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On the two-dimensional exterior boundary-value 

problem for the steady-state N avier-Stokes equations* 
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June 28, 2020 

Abstract 

We study the boundary value problem for the stationary Navier-Stokes system 

in two dimensional exterior domains. In particular, we discuss the history of the 

problem, its linear analogs (the Stokes paradox and Oseen system), some recent 

results and open questions. 

1 Introduction 

The stationary motions of an infinite cylinder of simple connected section O'C配 ina 

viscous fluid Fare governed by the Navier-Stokes system1 

where 

v△ u -div(u@u)―▽ p = 0 inn, 

divu = 0 inn, 

u = a on an, 

0=酎＼豆

(1) 

u:O→ 配， p:O→艮 arethe unknown velocity and pressure field and v > 0 is the 

assigned kinernatical viscosity. 
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To (1) we append the condition at infinity 

with u。assignedconstant vector. 

lim u(x) = u0, 
r→ +oo 

(2) 

The determination of a solution to system (1)-(2) is a far from trivial problem and 
has attracted the attention of eminent mathematicians. 

In this paper we aims at highlight the most important steps in the study of problem 
(1)―(2), to give the most recent results and to point out the main open problems. 

Acknowledgment. The work of M.K. is supported by Mathematical Center in Akadem-
gorodok, the agreement with Ministry of Science and High Education of the Russian 
Federation number 075-15-2019-1613. 

2 The Stokes equations 

Our history starts from the first attempt of the great scientist G.G. Stokes to determine 

the motion of a rigid body through a viscous liquid. 
When the inertial effects div (u @ u) in (1)i are negligible, one is allowed to linearize 

(l)i around the solution (0, c), to get the Stokes system 

心 u―▽p = 0 inn, 

divu=O inO, 

u = a on an, 
lim u(x) = u0・

r→ +oo 

(3) 

The first rigorous study of existence of a solution to (3) in the exterior of a disk, was 
performed by G.G. Stokes in 1851 [36], in order to determine the resistence {] on the 
obstacle due to a rigid motion of a right circular cylinder in F. While for a= w x e, he 
found the solution 

X 
u(x)=wx p=po, 

lxl2' 
withp。arbitraryconstant, unlike to the analogous three-dimensional problem of a trans-

lational motion of a ball of radius R, where he found the famous formula g = 6は u0,his 
method, based on a suitable use of the stream function, led him to the conclusion that 
translational motions of a cylinder in F were impossible: it appears that the supposition 
of steady motion is inadmissible ([36], p. 63). The same Stokes gave the following ex-
planation: The pressure of the cylinder on the fluid continuously tends to increase the 
quantity of fluid which it carries with it, while the friction of the fluid at a distance from 

the cylinder continually tends to diminish it. In the case of a sphere, these two causes 
eventually counteract each other, and the motion becomes uniform. But in the case of a 

cylinder, the increase in the quantity of the fluid carried continually gains on the decrease 
due to the friction of the surrounding fluid, and the quantity ca汀 iedincreases indefinitely 
as the cylinder moves on ([36], p. 65). 
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This impossibility of a slow steady-state translational motion of a cylinder in a viscous 
fluid becomes known, with a bit of emphasis (see Remark 1), as Stokes paradox2. 

In 1896 the Nobel price H. Lorentz found the fundamental solution to the equations 

(3)i,2: 

馬 (x-y) =戸 [10g1 r5ij (ふ一 y』(xj―Yj)

Ix -YI + Ix -Yl2 ]' 

Qi(x-y)=-
1 Xi -Yi 

21r Ix -Yl2' 

(4) 

and in 1930, F.K.G. Odqvist [26] by a suitable use of the Green identities introduced the 

simple and double layer hydrodynamical potentials: 

叫ゆ](x)= J島 (x-〈）化(()d匹

P[ゆ](x)= 8] wi(x -()州）d四

8!1 

2 (xーく） [(x- く）• n(()][(x -く） ・c.p(()]dsi:'
w[c.p](x) = -J 

7r Ix -(14 
叩

2v (x1―ら）叫()r_p;(()dsi:
w[c.p](x) = -8; 

1r j Ix -(12'  
叩

(5) 

(6) 

of densitiesゆandc.p, where n is the unit outward (with respect to 0) normal to 80. 

They are analytic solutions to (3)i,2 in配¥80. He observed that the singulary in the 

integral of (6)i is the same as the Newtonian double layer potential: 

叫叫(x)= _!_ J (x -(i)疇）瓜）dsc:_ 
21r Ix -(12 

(7) 

an 

Therefore, at least for regular D (say Liapounov), one can apply the Fredholm theory to 
the integral vector equation 

cp 2 (~-()[(~-<) ·n(()][(~- ()・cp(()]dsc a(~)= --+ -2 1r j Ix -〈14'(8)
an 

as for (7) to th ・e mtegral equat10n 

a(~)= 
cp(~) 1 (~i -〈』ni(〈）cp(()ds( 
2 十云j Ix -(12 . 

(9) 

ao 

The kernel of (8) is the space of rigid motions of配， sothat the homogeneous adjoint 

equation to (8) has three linearly independent solutions that are the densities {ゆih=l,2,3,

2In his famous monograph [20] H. Lamb did not use this locution to denote the phenomenon found 
by Stokes. 
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of the single layer potentials giving the rigid motions of rl'. Odqvist concluded that a 
solution to (3)i,2,3 in the form of a potential of double layer, and so vanishing at infinity, 
exists if only if a is orthogonal to every叱.On the other hand, translational motions v [也］
grow logaritmically at infinity and this, according to Odqvist, mathematically explains 
the Stokes paradox ([26], p. 356-357)釘

Clearly, Odqvist's conclusions hold in the class of solutions expressed by layer po-
tentials. On the other hand, a standard argument shows that his conclusions can be 

extended to every smooth solution. Indeed, any regular solution (u = o(r),p = o(l)) to 
(3)i,2 behaves at infinity according to 

叫）＝如＋馬(x)J s;(u,p)十仇(x),

p(x) =叫x)J 名(~~p) + 0(x), 
(10) 

80 

where 
▽泣=O(r―1-k), ▽ ke = O(r-2-k), ▽ k=▽ ▽ 、9

k-times 

and 

s;(u,p) = -pn; +μ(虹＋凸）n, 

it the traction of an. If (3) had a solution, then (10) should imply that 

j s(u,p) = 0, (11) 

an 

and by an integration by parts, one should have 

J1▽ ul2= j(a-ua)・s(u,p). (12) 

n en 

Hence it follows that if a= 0, then (3) is solvable only for u。=0 (Stokes'paradox). 

To better understand Stokes paradox from a mathematical point of view, by allowing 
also less regular domains and boundary data, one can express the solution to (3) by a 
simple layer potential as showed in [30]. 

Let us consider the simple layer potential (5) with densityゆEw-1/2,2(叩） (say), 

where by abuse of notation the integral could means the value of the functionalゆatU. 
With such a density, (5) is a variational solution to (3)i,2 in配¥8D and it is straightforward 

to see that v [ゆlE w,~;(配） • Then 

S: ゆE W―1/2,2(80)→S[ゆ]= tr 1ariv[ゆlE w1;2,2(叩） (13) 

is a well defined, self-adjoint, linear and continuous operator, s(v[ゆ],P[ゆ])土 Ew-1/2,2(叩）
and s(v[ゆ],P[ゆ])+-s(v[ゆ],P[ゆ])ー＝ゆ.Set 

蚊＝｛ゅ： S[ゆ]= constant} , 叫＝｛ゅ S[ゆl=o} (14) 

3For n = 3 Odqvist's approach is explained in detail in Ch. 3 of [19]. 
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Clearly, 
dim飢 =2

and 

{'¢1,'¢2} basis of皿 ⇒ {! 叱，J叫basisof記 (15)
8!1 8!1 

By using these classical properties, and standard a priori estimates on variational solutions 
to (3)i,2, one easily show that S is Fredholm with index zero and 

KernS = spn{n} n叫 (16) 

With this information available, it is routine to get 

Proposition 1. Let D be Lipschitz. If a E w1/2,2(8D), then there isゆEw-1/2,2(叩）
such that the pair 

u(x) = v[ゆ](x)+ a-(x) + K, 

p(x) = P['i/J](x), 

is a vanational solution to (3)i,2,3, wheTe 

（） 
Xi 

び X =加1x12in a. n 

and ti, is defined by 

j(a-K,)・ 叫 =0, Vゅ'E叫

叩

(17) 

It is unique in the class of variational solutions {(u,p) : u = o(r)} modulo a pair in the 
two dimensional linear space { (v [ゆ']-S[叫],P[ゆ']),ゅ'E飢｝．

Looking for a solution to (3)i,2,3 which converges at infinity, from (15) and (17) it 
follows that 

with 

u(x) = v[心](x)+グ(x)+ ua, 
p(x) = P[心](x),

1/J =ゆ十ゆ＇， ゅ＇遺： Jゆ=0,

8!1 

uo = K - S[ゆ＇］，

(18) 

(19) 

takes the value value a on the boundary and v[:(;;] tends to zero at infinity. Therefore, it 
holds 

Theorem 1. If a E w1/2,2(8D), then (3)i,2,3 h邸 asolution which converges uniformly at 

infinity. Moreover, (3) has a solution if and only if 

j(a-uo)・ 畑 =0,'vゅ'E皿 (20) 

ao 
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Remark 1 -In general, the natural behavior at infinity of a solution to an elliptic differen-

tial system is that exhibited by the fundamental solution and, in this sense, Proposition 1 

does not depart from this "principle". System (3) becomes then ovedetermined and, as a 

consequence, its solvability requires suitable compatibility conditions, like (20). The real 

paradox should be then, not the the lack of solutions to System (3), but its solvability! ◇ 

Remark 2 -By classical results of R.R. Coifm皿， A.McIntosh and Y. Meyer [3], the 

restriction of (13) toび（叩）

S: ゆEL2(叩）→ S[ゆlE w1,2(ぬ）， (21) 

is continuous. Therefore, using a procedure by J. Necas based on Rellich's inequalities 

[25] (see also [5], [14], [37]), one shows that (21) is Fredholm with index zero, as well as 
its adjoint [30] 

S': ゆE W―1,2⑳）→ S[ゆ]Eザ(80). (22) 

Moreover, if O and a are more regular, then so does the solution (17). In particular, [4], 
[24], [35] 

(i) by well―known stability results (see, e.g., [13]), there is E > 0 depending on 80, 
such that 

S': ゆEws,q(叩）→ S[ゆ]E ws+l,q(80), 

is Fredholm with index zero for alls E [-1, O] and q E (2 -E, 2 + c): 

(ii) there isμ。E[O, 1]) such that if a E c0叫80),μE [O, μ0), then u E Cば(TI);

(iii) If n is of class C1, then in (i), (ii) we can take q E (1, +oo) andμ。=1. 

(23) 

For more regular domains (of class Ck,μ,, say) we quote the classical monograph of C. 

Miranda [23]. ◇ 

Remark 3 -The results quikly recalled above seem to be quite complete from a math-

ematical point of view. Nevertheless, there is a point which deserves attention. To be 

not merely formal, the compatibility condition (20) requires an analytic expression of the 
fields in飢 Inour opinion this is a very interesting problem in both pure and applied 

mathematics. As far as we know, it is has been solved only the ellipse. Indeed, if f ([) = 1 

is its equation, then (see Sect. 4 of [22] for a simple proof), then 

洲=spn{向高｝
Hence, if n is an ellipse, than (3) has a solution if and only if 

1a-u。
I▽ fl 

=0. 

an 

In particular, if n is a disk and u。=0, then (3) has a solution if and only if 

fa=O (24) 

ao 
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and we rediscover Stokes'paradox. ◇ 

Remark 4 -Theorem 1 and the results in remark 2 can be stated also for the more general 
exterior domain 

N 

fl=配¥U豆，
i=l 

(25) 

where Oi are N simply connected bounded domains such that豆n豆=0, iヂj.The 
only difference is that now the fieldヮ fromProposition 1 writes 

k 

a-(x)=L (x-元i)J a-n, 

i=l 21r1x -年12 aoi 

with元iinn,. ◇ 

3 The Oseen 
． 

equations 

At the beginning of the twentieth century the belief that Stokes'approximation (3)i,2 was 
valid not far from the obstacle and that in order to determine the slow motion of a cylinder 
in a viscous fluid (and so to find a definite value of the resistance) the effects of inertia, 
expressed by the non-linear term div (u 0 u), had to be taken into account, although 
without renouncing the benefits of linearity of the system of differential equations (see 
[20] Sections 340-343) . To take then partially into account the inertial effects, in 1910 

C.W. Oseen [27] proposed to linearize the Navier Stokes equations around the solution 
(u0, c) and to replace system (3) by 

吟 u-u0・Vu -Vp = 0 in 0, 

divu = 0 in 0, 

u=a on叩，

lim u(x) = 0, 
r→ +oo 

(26) 

today known as Oseen equations. He was able to find a solution to (26) for the disk and 

to determine the resistance (see [20] Section 343). In 1927 [28] the same Oseen found the 
fundamental solution to (26)i,2 (£;i(x -y), 匂，(x-y)). It enjoy the following properties 

(see [7], Ch. VII) 

(i) C;j(x -y) = U;j(x -y) + o(l) as luollx -yl→ O; 

(ii)▽ふ(t)= O(ltl-(k+l)/2), ¥:/k EN。;

(i) implies that the trace operator 

S。:W―1/2,2 (叩）→ Wl/2,2(叩）， (27) 
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associated with the Oseen simple layer potential 

叫蜘](x)= J Eij(x -~)疇）ds,, 

噌 ](x)= 0] wi(x -~)· 畷）dsも

an 

is Fredholm with index zero and [32] 

Kern$。=KernS~= spn{ n }. 

Hence, taking also into account Remark 2, it follows 

(28) 

Proposition 2. Let n be Lipschitz. There is E > 0 such that if a E W叫叩）， sE[0,1],
q E (2 -E, 2 + E), then (26) has a solution expressed by 

叫 x)= V。［ゆ](x)十 a(x),

Po(x) = P[ゆ](x)-uo・a,

for someゆEw-1,q(8D). !JD is of class C1, we can take q E (1, +oo). 

4 N avier Stokes equations 

From here and henceforth let n be an exterior domain in夏 i.e.,

N 

応配¥U豆，
i=l 

(29) 

(30) 

where Di are N pairwise disjoint bounded domains with connected Lipschitz boundaries 

じ=ani. 
The first existence theorem for equations (1) was established by J. Leray in his cele-

brated PhD thesis [21] (1933). He consider the sequence of boundary value problems 

u△ uk -div (uk 0 uり―▽加=0 in Dk, 

divuk = 0 in !:1如

叫=a on an, 
叫 =U。On[)Ck, 

(31) 

for n and a sufficiently regular, where nk = n n ck with ck = {出€配： lxl <凡｝，
凡<Rk+l→ +oo. Under the condition 

J a-n=O, i = l, ... ,N, (32) 

ri 
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using Odqvist's results [26] and a fixed point argument, he proved that (31) has a regular 

solution (uふ匹） that satisfies the estimates 

jlv'u出さ c, (33) 

!1 

for some positive constant c independent of k. Thanks to (33), Leray was able to show that 

the sequence (uk, pりconvergesto a regular solution (u, p) to (1), having finite Dirichlet 

integral 

J 1Vul2~c, (34) 

n 

and known as Leray solution. Today, a solution to the Navier Stokes eq叫 ions(1) sat-

isfying (34) in a neighborhood of the infinity is called D-solution. The Leray argument 

can be easily repeated to prove existence of variational solutions (see [19], Ch. 5). 
Let us observe that the only hypothesis required by Leray consists in excluding by (32) 

the presence of source or sink in the fluid. This assumption has been partially removed 

in [31] (2009), and using also the results stated in Remark 2, one can claim the following 

Theorem. 

Theorem 2. If叩 isLipschitz and a Eび(an)satisfies 

t f a•n く 2炒，
i=l r; 

(35) 

then (1) has a D-solution, which is analytic in D. 

Despite this great achievement, Leary left open a problem of undoubted interest. Since 
every uk takes the value u。on8Ck, one should expect that the limit u of uk "remember" 

(at least in weak form) the value at infinity, as happens in the three dimensional case. 

But the only information available on the behavior at infinity of u is given by (34), and 
it is well-known that a function having finite Dirichlet integral in n can grows at infinity 
as log巧・fora < 1/2. Nevertheless, under suitable assumptions of symmetry (say) on 

data and solutions, on can say that the Leray solution vanishes in a weak sense at infinity. 

Assuming that n is polar symmetric with respect to o, i.e., x E n⇒ -x E D and 

a(() = -a(-(), for every f E an, one shows that the Leray procedure yields a polar 

symmetric solution u(x) = -u(-x), for every x E D4, so that for large R 

J u(R, 0)d0 = 0. (36) 

゜By the trace theorem, (36) and Poincare's inequality 

fiu(R,0)12d0 ::::'. 点J向+J叫：：：：： C J I▽ ul2 

0 C2R¥CR C2R¥CR C2R¥CR 

4In this case we have to set Uo = 0 on ack. 
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Hence it follows 
2,r 

訊!oo/ lu(R, 0)l2d0 = 0. (37) 

In 1961 H. Fujita [12] and, independently Vorovich & Yudovich [38], using a method 

different from that of Leray, based on a Galerkin scheme尺wereable to prove existence of 

a D-solution to (1). 

A first important, deep result (and, as far as we know, unique until today) in the 

existence problem for system (1)-(2) was given by R. Finn and D.R. Smith in 1967 [6]. 

By a technique based on a fixed point argument and on the existence of solutions to Oseen 

system (26), they proved that if n and a are sufficiently regular and 

luol 
Ila -uollc2can) = o(入logい） as入＝→ 0, 

1ノ

then (1)-(2) has a regular D-solution. 

It is clear that, at least for small data and u。ヂ 0,Finn and Smith's theorem ruled 

out Stokes'paradox from the nonlinear theory of viscous fluid. 

Finn and Smith results were rediscovered by G.P. Galdi [8] (see also [34]) by a different 

method, under less restrictive assumptions on n and a (see also [7], Ch. XII). 
Due to the lack of a uniqueness theorem the three solutions we discussed above are 

not comparable. Therefore, results holding for every D-solution are of great interest. 

5 Asymptotic behavior of D 
． 

solutions 

The problem of the asymptotic behavior at infinity of Leray's solution (uk, p砂wastacked 

by D. Gilbarg & H. Weinberger in 1974 [10]. They proved that uk is bounded, there are 

a scalar p。anda constant vector u= such that 

(one can choose, say, p0 = 0) , 

lim Pk(x) = Po 
r→ +oo 

2,r 

三／叫(r,0) -u記d0= 0, 

and 
w(x) = o(r-314), 

▽ u(x) = o(r-314logr), 

where 

W=O四 1- f)西

5This technique is clearly described in [7], Ch IX. 

(38) 

(39) 

(40) 
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is the vorticity. Two years later the same authors [11] showed any D-solution (u, p) 
satisfies (38)皿 d

u(z) = o(log112 r), 

w(z) = o(r-3141og118 r), 

▽ u(z) = o(r-314log918r), 

▽ WEび(0).

If u is bounded, then it satisfies the same properties as the Leray solution and if u00 = 0, 
then 

u(z)→ 0 uniformly as lzl→ 00. (41) 

Moreover, if u00-/-0, then there exists a sequence of radii Pn E (2n,2n+1), n 2". n0, such 
that 

sup lu(pn, 0) -Uool→ O 
0E[0,21r] 

as n→ 00. (42) 

Some years later C.J. Amick [1] proved that a D--solution to the problem of a flow 
around an obstacle (a= 0) has the following asymptotic properties: 

(i) u is bounded and, as a consequence, it satisfies (39), (40); 

(ii) the total head pressure <I> = p +½lul2 and the absolute value of the velocity lul 
have the uniform limit at infinity, i.e., 

lu(r, 0)1→ luool as r→ oo, (43) 

where u00 is the constant vector from the condition (39); 

(iii) ifぬ issymmetric with respect to the x1-axis (say), and (u,p) is symmetri, i.e. u1 
is even and u2 is odd with repect to x2, then u converges uniformly at infinity to a 
constant vectorμe1, for some scalarμ. Moreover, the Leary procedure yields to a 
nontrivial solution. 

In [2] the same author proved that ifμcf 0, then the solution in (iii) behaves at infinity as 
that of the linear Oseen equation. These result was extended by L.I. Sazonov [33] to an 
arbitrary D-solution converging uniformly at large distance to a nonzero constant vector 

(see also [9] and Ch. XII of [7]). 

6 Recent results and open problems 

In recent papers [15], [16], [17], [18], [29] we were able to give positive answers to some 
problems outlined above for general exterior domains defined by (25). In particular, the 
following theorems has been established. 

Theorem 3. [29] -Let D be a Lipschitz exterior domain of配 symmetricwith respect 
to the coordinate邸 esand let a = (a国） E w1/2,2(8D). If 

疇心）＝疇1,-[2), a2(6, も）＝一的(6,ーも） } , ¥:/(6,[2) E叫

a1(6,6) = -ai(-6,6), a2(6,6) = a2(-6,6) 

then (1) has a D-solution vanishing uniformly at infinity. 
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Theorem 4. [15] -Let O be a Lipschitz exterior domain of配 symmetricwith respect 
to the axis X1 and let a= (a1, a2) E w1/2,2(80). If 

釘(6,知）＝釘（も，ーむ）， 位（も，6)= -a2(も，ーむ）， 'v(も，6)E 80, 

then (1) has a D-solution. 

Theorem 5. [16] -If O c配 isan exterior domain of class C2 and a E w1/2,2 (叩）
satisfies J a-n=O, 

8!1 

(44) 

then (1) h邸 aD-solution. 

So in the last theorem we replace the assumption (32) (that flux through every bound-

ary component is zero) by weaker assumption that total flux is zero. Unfortunately, this 

last assumption is also far from being a necessary condition for the solvability of the 

problem (cf. with Theorem 2) . 

Theorem 6. [16] -Let (u,p) be a D-solution to the Navier-Stokes equations 

吟 u-div(u⑳ u)―▽ p = 0 inn, 

divu = 0 in 0, 

in the exterior domain n C配.Then u is uniformly bounded in n。＝配¥B, i.e., 

sup lu(z)I < oo, 
zE!1。

(45) 

where B = BRo is an open disk with sufficiently large radius: B~ 叩．

Theorem 7. [17] -Let (u,p) be a D-solution to the Navier Stokes equations (45) in the 

exterior domain n C配.Then u converges uniformly at infinity, i.e., there exists a vector 

U00 E配 suchthat 

u(z)→ Uoo uniformly as I z I→ Uoo, 

Theorem 8. [18] -Let n be an exterior domain in配 withC2-smooth compact boundary, 

and 0ナUo E 配. Take a sequence uk of solutions to system (31) with boundary 

data a = 0, and take further arbitrary weakly convergent subsequence ukn→ u. Then 

the limiting solution u to (1) is nontrivial (i.e., u is not identically zero). In particular, 

the Leray solution is nontrivial. 

Theorem 9. [18] -Let n be an exterior domain in配 withsmooth compact boundary, 

and let a E配 bea nonzero constant vector. Take a sequence uk of solutions to the system 

o
o
a
o
 

=
=
＝
＝
 

k

k

k

k

 

p

u

u

u

 

▽

>

 

+
d
i
 

k
 

u
 

、
ヽ
~▽

 
k
 

u
 

'ー、＋
 

k
 

u
 

△
 

u
 

'

ノ

｀

‘

in伍，

in糾，

on an, 
for lzl = Rk, 

(46) 

and t紘efurther an arbitrary we紘lyconvergent subsequence u知→ u. Then u is a non-

trivi叫 solutionto the system (1), i.e., u cJ a. 
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Together with Finn and Smith theorem [6], recalled at the end of section 4, Theorem 

8-9 show that Stokes'paradox is typical of the Stokes equations (3). 

Note that in all the above theorem there is no restriction on the size of the data a and 

v. The proof of many results here based on some real analysis tools and fine properties 

of functions, such as Coarea formula, etc. 

Clearly, many important problems remain open. Let us point out what we deem most 

significant: 

(i) the relation between the constant vectors u。in(31)4 and u00 in Theorem 7; 

(ii) the existence of a D-solution without assumption (44); 

(iii) the validity of Finn-and Smith theorem for every data v, a and u。;

(iv) uniqueness of a D-solution; 

(v) the rate of decay of a D-solution vanishing at infinity, of course depending on v in 
view of Hamel counter-examples (see [7] p. 805 and [19] p. xi, xii). 
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