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1 Introduction 

Consider the generalized Stokes resolvent problem and the nonstationary Stokes problem 
with Neumann boundary conditions 

｛入u-Div S(u, 0) = f, div u = g inn, 
S(u, 0)v = h on叩

｛此―虞符， 8)~F, d;, U~G :〗闊ごir~i,
Ult=O = 0 inn 
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in an infinite layer 

S1 = {x = (x',xN) E記 Ix'=(x1, ・ ・ ・,XN-1) E股N-1,Q <応 <8} (o>O, N~2). 

Here, the unknowns u = (附(x),.・・墨N(x))Tand 0 = 0(x) are N-component velocity vector 
and scalar pressure, respectively, while known functions are scalar function g = g(x) and 
N-vector functions f = (f1(x), ・ ・ ・, f刈x)?andh= (h1(x),・・・,h刈x))T.By U = U(x, t), 
8 = 8(x, t), F = F(x, t), G = G(x, t) and H = H(x, t), we denote the counterparts of 
them for (1.2). The symbol S(u, 0) is the stress tensor given byμD(u) -01, whereμis 
a positive constant which denotes the viscosity coefficient, and I is the N x N identity 
matrix. Also, D(u) stands for the doubled deformation tensor whose (j, k) component is 
Djk(u) = akuj +む四 withむ=8/axi. We denote by v = (乃(x),• • • , vN(x))T the unit outer 
normal vector to 8S1. For an N x N matrix-valued function M = (M;j)ij, the i-th component 

of Div M is defined by~ N 
j=ぶ Mii・

Several mathematicians have been studied these problems for the Neumann-Dirichlet 
boundary condition, namely, the boundary condition on the lower boundary is replaced by 
Dirichlet one: 

u = 0 on「o= {x = (x',xN) E股NI邸=O}. 
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Abe [1] proved the resolvent estimates with入EI:;e,"I。forO < c < 1r/2 and 10 > 0 where 

I;£,,。={入 E(C ¥ {O} I I arg入I:s; 7f - E, I入I> 10}. (1.3) 

Abels obtained them for 10 = 0 in [5] and, then, he extended the result to those estimates 
for asymptotically flat layers in [3]. He also showed that the Stokes operator admits a 

bounded H00―calculus in [4] and, as a consequence, the maximal Lq regularity for (1.2) with 
3/2 < q < oo. Finally, Saito [10] established the忽 boundednessof the solution operator 
families with resolvent parameter 入 E~e,'Y。 for any O < s < 7r /2 and ,o > 0 and, as a corollary, 

he obtained the maximal L砂 qregularity for 1 < p, qく oo. Moreover, Shibata [12, 13] 
developed a theory for general domains, with Dirichlet boundary condition on rb c on and 

Neumann boundary condition on r =on¥几， underthe assumption: the unique existence 

of solution 0 E v¥l団） to the weak Dirichlet-Neumann problem 

（▽ 0, 匹）!1 = (f, 匹）n for any r.p E~ 団） (1.4) 

for any f E Lq(O)N. Here, W1(0) . 1s any closed subspace of W, 訂(0)containing W, 贔(0),

where的叫） = {0 E Lq,loc(O) I▽ BEら(O)N,Bir = 0} and W, 訂(0)= {0 E W, 団） I Bir= 
0}. To be precise, he showed the resolvent estimate with入EI;e,'1'。forsome 10 > 0 in [12]. In 
[13], he extended this estimate to the処 boundednessfor (1.1) and developed the m邸 imal

L砂 qregularity for (1.2) with the help of it. As for the case of the Neumann boundary 
conditions on both sides of the boundary, however, our knowledge of the [J{;-boundedness 

as well as the maximal regularity is much less, and even the unique solvability of (1.4) 
has not been proved as far as we know. We note that the unique solvability of 1.4 with 

亨） ＝ 立(0)follows from the処 boundednessthanks to observation by [12(, R~mark 
1.7]. 

In this paper, we establish the処 boundednessof solution operator families of (1.1) with 
the resolvent parameter入ina sector江，T。forarbitrary O < E < 1r /2 and 10 > 0, and it implies 
the resolvent estimates with入inthe same sector. And then we prove the m邸 imalLp-Lq 
regularity for (1.2) with 1 < p, q < oo from the忽 boundednesscombined with the operator-

valued Fourier multiplier theorem due to Weis [22, Theorem 3.4]. It is worth pointing out 
that we gain an exact solution formula to (1.1) by applying the partial Fourier transform 
with respect to tangential variable x'E民N-I. And also, the formula enables us to take any 

10 > 0 in (1.3) although it was taken large enough in the study of general domain, see [13]. 
We wish to obtain the resolvent estimates with入E以0,that would be the first step toward 
decay properties of solutions to (1.2). However, the assumption 10 > 0 seemed to be needed 
essentially for the estimate of the determinant det Lin the solution formula. In fact, I det 11-1 

is too singular at the origin in Fourier side when入=0 although the solution formula is also 
available for入=0. Our approach follows [18] and [10]; we regard the solution formula as 
a singular integral and, then, estimate it by the fact that the kernel is estimated by lxl-N, 

see the proof of Lemma 3.1. However, the formula involves a symbol which possesses higher 
singularity at the origin than that for Neumann-Dirichlet boundary condition. The reason 

is that the determinant degenerates for t→ 0 since it has two similar rows caused by the 
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same boundary conditions on both sides of 80, see Remark 3.2. We get around this difficulty 
by using the idea of Saito [10, Lemma 5.5]. The point is to estimate the solution formula 

in the tangential direction uniformly with respect to the normal variable by regarding the 
formula as the singular integral on股N-Iwith a kernel decaying like lx'I―(N-I). We then 

find the desired品 boundednesssince the layer is bounded in the normal direction, see the 

proof of Lemma 3.2. As another difficulty, the estimate of I det LI―1 is inhomogeneous in the 

sense that it is bounded for If I→ oo but it diverges for Ifり→ 0. We resolve it by a cut-off 
procedure. 

Problems (1.1) and (1.2) arise from a free boundary problem of Navier-Stokes equations 
describing the motion of incompressible and viscous fluid flow without surface tension. The 

problem is to find a time-dependent domain S1 (t), a velocity field v = (町(x,t), ...'VN(x, t))T 
and a pressure 1r = 1r(x, t) satisfying the following equation for given initial velocity v0 = 

(V01 (x), ・ ・ ・, VoN(x))T: 

｛知+(v -'J)v -Div S(v, ,)~0, divv~0 in <l(t), 0 < t< T, 
S(v,1r)乃 =0, V・ 乃=Vn on 80 (t), 0 < t < T, 
vlt=O = Vo in n. 

(1.5) 

Here, Vn and乃 inthe boundary condition stand for the velocity of the evolution of fJO(t) 

and the unit outer normal to fJO(t), respectively. The novelty of the problem (1.5) is that 
we consider free boundary conditions to be determined on both upper and lower ones. 

Problem (1.5) has been studied for the case that the lower boundary is fixed while the 
upper surface is still free in an asymptotic layer 

叩） = {x = (x', 砂)€ 酎 I-b(x') <砂<ry(t, x')}. 

In the Lr framework, Beale [8] established the existence of solutions locally in time without 

surface tension. Allain [6, 7] and Tani [19] proved it with surface tension, that is, for the 
following boundary condition: 

S(v,1r)乃=a1-lvt, v・ 乃=Vn, 0 < t < T, 

where 1-l and a > 0 stand for doubled mean curvature ofぬ (t)and the coefficient of surface 
tension. Beale [9] obtained the global well-posedness with surface tension, and Tani and 

Tanaka [20] proved it with and without surface tension. Furthermore, Abels [2] obtained 

the local well-posedness in Lq-framework, and Saito [11] developed the global well-posedness 

in the L砂 qsetting, without surface tension. In general domains, Shibata proved the local 

well-posedness theorem without and with surface tension in [14] and [16, 15], respectively. 
For our boundary conditions, however, results seem to be less developed. In this paper, we 

establish the local well-posedness in Lp―in-time and Lq-in-space setting for 2 < pく ooand 
N < q < oo by means of the fix-point arguments with the help of m訟 imalL砂 qregularity 

obtained above, in the similar way to [11]. 
As mentioned above, the uniqueness of the weak Dirichlet problem (1.4) with WJ(O) = 

W訟(fl)follows from the況 boundedness.Then the theory for general domains due to Shibata 
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[13, 14] leads to the local well-posedness of (1.5), in addition to the maximal regularity (but 

only for 10≫1). Nevertheless, we develop the theory in the layer (for arbitrary 10 > 0) 
since it would be better not to rely on the general theory in [13, 14]. 

The next section is devoted to stating the main theorem and corollaries. In Section 3, we 
present the sketch of the proof of the勿-boundedness for (1. 1). 

2 Main Results 

In this section, we provide our main theorem and corollaries. First, we introduce some 
notation and, then, review the definition of the怠 boundedness.we often write'Y = Re入

and T = Im入for入E<C. Let D =酎，記 orthe layer D. We set 

応 (D)= the dual space of切，o(D),

where的，0(D)= {cp E切(D)I'-Plav = O}. 

for 1 < q < oo, where q'denotes the dual exponent given by 1/q + 1/q'= 1. We define 

[AY2 J](t) = [ダ~-11.x11;22'[f]](t) 

(2.1) 

(2.2) 

with -2 and玖―1being the Laplace transform and its inverse transform, respectively, which 

are given by 

00 

グ [J](入） = J e―iTte―-rtf(t)dt, 
-oo 

ダ□[g](t) =土e'lt1: □ g(入）dT 

for functions f vanishing on (-oo, 0) and g. We note that we have, as in [13, Appendix], 

lie→ tAtGIIら(!R,Lq(fl))さ;C(lle→ t8tGIIら（股，w"-汀nii+ lie―7t▽ GIILp(IR,Lq(fl))) (2.3) 

-—~ for any function G with e―,t8tG Eら（罠，w-1(D)),e―7t▽ GEら（股，ら(D))and G(t) = 0 q 

(t < 0). The definition of the処 boundednessis given by the following. 

Definition 2.1. Let X and Y be Banach spaces. An operator family'Tc L(X, Y) is said 
to be尻 boundedif there exist 1 ::; p < oo and C > 0 such that form E N, {刀｝仇1C'T, 

｛巧｝如 CX, and sequences {乃｝仇1 of independent, symmetric and {土1}-valued random 
variables on (0, 1), the following estimate holds: 

11 I言巧(u)Tjxj: du :SC fo1 I言叫）Xj :du 

The infimum of such C is called成 boundand denoted byf%t:,(X,Y)(T), orf%t:,(x)(T) if X = Y. 

The main result on the況 boundednessfor (1.1) is stated as follows. 
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Theorem 2.1. Set 

Xq(O) = {(F1, 的ぶぶぶ氏） 1 
Fi,F4,F5 Eら(n)N,F2 E兄叩），F3E Lq(n), F6 E Lq(n)N2}. 

For all入E(('. ¥ (-oo, O], there exist operators U(入）＝胚（入），・・・ ，恥（入）） andP(入） satisfying 

U(入） E .C(Xq(O), WJ (O)N) and P(入） E .C(Xq(O), Wf (0)) for 1 < q < ao such that the 
following assertions hold: 

a) For all I < q < ao, 入E(('. ¥ (-oo, O] and the data 

(f,g, h) Eら(f2)NX (夙ー1(n)n w, 団）） X W, 加）凡

the couple (u, 0) E W, 印(0)X陀(n)given by 

(u, 0) = (U(入），P(入））(f, >.g, 入1/2g,▽ g, 入i;2h,v'h) 

is a unique solution of (1. 1). 

b) For any 1 < q < ao, 0く こ <w/2, 10 > 0, £= 0, 1 and 1 :S m,n, J :SN, there hold 

心 Xq(fl),ら(fl))({ (噂）園（入） I 入€ い｝）さ CN,q,c,"fo,μ,<5,

急 (Xq(fl),L叩））（｛（叫囁（入） I入EI;e,"fo}):S CN,q,E,"fo,μ,<5, 

心 x叩），ら(fl))({(喝）£入1/2ぬ比（入） I 入€ 江，'Yo}):SCN,q,c,"fo,μ,<5, 

心 Xq(fl),Lq(fl))({閲）ea⑳必（入） I入EI;e,"fo}):S CN,q,c, 叩o,μ,<5,

心 Xq(叫詞）({(TO⑰詑（入） I 入€ 江，'Yo}):SCN,q,E,"fo,μ,'5, 

where入=1 + irnnd I;c,"fo is given by (1.3). 

We obtain the m訟 imalL砂 qregularity as a corollary of Theorem 2.1 combined with the 
operator-valued Fourier multiplier theorem due to Weis [22, Theorem 3.4]. We may skip the 

proof since it is similar to the proof in [10, Theorem 2.1]. 

Theorem 2.2. Recall that w-1(n) and A 1/2 q "I are given by (2.1) and (2.2). Let 1 < p,q < oo, 
10 > 0. Then, for any data F, G, H such that 

e―'YotF Eら（股，Lq(D)州， e―叫ateE~ 凰，夙叩）） nら（恥，w;(n)),

e―叫＼戸HEら（艮，L叩）州(,::=: 1o), e―"(otH Eら（罠，W団）州，

with (F(t), G(t), H(t)) = (0, 0, 0) (t < 0), problem (1.2) admits a unique solution (U, 8) with 

e―'Yotu E~ 以0,oo, Lq(叩） nら(0,oo, W;(D)), e-'Yot9 Eら(0,oo, 向(0)).

Moreover, it satisfies the estimate (note that the right-hand side is finite by (2.3)): 

lie―勺暉U,1U,A戸▽u, ▽ 2u, ▽ 8)11伍 (O,oo,L氾））

:S c"/o{lle―"(t(F,A112c▽ G Al/2 ''"I  H, ▽ H)IIら(IR,Lq(fl))+ lie―吼GIiら(IR,vll;ご(fl))}

for any 1 ;:=: 而 withsome constant C"/0 independent of 1・
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Finally, we develop the local well-posedness of the nonlinear free boundary problem (1.5). 
To this end, we first formulate this problem in Lagrange coordinates by using the relation 

between Euler coordinates x E O(t) and Lagrange ones y E 0: 

x = y + ft u(y, s) ds三 Xu(Y,t), (2.4) 

゜u = (u1(Y, t), ・ ・ ・, 知 (y,t)) = v(Xu(Y, t), t), 0(y, t) = 1r(Xu(Y, t), t). 

And then we get the following qu函 linearproblem (cf. [17, Appendix Al): 

{畑-Div S(u, 0)~f(u), div u~g(u)~div g(u) i" <l x (0, T), 
S(u, 0)v = h(u) on fJQ x (0, T), 

ult=O = Vo in n, 

(2.5) 

where nonlinear terms f(u), g(u), g(u) and h(u) are given by 

f(u)=V1 0▽ uds)畑 +V2(1▽ uds)守u+V3 (1▽ uds) lat守uds ▽u, (ft 
g(u) = V4 (lat▽ uds)▽ u, g(u) = V5 (lat▽ uds) u, h(u) = V6 (lat▽ uds)▽u 

with some polynomials satisfying V;(O) = 0 for i = 1, ・ ・ ・, 6. As the linearlized problem, we 

consider the nonstationary Stokes equation (1.2) with the initial velocity v0: 

｛芯，ー。~i:S~u, 0)~f, div u~g~ 瓜い°二，
ult=O = Vo in n. 

(2.6) 

By setting u = e—A•tv0 + U and 0 = K(e―Aqtvo) + e, we get (1.2). Here, e—A•tv0 is the 
Stokes analytic semigroup, whose generator Aq is defined by 

D(Aq) = { u E Jq(O) n W;(n)N I S(u, K(u)) = O on 80}, Aqu = Div S(u, K(u)), 

where 

lq(D) = {u E Lq(D)N I divu = O}, 

and K is the solution operator which gives 0 from u in the equation (2.6) with (f, g, h) = 

(0, 0, 0) or in the equation 

｛頌=0 in D, 
0 = 2μ 恥 応 on叩．

We are on the point of stating the local well-posedness of (2.5) instead of (1.5). We obtain 

the solution of (1.5) by applying the Lagrange transformation (2.4) again. The proof may be 
omitted since it is the same way邸 in[11, Theorem 2.2] 
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Theorem 2.3. Let 2 < p < oo and N < q < oo. For all R > 0, there exists T = T(R) > 0 

satisfying the following: for any initial data v0 E (Jq(D), D(Aq)h-i/p,p C B 
2(1-1/p) . 
q,p with 

a mits a unique solution llvallB~~-1/vJ~R, the system (2.5) d・ 

UE~ 以0,T, Lq(D)州nら(0,T, W. 加）州
.-. 

with some pressure term 0 Eら(0,T, WJ(D)), satisfying the following estimate: 

訊ullら(O,T,Lq(!1))+ llullら(O,T,W.詞） :::; M,。R
with some constant M,。independentof T and R. Here, (・, •h-i;p,p is the real interpolation 
functor. 

3 Sketch of proof of Theorem 2.1 

In this section, we present the sketch of the proof of our main theorem. First, by solving the 
divergence equation and the generalized Stokes resolvent problem (1.1) on whole space, we 
can reduce the problem (1.1) to the case where the data are only on boundary: 

｛入u-DivS(u,0)= 0, u = 0 inn, 
S(u, 0)v = h on 80 

(3.1) 

and, then, we show the処 boundednessfor the preceding problem. Theorem 2.1, the full data 
case, is deduced by combining the処 boundednessfor the divergence equation, the problem 
(1.1) on酎 andthe problem (3.1). The尻 boundednessfor the problem (3.1) is stated as 
follows. 

Theorem 3.1. For all入E(C ¥ (-oo, O], there exist the operators S(入）＝（ふ（入），・..,SN(入））

and T(入） satisfying S(入） E .C(Lq(D)N+N2, WJ(D)N) and T(入） E .C(Lq(D)N+N2'的(D))for 
1 < q < oo such that the following assertions hold: 

a) For all l < qく oo,入E(C ¥ (-oo,O] and h = (h',h刈=(h1, ・ ・ ・, h刈 EW,』(D)凡
(u,0) E W, 罰）NX切(D)given by below solves (3.l): 

u=S(入）（入112h',hN, ▽ h), 0=T(入）（入1/2h',hN, ▽ h). (3.2) 

b) Foranyl<qく oo,0 < こ <n:/2, 10 > 0, £= 0, 1 and 1 :S m,n, J :SN, there hold 

島 (L叩））（｛（喝）£入S心） I 入€ い }):SCN,q,e,'(o,μ,o, 

島 (L叩））（｛（成）伍ふ（入） I 入€ 芦。}):SCN,q,e,'fo,μ,o, 

f£c(L叩））（｛（喝）£入1/2豆（入） I 入€ 江，'lo}):SCN,q,e,'fo,/>,li, 

f£c(L叩））（｛（喝）ea砂ふ（入） I 入€江，'lo}) さ CN,q,e,'fo,µ,o,
況C(L叩））（｛（噂）加'T(入） I入EI;e,'fo}):S CN,q,e,'fo,μ,o, 

where入=1 + iTand江，'lois given by (1.3). 
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Remark 3.1. It is reasonable (and possible by 10 > 0) to show the尻 boundednessfor 

u=S(入）（入1;2h,▽ h), 0 = T(入）（炉h,▽ h) 

instead of (3.2), but if we do so, we have difficulty estimating pressure term when we prove 
Theorem 2.1 from Theorem 3.1. This is the reason why we consider the solution (3.2). 

In the sketch of the proof, we focus on the assertions for SN (入） and T(入） since those 

for Uい） (j = 1, ・ ・ ・, N -1) are obtained as follows. The solution Uj obeys the following 
system, which consists of the j-th component of the first equation and j-th component of the 

boundary condition in (3.1): 

｛屈—µ判＝一切0 inn, 
ON巧=μ―1llN凡ー。四N onぬ．

(3.3) 

Once we get the尻 boundednessforふ（入） and T(入）， combiningthat with the~-boundedness 
for (3.3) leads to the処 boundednessfor Sい）．

First, we derive solution formula. We multiply the partial Fourier transform to (1.1) and 
find the fundamental solution to the resultant ordinary differential equation with respect to 

ON-Then the partial Fourier transform of UN and 0 are given by 

恥((,応） = I: 叩 M(dt(砂））＋恥e―Bdt戸）厨，応） = I: μ(B + A) -Adt(祁）
μme 

A 
£ = 1 , 2 £ =1,2  

with some constantsμm and /3m depending on入，ぐ anddata h, where 

A=  WI, B= ✓, 戸入＋炉 (ReB> 0), (3.4) 

叫={ c5 -XN i! = 1, cBXN - e―AxN 

XN f!= 2, 
M(砂）＝

The constants satisfy the following equation: 

Lx = r 

where x = (x1, ・ ・ ・, 企） and r = (r1, ・ ・ ・, r4) are given by 

が =μ1N, 炉=/31N, 企=μ2N, 州=f32N, 

r1 =μ ―1hd((, 15), 乃＝一μ―1hdば',0), 乃=μ―1 AhN((, 15), r4 = -μ ―1AhN((,O), 

and L = (L叫臼i:C::4is defined by 

恥＝一(B+ A), 
L13 = -(B + A)e―A& -(Bバが）M(/5), 

L21 = -(B + A)e-A& -(が＋が）M(/5), 

L23 = -(B + A), 

L31 = -(B -A), 

極=(B -A)e―A& - 2ABM(l5), 

Lぃ＝ー(B-A)e―A&+2ABM(c5), 

L43 = -(B -A), 

L12 = -(B2 + Aり，
L14 = -(B2 +が）e―Ali_(B2 +Aり(B-A)M(o), 

L22 = -(が +Aりe-Ali-(B2 + Aり(B-A)M(o), 

L24 = -(B2 + Aり，
L32 = 2AB, 

L34 = -2ABe―Ali -2AB(B -A)M(o), 

L心 =2ABe―Ali+2AB(B -A)M(o), 

L44 = 2AB. 
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By solving this, we obtain the solution formula of (1.1): 

応(x)=芦芦汀[{ L~ ぷ叫（応））＋〖；~e―B山（岱）} rk] (x'), 

0(x) = t塁~1 [ {μ(B; A)~ ん［い皿(xN)}rk] (x'), 

where L;,j is (i, j) cofactor of L, and the determinant of L is 

det L = (B~A)2 I,! { (B2 +野(1土e-A6)(1干e-Bo)-4A3 B(l干e-Aり(1士e―Bo)}.(3.5) 

Remark 3.2. The determinant causes higher singularity at t = 0 in the symbol of the 
solution formula than that for Neumann-Dirichlet boundary condition. Indeed, the third and 

fourth rows are similar each other for small t in the sense that they coincide when t = 0, 
and so detL→ 0 as t→ 0. On the other hand, det L -f+ 0 as t→ 0 for Neumann-Dirichlet 
boundary condition. 

In what follows, we focus on one term in the solution formula of入uN. The other terms 
can be estimated in the same way. Let rp6 and rp0 be cut-off functions such that 

'Po EC, 合（良； [O, 1]),'Po(xり={ 1 (Ix刈:S1/3) 四（砂） = 1-'Po(砂）（砂 E股） • (3.6) 
o (Ix刈2".2/3), 

We use a trick in Volevich [21] (see (5.24)); by the fundamental theorem of calculus, 

入恥＝可[;入!:~Ae-BxN応(t,o)](x')+··· (3.7) 

＝［＼町i['Po (恥）µ入!:~Ae―BxNe―AyN 応（い1,YN) (x') dyN +・ ・ ・ 

~[万 [~e'(YN)~入::~A,-n,.,―A, 玉((,YN) l (I) dyN 

-16§{-;I [(/Jo伽）入L4,4A2e-BxN e―AyN応(t,邸） (x') dyN 。 μdetL+[名c'[~,,(恥）µ入~:~A,-n"',—A,.n;;;;-,;((,y~)l (x')dyN + . 

Then we introduce technical lemmas playing a crucial role in this paper. Since the symbol 

possesses higher singularity at t = 0 as compared to that for Neumann-Dirichlet boundary 
condition, we employ different lemma depending on the part: the part with same singularity 
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or higher singularity. As a notation, remember that A, B, M, dp, 四 and<p。aredefined in 

(3.4) and (3.6), and set 

kい）＝｛二：： =~: 
BM(xN) i = 3, 

屯(YN)~{ :: 塁l : : ~: 
<p~(YN) =—外(YN) i = 3. 

The following lemma, which is obtained in the same way as in [10, Lemma 5.3], is concerned 
with the尻 boundednessfor the part with same singularity as that for Neumann-Dirichlet 

boundary condition. 

Lemma 3.1. Let O < E < 1r /2 and 10 :2: 0 and let m(入，t)E C00(江,'Y。X (町-1¥{0}))

satisfies 

啜（鳴）'m(入，~') :S MA―la'I 

with some constant M = M(s, 10, a') > 0, for (入，0E I:e,'Yo X (記-1¥{0}),fi, = 0,1 and 
multi-index a'. Here, 入=1 + iTand I:0,'Y。isgiven by (1.3). We define the operator 

[K1(入）h](x) = Jり［屯(YN)m(入，喜')Aki,(化（邸））似(dt2(YN))恥1,YN)](x')dyN(3.8) 

゜for all入EI:e,'Yo, i, i心=1, 2, 3 and R凶=1, 2. Then, for l < q < oo and R = 0, 1, there 
holds 

心ら(fl))({ (鳴）£凡（入） I入EI:e,'Yo}):S CN,q,e,'Yo,M・ 

The処 boundednessfor the part with higher singularity is guaranteed by the following 

lemma, which is proved by means of the same method as in [10, Lemma 5.5]. 

Lemma 3.2. Lemma 3.1 holds even if K心） is replaced by the operator K心） defined by 

知）h](x) = f0亨［屯(YN)m(立）似（化(x刈）似（化(YN))蘇＇，如） ] (x') dyN・

゜The sketches of the proofs of these lemmas are given at the end of this section. From 
now on, we first prove the処 boundednessfor the one term in (3.7) of入駆 fromthe lemmas 

above and the following lemma, which is concerned with the estimates of the determinant 

and the cofactors of L. 

Lemma 3.3. Let O < f < 1r /2 and 10 > 0. 

a) For any (入，t)E~s,,。 X (罠N-1¥ {O}) /I_ = 0 1 and multi-index a the estimate 

1 1 
匁（直）£detL :::; 叫。，",(I入11/2十 A)-6(1十 A) (3.9) 

holds with some constants CE,"fo,a'• Here, T = Im入， andalso, I;E,"fo, det L and A are 
given in (1.3), (3.5) and (3.4). 
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b) Fork= 1, ・ ・ ・, 4 and C = 1, 2, we have 

Lk,2£-1 E Ms,2,e,'fo, Lk,2£E M4,2,e,'fo• 

Sketch of the proof of the assertions forふ（入） and T(入） in Theoremゑ1.We give rather de-
tails of the proof of the尻 boundednessfor a typical term in (3. 7) of入UN,In view of (3.9), 

we divide each term of (3.7) into two parts: one possesses the same singularity as in the case 

of the Neumann-Dirichlet boundary condition, the other does higher singularity. Let (。 and
(1 be cut-off functions satisfying 

(o E 000(股； [O, 1]), (o(e) = { 1 ltl:;;, 2'(1(() = A(l -(o(()) 
o ltl s 1, 

so that 1 = (0(e) + (1(t)/A. Then, by using the formula 

A2 N-1 
A=-=L  

(-iら）
A A 

iも・,,
j'=l 

we rewrite (3.7) as follows: 

6 

入卵＝［ パ[cp。'(yN)露）µ入~:~Ae―BxNe―AyN底（ぐ， YN)] (x') dyN 

6 

+ 1 名~1 [cp。1(YN)置）µ入~:~e-BxNe―Ay玉(,;''訟）] (x') dyN 

N-1 J 

＋苫［汀 [cpo(YN)(o(ぐ）µ入~:~庁Ae―BxNe―AyN亭（ど，YN)](x')dyN 

N-1 J 

＋芦［汀［匹(YN泊(,;');入!ふ予—BxNe―AyN后喜，恥）] (x') dyN 

6 

+J汀 [cpo(YN)(o(ど）入L4,4Ae-BxN e―AyN尻応(,;',yN) (x')dyN 。 μdetL

+{~ い［四(YN)置）µ入~:しcB'N c A>N a;;;;;(い）］］ぷ）dyN+ 

From Lemma 3.3, we can get 

ら(0
，入L4,4 入L4,4絡，

, (o(O ユ-EM  
μdetLμdetL A 

0,2,s,-yo 

for j = 0, 1 and j'= 1, • • • , N -1, and so, the況 boundednessfor each term is proved by 

Lemma 3.1 for odd-numbered one and by Lemma 3.2 for even-numbered one. ロ

Now, we give the sketches of the proofs of Lemma 3.1 and Lemma 3.2. 
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Sketch of the proof of Lemma 3.1. The proof is done exactly by the same method in [10, 

Lemma 5.3]. See also [18], which studies half space. Here, we consider only uniform bound-

edness, since the尻 boundednessalso can be obtained similarly. For the simplicity, let 

屯=<po in (3.8), that is, i = 2. We rewrite K1(入） in the form of convolution with kernel and 

extend the domain of integral to記：

k叫 =1 ki(x'-y',x凡恥）h(y', 恥） dy= i認株(x'-y',x凡恥）h(y',YN) dy 

where the integrand is extended to認 bysetting 0, and kl is given by 

叫(z',x凡 YN)= fft炉o(YN)m(入，()A似(de1(:zりV))似(de2(YN))](z'). 

Then the kernel satisfies the estimate 

lkl(z',x凡 YN)S Cl(z', 砂+YN)I-N, 

and thus, we can estimate the integral as follows. 

IIKい）hllら(fl)=llll[K1(入）h](・,xN)IIら(I砂 1)111勺(0,/5)

~f00llkl(-,xN,YN)*h(·,YN)IILq(正） dyN 
° ら(0,/5)

← 「J閲(・,X凡 YN)Idz'llh(・,YN)IIら（砂')dYN
Q ]RN-1 ら(0,/5)

00 

~0 1 i即—1 l(z', XN~YN)IN dz'llh(・, 狐）II伝(JRN-1)dyN伝(0,/5)

00 1 

=C  1砂 +YNl記 1I (z',¥) IN dz'llh(・, YN) II ら（砂—')dYN ら (0,/5)
00 1 

(3.10) 

=Cl  1+yNi訊 1l(z',¥)IN dz'llh(・,XNYN)IIら（恥N-1)dyN 
Lq(0,/5) 

~C Joo l II llh(・, XNYN) IIら(JRN-1)II伝(0,/5)dyN 。I+YN 

= C Joo 1 11 llh(・, 応）II伍(JRN-1)Iら(O,i5)dyN
。如(1+ YN) 

= CllhllL詞・

Here, we used the Holder's inequality in the third line, (3.10) in fourth line, change of variables 

in fifth, sixth and eighth lines, and the Minkowski's inequality for integrals in seventh line. 

And then the proof is complete. ロ

As for the operator Kい）， unfortunatelywe only have the following decay of the kernel: 

lk~(z', x凡邸） I~Cl(z',x応 YN)1-N+l
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(if we define ki(z', XN, YN) similarly). However, we can estimate the integral by fixing XN and 
applying the singular integral theory only to the tangential direction. Thanks to uniformity 

of the estimate with respect to x N and boundedness of domain in the normal direction, we 

can also deal with the integral in the normal direction. Namely, we can prove Lemma 3.2 as 
follows. 

Sketch of the proof of Lemma 3.2. This proof is done exactly by the same method in [10, 
Lemma 5.5]. We only consider uniform boundedness for the same reason in the preceding 

proof. Since we can get 

I (T8T)£(ぅf,1(<I>;(YN)m2(入，ど）k;1(dc1(xN))k;2(dc2(YN)))I:::; CN,q,c,μA―1<>'1, 

by the Fourier multiplier theorem on 町—1 and the Holder's inequality, we have 

IIKい）h(・心） II 伝（か—1)

::; C !Ii名汎（恥）m(入，0位(dt,(邸））似(dゎ（邸））厨，訟）](x') dyN 
o 伍(JRN-1)

::; C J/j llh(・, 恥） II ら（訟—') dyN 

゜さcr51-1;q11 llh(-, 恥） IILq(詑—1illら (o,liJ = c15i-i;qllhllら(fl)

for O < XNく 8.Since this estimate is uniform for XN, we finally obtain 

IIK3(入）hllら(!1)= II IIK3(入）h(-,xN)IIら（恥N-1)11ら(0,6)::; CJllhllら(!1)'

which shows the lemma. 
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