△ U=U・ ▽u十▽¢

▽ ・U=。 }in fl 

u = 0 at an 

lim u(x) = 0 , urnformly 
因→00

has only the zero solution in the class C. Then, there is a set M with the following properties: 

(i) MC  [O,oo); 

(ii) M コ[O,c) for some c = c(n) > O; 

(iii) M is unbounded; 

(iv) For anyμEM, the problem 

△ V =V・ ▽v十▽p } inn 

▽ ・V =0 

v = 0 at an, lim v(x) =μe 
屈→00

has at least one solution in the class C. 

(1.5) 

(1.6) 

The importance of this result resides in the fact that it assures existence of solutions to (1.1)-(1.2) for 
all脳 inan unbounded set of配.The difficult part, however, is to show that its assumption is indeed 
satisfied, namely, that the homogeneous problem (1.5) has only the zero solution in the class C. Even 
though plausible, to date, to prove (or disprove!) such a property has remained an open question. 

Objective of the present note is to give a contribution toward answering this question. Precisely, we 
shall show that if, in addition to u satisfying (1.3), we assume 

j'JI'(u,</>)・n=O 
an 

(1.7) 

with'lI'(u, ¢) := v'u + (▽ u)Tー釘 Cauchystress tensor and n unit normal at an, then u =▽ ¢= 0. 
From the physical viewpoint, the left-hand side of (1.7) represents the total net force exerted by the 
liquid on the obstacle. Therefore, our result can be equivalently reformulated as follows: if in the class 
C there is a nontrivial solution to (1.5), then such a solution must produce a non-zero net force on the 
obstacle. A conclusion, the latter, that appears to be quite paradoxical, given the absence of any driving 

mechanism. 
The above statement is proved in the following section by means of a simple argument used also by 

H.Kozono and H.Sohr [13] in a different context. 
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2 On the Existence of Solutions for Arbitrarily Large v00 

The general idea behind our argument is rather basic. It consists in finding a suitable extension of the 
solution u to a field u that, on one hand, possesses a finite Dirichlet integral over記 and,on the other 
hand, satisfies equations (1.5)i,2 in the whole of訊 ina distributional sense. In fact, whenever such 
an extension is found, then one may apply a well-known Liouville-type theorem ensuring that u must 
vanish identically in配 and,as a consequence, thus vanishes the original solution u in !1. One way of 

constructing the desired extension is to assume the validity of (1.7) (see also Remark 2.1). Precisely, we 
can show the following result. 

Theorem 2.1 Let (u, ¢) be a distributional solution to (1.5) with▽ uEL叩）• Then, if (1.7) holds (in 
a trace sense), necessarily u =▽ <f; = 0. As a result, problem (1.6) has at least one solution for allμin 
the unbounded set M specifi.ed in Theorem 1.1. 

Prnof. First of all, we observe that, under the stated assumption, well-known results on the regularity of 
distributional solutions ensure (at least) that, in fact, (u, ¢) E [C00(!1) x C00(!1)] n [W1包(TI)x w1~~q (TI)], 

all q E [1,oo); see [9, Section X.1].Cl) This implies, in particular,'ll'(u,¢) E w1-¼,q(8!1), so that (1.7) 
is meaningful in the classical trace sense. Next, we perform a suitable extension of problem (1.5) to the 
whole plane配 asfollows. Let恥 denotethe complement of !1 inズ， andextend (u, <f;) to the whole of 
酎 bysetting 

五={ u(x) ifx E !1 _¢(x) ifx E !1 

0 ifxE!1。<p= {。 ifXE !1。
We shall now show that uぶisa solution to the following problem 

邸— u• ▽i —▽⑯ = O} in配．

divu = 0 

in the distributional sense. In fact, observing that (1.5)i is equivalent to 

div (1l'(u, ¢) + uい） =0 in!1, 

for all心E00(配）， weinfer, by integration by parts, (1.5)3, and assumption (1.7), 

j [T(uぶ）＋鱈司•▽ゆ= [1l'(u,¢)+u⑭ u]・ ▽砂

~·~lo心 div(T(u, ;) +u 0,{: /,}l'(u, ;)-uRu], 叫

= j 1l'(u,¢)・n心=0, 
&n 

(2.1) 

which shows the desired property for (uぶ） • Now, by hypothesis, ▽ u E j,2圏）. As a consequence, 

thanks to a classical regularity result [9, Theorem IX.5.1], we obtain (u,¢) E 000圏）. Thus, u is a 
smooth vector function satisfying (2.1) and having finite Dirichlet integral. By a well-known Liouville— 

type result [11] (see also [9, Theorem XII.3.1]), it then follows that u must be necessarily constant in the 
whole of配.This, in turn, implies u三▽¢ 三0,which completes the proof of the theorem. ロ

Remark 2.1 It is worth noticing that a sufficient condition to satisfy (1.7), is to require that (u, ¢) 
possesses suitable symmetry properties. For example, suppose that !1 is symmetric also around the 

(l) Actually, th t e in erior regularity property can be proved under the weaker邸 sumpt10nthat u only belongs to L「~J!1),
for some r > 2; see [9, Theorem IX.5.1]. 
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x2-axis, that is, (xぃ砂） E !1 implies (-xぃ砂） E !1, and, besides being in the class defined by (1.4), the 
solution (u = (u1, u2), ¢) to (1.5) meets the further symmetry conditions around xが

u1(x1,x2) = -u1(-xぃ四）， u2(x1, x2) = u2(-xぃ四）； <p(x1, X叫=¢(-xi,x2). (2.2) 

Then, it is easily checked that (1.7) holds. 

Remark 2.2 Employing (1.5)i and the assumption that u possesses a finite Dirichlet integral, it is easy 
to show that a necessary and sufficient condition for the validity of (1. 7) is that 

i隠万jxl=R(px + uu・x) = 0. 
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