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The Stokes operator in exterior Lipschitz domains 
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Global Center for Science and Engineering, Waseda University 

1 Introduction 

This article gives a summary of [1 7]. Let O C 町 (n2: 3) be an exterior 

Lipschitz domain in股n(n 2: 3), i.e., the complement of a bounded Lipschitz 

domain. We consider the Stokes resolvent problem in an exterior Lipschitz 

domain with homogeneous Dirichlet boundary conditions 

｛畑―△〗二：［
u=O 

inn, 

inn, 

on 80, 

(1.1) 

where u =丁(u1,.. ,,un): 0→ en and 1r: 0→ (C are the unknown velocity 
field and the pressure, respectively. Here, the right-hand side f is assumed 

to be divergence free and LP-integrable for an appropriate number 1 < p < 
oo and the resolvent parameter入isassumed to be contained in a sector 

均：= {z E (C ¥ {O} I larg(z)I < 0} with 0 E (0, 1r). 
It is known that the results of the Helmholtz projection and the Stokes 

operator in bounded Lipschitz domains are available only in a restricted set 

of exponents p, which is quite different from the case of bounded smooth 

domains. Indeed, Fabes, Mendez, and Mitrea [2] showed that the Helmholtz 

decomposition of LP(Dぐ） exists whenever (3/2) -E < p < 3 + c:, where 

Dis a bounded Lipschitz domain and c: is a positive number depending on 

the Lipschitz character of D. They also showed that the range of p is sharp, 

see [2, Thm. 12.2]. This result leaded to the following conjecture posed by 

Taylor [14, Sec. 4]. 

Conjecture 1.1. For a given Lipschitz domain O C 配 thereexists E = 
c:(O) > 0 such that the negative of the Stokes operator generates an analytic 
semigroup, provided (3/2) -c: < p < 3 + c:. 

*1 keiichi-watanabecakane. waseda. jp 
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Using the potential theory and a weak reversed Holder estimate, Shen [13] 

obtained resolvent bounds for numbers p satisfying the condition 

1 1 1 

2 
く +c::,

p 2n 

where c is a number depending only on the dimension n, the opening angle 0, 

and the Lipschitz character of n. Notice that when n is a bounded smooth 

domain, such a result was established for all p E (1, oo) in [5]. A corollary of 

Shen's result is that the negative of the Stokes operator generates a bounded 

analytic semigroup, which gave an affirmative answer to Conjecture 1.1 in 

the case of bounded Lipschitz domains. Recently, this result was extended 

by Kustmann and Weis [9] and Tolksdorf [15]. In [9], a new criteria of the 
H00-calculus was given and the boundedness of H00-calculus of the Stokes 

Stokes operator was proved, which yields an investigation of the domain of 

the square root of the Stokes operator as W芯(D),see [15]. This character-

ization provides L凡 Lqmapping properties of the Stokes semigroup and its 

gradient with optimal decay. As an application of his result, the existence 

of solutions to the three-dimensional N avier-Stokes equations in the criti-

cal space L00(0, oo; L叩）） was shown in terms of a maximal Lq-regularity 

approach. 

Our interest is to consider the Stokes operator in the case of exterior 

Lipschitz domains n. If the boundary 80 is connected, it was shown by Lang 
and Mendez that the Helmholtz decomposition of L叩心） exists. More 

precisely, they proved that the Helmholtz projection IP'defines a bounded 

projection from L叩心） onto L~(D) for 3/2 < p < 3. Here and in the 

following, L叩） denotes the closure of 

C芯(D):= {r.p EC戸(D;ccn) I div (r.p) = O} 

in L叫D;C門.We will investigate the Stokes operator defined on L訳D)by 

using a sesquilinear form, see [12, Ch. 4]. On L~(D) for 1 < p < oo, the 
Stokes operator Ap is defined in two steps. First, we take the part of A2 in 

L~(D), i.e., 

V(A叫 L~(n)) := {u E V(A2) n L~(n) I A2u E L~(n)}, 

where A叫LP(n)uis given by A2u for u in its domain. Notice that A叶ば(0)

is densely defined because C芯(D)c V(A叫~(n)) and that it is closable. 

Secondary, we define Ap to be the closure of A叫ば(n)in L~(D). 
The purpose of this article is to study a family of operators {入（入＋

Ap戸｝入E~。 is R-bounded in£(L~(D)). Since R-boundedness implies uni-
form boundedness of the family of operators, this result yields that the 
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negative of the Stokes operator generates a bounded analytic semigroup on 

Lf;(O) for certain p. 

2 Preliminaries 

Let us first introduce the notion of exterior Lipschitz domains that is con-

sidered in this article. 

Definition 2.1. Let D C 町 bea bounded Lipschitz domain, i.e., D is a 

bounded, open, and connected set satisfying the following: For each x0 E 80, 
there exists a Lipschitz function〈:町 -1→股， acoordinate system (x', xn), 

and a radius r > 0 such that 

Br(xo) n D = { (x', Xn) E町 IXn >〈(x')}n Br(xo), 
Br(xo) n oD = {(x', Xn) E恨nI Xn = ((x')} n Br(xo), 

where Br(⑰) denotes the ball with radius r centered at x。andx'・-

(x1, ... , Xn-1). Then an exterior Lipschitz domain O C 賊nis the com-

plement of a bounded Lipschitz domain, i.e., 0 :=町 ¥D.

Remark 2.2. The definition of exterior Lipschitz domains stated above 

excludes the case of multi-connected domains, i.e., the presence of holes 

inside the exterior domain. However, it should be possible to add holes by 

employing the argument used in [11]. Notice that the rest of this article 

works with holes appearing in the exterior domain. 

2.1 Remark on the Helmholtz projection 

Let三c町 bea domain and TID2, 巴bethe Helmholtz projection onい(2ぐ）
that is the orthogonal projection onto L犀）• It is wildly known that the 

Helmholtz projection implies the orthogonal decomposition 

L町己；C門＝ば（巴）① G亨）．

Here, for 1 < pく oowe write 

G戸）：＝｛▽gEび（己；en) I g ELに(3)}.

For 1 < pく oo,we say that the Helmholtz decomposition of LP(己；C門exists

if an algebraic and topological decomposition of the form 

び（三； C門 =L~(B) ① Gp(三） (2.1) 
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exists. Then, the Helmholtz projection TIDp, 三 onLP(B;(C門isdefined as the 

projection of L叫三；び） onto L~(こ） • If三＝町， theHelmholtz decomposition 

ofL叫股庄C門existsfor all 1 < pく oo,and the projection can be represented 

by 

い：=F-1[1-
~®~ 

1~12 ]' 
where F denotes the Fourier transform and F-1 its inverse. 

In the case己 =D, where DC町 isa bounded Lipschitz domain, we 

know the result by Fabes, Mendez, and Mitrea [2] who showed that there 

exists c = c(D) > 0 such that the Helmholtz decomposition of LP(D; (C門
exists if p satisfy 

1 1 1 
-- - <— +s. 
p 2 6 

(2.2) 

Notice that the range of p is optimal, see [2, Thm. 12.2]. On the other 

hand, if O c町 isan exterior Lipschitz domain with connected boundary, 

there is the result by Lang and Mendez [10, Thm. 6.1] who showed that the 
Helmholtz decomposition of L叫Q心） exists for all p satisfying 

1 1 . 1 1 1 
i―2 <mm{6+r::,2 —~}- (2.3) 

We easily observe that the condition (2.3) is slightly stronger than (2.2). 

For example, when n = 3, we deduce that (2.2) implies (3/2)-r:: < p < 3+r:: 

and that (2.3) implies 3/2 < p < 3. Here, it seems to be difficult to show the 

existence of mild solutions to the three-dimensional N avier-Stokes equations 

in the critical space L00(0, T; L詞）） based on the result due to Lang and 

Mendez because we need information for p in the interval [3, 3 + E) to prove 
the existence of mild solutions, cf., [6, 15, 16] for the cases of the whole space 

and bounded/smooth Lipschitz domains. However, by a slight modification 

of the proof of Lang and Mendez, we can recover the interval (2.2) for 

exterior domains O with connected boundary. In fact, Lang and Mendez 

proved that the Helmholtz decomposition of LP(O; <C門existsif and only if 

there exists a function心thatsolves the following Neumann problem: 

{v ・~~= ~゚EB;ド（ぬ）
▽ゆ EU(O;<Cり

inn, 

on an, (2.4) 

with h := v・(u -v'恥 (div(u))), where IIo(div (u)) is the Newton potential 

of div (u) extended by zero to町.According to [10, Thm. 5.8], it holds 

IIV心ILP(O;か）さ Cllhll馬，筐(80)
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for all p that satisfy (2.2) but from [10, Cor. 2.3] it holds 

II▽ IIn(div (u))IILP(rl; か） '.SCllullLP(rl; か）

for all p that satisfy n/(n -1) < p < n, where these conditions induce (2.3). 
To get rid of the condition n/(n -1) < p < n, we replace in the definition 
of h the term▽ IIndiv (u) by F-1[(~ 賢）1-2 F[U]], where U is the extension 
of u to町 byzero. Hence, the term h is given by h := v・(IP'p, 飛nU)加 and

we obtain the estimate 

llhllB; 忙（ぬ）さ CllullLP(!1炉）

for all 1 < p < oo. Summing up, the Neumann problem (2.4) is uniquely 

solvable for all p that satisfy (2.2) but only if an is connected. To generalize 
this result into the case when an is not connected, we decompose n into its 
connected components 

N 

n=n。u(且nk),

where枷 isthe unbounded connected component and糾 (k= 1, ... , N) 
are bounded Lipschitz domains. From [2, Thm. 11.1], there exists E >。
such that the Helmholtz projection lP'p,Ok is bounded on LP(山；en) for all p 

satisfying (2.2) and k = 1, ... , N. Then the Helmholtz projection on n can 
be defined by 

鳥，of](x):= [TID p,ok凡J](x) (x E Ok, k = 0, ... , N, f EL叩；C門），

where Rk is the restriction operator of functions on n to nk. Therefore, 

we now arrive at the following proposition on he existence result of the 

Helmholtz decomposition on exterior Lipschitz domains. 

Proposition 2.3. Let n c恥n be an exterior domain and p enjoy (2.2). 

Then the Helmholtz decomposition (2.1) exists. 

The details of the discussion in this section can be found in [ 1 7, Sec. 2 .1]. 

2 .2 Maximal regularity 

Consider the abstract Cauchy problem: 

｛加 +An~f
u(O) = uo, 

on (O,oo), 
(2.5) 
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where -A generates a bounded analytic semigroup on a Banach space X. 

Here, f and uo are appropriate given data. The definition of the maximal 

regularity can be read as follows. 

Definition 2.4. Let 1 < s < oo, f E L8(0, oo; X), and uo E (X, V(A)h-1/s,s・ 
An operator A is said to admit a maximal regularity if the system (2.5) has 

a unique solution u, which is differential for almost every t > 0, satisfies 

u(t) E V(A) for almost every t > 0, and 

IIBtullい(O,oo;X)+ IIAullい(O,oo;X)'.SC(llfllい(O,oo;X)+ lluo II (X,D(A)h-1/s,s). 

Here, V(A) and (X, V(A)h-1;s,s denote the domain A and the real inter-
polation space, respectively. 

According to Weis [19, Thm. 4.2], we know the characterization of the 

maximal regularity of a closed operator A: V(A) C X → X on a Banach 

space X. To this end, we introduce the concept of'R-boundedness. 

Definition 2.5. Let X and Y be Banach spaces. A family of operators 

TC£(X, Y) is called'R-bounded if there exists a positive constant C such 

that for any NE  N, Tj E 7, Xj EX  (j = 1, ... , N) it holds 

N N 

区叫・)TjXj :SC区州・)巧 • (2.6) 
j=l 口(O,l;Y) j=l L2(0,l;X) 

Here, 町(t):= sgn(sin(2叶t))are the Rademacher-functions. Besides, the 

infimum over all C > 0 such that the inequality holds is said to be the 

'R-bound of T and will be denoted'Rx→ y { T}. Especially, if X = Y, we 
simply write'Rx{T}. 

Remark 2.6. It is known that'R-boundedness of a family of operators 

yields its uniform boundedness (take N = 1 in the above definition). If 

X and Y are Hilbert spaces, then'R-boundedness is equivalent to uniform 

boundedness. 

The following proposition was shown in [19, Thm. 4.2]. 

p ropos1tion 2.7. Let X be a space of type UMD and let -A be the gen-

erator of a bounded analytic semigroup on X. The operator A has maximal 

regularity if and only if there exists 0 E (1r /2, 1r) such that a family of oper-

ators {入（入+A)-1}入E~。 is 1?-bounded in£(X). 

Remark 2.8. It is known that LP-spaces for 1 < pく ooare type UMD. 

Besides, all closed subspaces of DMD-spaces are type UMD. See, e.g., Am-

man [1, Thm. 4.5.2] for details. 
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3 Main results 

The following two theorems are main results in this article, see also [17]. 

Theorem 3.1. There exists a positive constant E > 0 such that for all p 

satisfying 
1 1 1 
-- - <— +c 
p 2 2n 

(3.1) 

the Stokes operator Ap is closed and densely defined and admits maximal reg-

ularity. Fu廿hermore,-AP generates a bounded analytic semigroup {T(t)}t2':0 

on Lf;(O). Here, c only depends only on the dimension n, the opening angle 

0, and quantities describing the Lipschitz geometry. 

Theorem 3.2. For all 1 < p :Sqく oothat both satisfy (3.1), there exists a 

constant C > 0 such that 

IIT(t)JIIL如）さ Ct―ぎ（点— ½l11111ば(0) (t > 0, f E L~(D)). 

If additionally p :s; 2 and q < n, there exists a constant C such that 

II▽ T(t)JIIL咽） :::::; Ct―}—号(¼ —¼) IIJIIL~(O) (t > 0, f E L~(O)). 

Remark 3.3. As an application of Theorems 3.1 and 3.2, we can construct 

a mild solution to the three-dimensional Navier-Stokes equations in the crit-

ical space 100(0, T; L~(O)) via an iteration scheme due to Giga [6]. Namely, 
the three-dimensional Navier-Stokes equations admits local-in-time mild so-

lutions u E BC([O,'Ti。)； L~(0)), and if the initial value is sufficiently small, 
then the solution is global in time, i.e., Ti。=+oo. If one have an interest in 

control of the gradient of the solution, one have to show gradient estimate 

for the Stokes semigroup in L尺see,e.g., Kato [8]. Further details can be 

found in [17, Thm. 1.3], see also Tolksdorf [16, Sec. 6.3]. 

4 Analysis on bounded Lipschitz domains 

The proofs of Theorems 3.1 and 3.2 rely on the study of the Stokes resolvent 

problem (1.1). More precisely, our task is to show that there exists a positive 

constant C such that 

RLP(fl; か）｛入（入 +Ap)―1IP'p,!1 I 入 E~0} :SC 

for some 0 E (1r/2,1r). To show this estimate for large values of入， wefollow 

the cut-off technique due to Geissert et al. [4] and construct a parametrix 
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of the resolvent problem in an exterior domain by using the solutions to 

a problem on the whole space and to a problem on a bounded Lipschitz 

domain. On the other hand, to deal with small values of入， weemploy 

the compactness argument (essentially based on Fredholm theory), where 

Iwashita's proof [7] is extended. When we consider the resolvent bounds for 

small values of入， weemphasize that the standard contradiction argument 
will fail to use because the maximal regularity property requires a random-

ized version of the resolvent estimate due to the lack of compact embeddings 

for vector-valued Lebesgue spaces. 

Let us recall the results for the Stokes operator in bounded Lipschitz do-

mains. According to Shen [13], Kunstmann and Weis [9], and Tolksdorf [15], 

we know the following result. 

p ropos1tion 4.1. Let D C町， n:2 3, be a bounded Lipschitz domain and 

0 E (0, 1r). Then there exists a constant E > 0 depending only on n, 0, and 

the Lipschitz character of D such that for all p E (1, oo) satisfying 

1 1 1 
-- - <— +s 
p 2 2n 

(4.1) 

it holds~。 C p(-Ap,D) and there exists a constant C > 0 such that 

R肛 (D心）→ば(D){入（入+Ap,D)―11P'p,D I 入 E~0}::; C. 

Besides, for all such p it holds V(A悶） =W認(D)and there exists a con-

stant C > 0 such that 

II▽ ullLP(D; 己） :S CIIA旦ullL~(D)

for u E'D(A昌）．
When we construct a parametrix of the resolvent problem in an exterior 

domain, we use the following Bogovskii lemma to keep the divergence free 

conditions. 

p ropos1tion 4.2. Let D C 町 (n2: 2), be a bounded Lipschitz domain, 

1 < p < oo, and k E N. Let Lb(D) := {F E LP(D) I JDFdx = O}. 

Then there exists a continuous operator B: LP(D)→ W炉(D心） with 

B E£(W~'P(D), W~+l,P(D; en)) such that div (Bg) = g for g E Lぢ(D).

Furthermore, the operator B extends to a bounded operator from W01'P(D) 

to LP(D心） • Here, the space W01'P(D) stands the dual space of W1,P'(D) 
with (1/p) + (1/p') = 1. The operator B is called the Bogovskii operator 

defined on D. 
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To employ the cut-off technique due to Geissert et al. [4], it is crucial 

to prove a decay estimate in入forthe pressure term 1r入. The proof of the 

following proposition can be found in [17, Prop. 4.3]. 

Proposition 4.3. Define the operator P, 入： L~(D) • L~(D) by P>..f := 7r>.., 
There exist positive constants s, C > 0 and fJ E (0, 1) such that for all p 

satisfying (4.1) and all numbers a satisfying 

su 
＋
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it holds 

和名(D)→闊(D){I入l°'P入 I入E均｝さ C.

The proof of Proposition 4.3 relies on mapping properties of the Helmholtz 

projection on D and the following lemma, see [17, Lem. 3.3]. 

Lemma 4.4. Let D C 即， n~3, be a bounded Lipschitz domain and let 

p E (1, oo) satisfy (4.1). For all 0 E (0, 1r), a E (0, 1), and f3 E [O, 1/2] there 
exists C > 0 such that 

J?LP(D心）→L~(D){閲A冨（入+ Ap,D)―1均，DI入E均}:SC, 

J?LP(D心）→ば(D){I入1/3▽（入+Ap,D)―国，DI 入 E~0} :SC. 

5 Outline of the proofs of Theorems 3.1 and 3.2 

In this last section, we give outline of the proofs of Theorems 3.1 and 3.2. 

Before explaining the proofs, we first introduce the following convention for 

E: and p. 

Convention 5.1. Let E: > 0 be such that the assertions of Propositions 2.3 

and 4.1 are satisfied for all p satisfying 

1 1 1 
-- - <— +E:. 
p 2 2n 

Let us take R > l large such that nc c B瓜0)= {x E町 Ilxl < R}. 
Define 

D := 0 n BR+5(0), 
K1 := {x En I R < lxl < R + 3}, 
K2 := {x E O IR+ 2 < lxl < R + 5}. 
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Besides, we define cut-off functions tp, T/ E C00(賊庄 [O,1]) by 

0

1

1

0

 

｛
｛
 

-＿-＿ 

[

臼

for lxl :S: R + 1, 

for lxl 2: R + 2, 

for lxl :S: R + 3, 

for lxl 2: R + 4. 

For f E L~(O) let戸 bethe zero extension of f to町， whileset伊＝
'T/f―82((▽ rJ)・f). Here, for£= 1, 2, the symbol氏 denotesthe Bogovskii 

operator defined on Kc. Let (uf,g) and (叫ザ） satisfy 

｛碕—△砥＋▽g~fR in賊尺

div (uf) = 0 in賊尺

and 

｛以—△uf+▽ ~f~JD in D, 

div (uf) = 0 in D, 

uf = 0 on 8D 

respectively. Here, the pressure term g is given by▽ g = (Id-IP'P, 股n)fR and 

we normalize it to satisfy JD g dx = 0. Define the operators U. 入 and恥 by

U入f:=匹f+ (1 -cp)uf -B1((四）・ (uf-uf)), 

叩：=(1-cp)咄+cpg, 

respectively. Then we see that the pair (U入f,II入f)enjoys the system 

r入—△)Usfd:~~ 入1i:~ld+T, 入）f :: ~: 

U>..J = 0 on叩

in the sense of distributions. Here, the remainder term広 isgiven by 

T入f:= -2[(v'cp)・ ▽ ](uf-uf)-(△ cp)(uf-uf) 

+ (v'cp)(g -1rf) -(入—△)B1((v'cp)・(uf-uf)). 

Notice that it is clear that for each f E L叩心） it holds supp (T>..f) c瓦
and T. 入 isa compact operator on L叫D;CC門.Concerning for the resolvent 
bounds, we have the following lemmas. 
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Lemma 5.2. Let 0 E (0,1r). Let E and p E (1,oo) be subject to Conven-

tion 5.1. There exists 入*~1 such that for all 入 E~。 with I 入 I~ 入*the 
operator 

Id+ IP'p, 叩： L!(O)→ L!(O) 
is invertible. Besides, 入*can be taken such that 

知 (D){(Id+ IP'化叩）―i I 入 E~0, I 入 I~ 入*}~2.

Lemma 5.3. Let E and p be subject to Convention 5.1 with p < n/2, 0 E 

(0, 1r), and入*> 0. For all 入 E~。 nB以0) the operatorld+T入： LP(O心）→
L叫O;Cりisinvertible and there exists a constant C > 0 such that 

冗LP(土）{(Id+ T刈―i I 入 E~。 nB叫O)}~C.

We first assume c and p are subject to Convention 5.1 with p < n/2. 
Thanks to the Helmholtz decomposition, we write 

f + T>..f = f + IP'叫 J入f+ (Id -IP'p,o)T>..f =: f + IP'p,nT>..f +▽ <P>..f, 

Then, U. 入fand Il>..f-<I? 入fsolve the Stoles resolvent problem with right-hand 

side f + IP'p,oT入f.Thus, if入ミ入*,we see that the functions 

u:=広 (Id+IP'p,oT刈―1,
7r := (II>.. -<I? り(Id+ IP'p,O)―If 

are solutions to the Stokes resolvent problem with right-hand side f. On 

the other hand, if I入I<入*'weobserve that 

u:=広 (Id+T入）―1f, 

7r :=几(Id+T刈―If

are the solutions to the Stokes resolvent problem with right-hand side f. 

Hence, there exists C > 0 such that it holds 

応 P(!1;匹）｛入（入 +Ap)― 1恥，nl 入 E~0} :S: C (5.1) 

with p < n/2. 
According to [16, Prop. 5.2.5], the resolvent estimate for the case p = 2 

has been already known. Since uniform boundedness is equivalent to R-

boundedness if p = 2, we have (5.1) with p = 2. By the complex interpo-

lation, the estimate (5.1) is valid for all p :S 2 subject to Convention 5.1. 

Therefore, from the duality result due to Weis [19, Lem. 3.1], we obtain (5.1) 

for all p with Convention 5.1. This yields Theorem 3.1. Finally, Theorem 3.2 

follows from the interpolation theorem due to Voigt [18] and the Cauchy for-

mula. For further (rigorous) discussion, we refer to [17, Sec. 5]. 
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