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Regularity for the stationary N avier-Stokes equations over bumpy 

boundaries and a local wall law 

1 Introduction 

Mitsuo Higaki 

Department of Mathematics, 

Kobe University 

This note is a summary of the preprint [19]. The paper [19] is concerned with the local regularity 

of viscous incompressible fluid flows above rough bumpy boundaries x3 > q(x'/E:) with 1 

Lipschitz and the no-slip boundary condition. Although bumpy boundaries have a complicated 

geometry and low regularity, the flow may paradoxically be better behaved than for smooth or 

flat boundaries. It is well documented in the physical [22, 33] and the mathematical [29, 12, 18] 
literature that roughness favors slip of the fluid on the boundary in certain regimes. In the 

striking paper [8] it is even showed experimentally that roughness may delay the transition to 

turbulence. This also supports the idea that the vanishing viscosity limit from Navier-Stokes to 

Euler may be less singular above highly oscillating boundaries than above flat ones [20, 11, 31]. 

Our goal is to investigate these effects, such as the enhanced slip, or the delay of the transition 

to turbulence, from the point of view of the regularity theory. Due in particular to vorticity 

creation at the boundary, the boundary regularity of fluid flows with the no-slip boundary 

conditions is delicate. In the nonstationary case, it is for instance not known whether there 

is an analogue of Constantin and Fefferman's [7] celebrated geometric regularity criteria for 

supercritical blow-up scenarios. For perfect slip or Navier-slip boundary conditions on the 

contrary, the situation is brighter. In particular an extension of the criteria of [7] is known in 

this case; see the work [6] by Beiriio da Veiga and Berselli. We expect that fluids over bumpy 

boundaries have an intermediate behavior between these two extreme no-slip and (full-)slip 

situations, especially as far as the mesoscopic regularity properties are concerned. 

Our approach grounds on the use of asymptotic analysis to prove regularity estimates. The 

success of such methods to prove the regularity to certain Partial Differential Equations is 

spectacular. One of the striking examples is that of homogenization. The basic idea is that 

the large-scale regularity is determined by the macroscopic properties of the systems, i.e. in 

the homogenization limit, while the small-scale regularity is determined by the regularity of the 

data (coefficients, boundary). Two approaches were developed: (a) blow-up and compactness 

arguments in periodic homogenization in the wake of the pioneering works [4, 5], (b) quantitative 
arguments based on suboptimal local error estimates as developed for periodic homogenization 

[34, 9, 32], almost periodic homogenization [3], and stochastic homogenization [15, 1]. 
In this work, we focus on the regularity for stationary problems. We consider the three-

dimensional stationary Na vier-Stokes equations 

p竺:~ザ＝一u'-Vu' 閏腐誓
u" = 0 on rf(o). 

(NSり

The functions研＝ 祈(x),研 =M,喝，ui)丁 E配， and忙＝が(x)E賊 denoterespectively the 
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velocity field and the pressure field of the fluid. We have set for EE (0, 1] and r E (0, 1], 

X 
I 

X 
I 

Bい(O)={xE股3Ix'E (-r,r)2, q(一）＜四＜叫ー） +r}, 
E E 

I 
X 

f~(O) = {x E股3Ix'E (-r,r)2, 勾＝叫ー）｝．
E 

The boundary function'Y E W1,00圏） is assumed to satisfy 7(x') E (-1, 0) for all x'E記

(1) 

Our use of compactness arguments to tackle the regularity for solutions of (NSりisreminis-

cent of the pioneering work of Avellaneda and Lin [4, 5] in homogenization, and of the works 

by Gerard-Varet [10], Gu and Shen [16], and Kenig and Prange [23, 24]. We separate the small-

scale regularity, i.e. at scales乏E,from the mescopic-or large-scale regularity, i.e. at scales 

c乏r::; 1. ◎ 謳両咽血細叫塁屡伽血函叫函日如噸叫叩畑叩価畑細犀

and the Navier-Stokes equations was started by Ladyぇenskaja[27] using potential theory and 

by Giaquinta and Modica [14] using Campanato spaces. These classical estimates require some 

smoothness of the boundary and typically depend on the modulus of continuity of炉 whenthe 

boundary is given by功=7(x'). Therefore, these estimates degenerate for highly oscillating 

boundaries x3 = q(x'/c) with sufficiently small c E (0, 1). As for the large scales, on the con-

trary, the regularity is inherited from the limit system when E→ 0 posed in a domain with a 

flat boundary. Here no regularity is needed for the original boundary, beyond the boundedness 

of'Y and of its gradient. The mechanism for the regularity at small scales and at large scales 

is hence completely different. Moreover, it is possible to prove, at the large scales, improved 

estimates that are known to be false at the small scales. An example of this is our large-scale 

Lipschitz estimate of Theorem 1.1 below that is known to be false over a Lipschitz graph at the 

small scales even in the case of a linear elliptic operator [25, 26, 34]. 

Beyond improved regularity estimates, our objective is to develop local error estimates for 

the homogenization of viscous incompressible fluids over bumpy boundaries and derive local wall 

laws. The wall law catches an averaged effect from the O(c)-scale on large scale flows of order 

0(1) through homogenization. In the wall law, a rough boundary is modeled as a smooth one 

and an appropriate condition is imposed on it reflecting the roughness of the original boundary. 

In typical situations, this process gives a Navier-type condition with slip length of O(c), the so-

called Navier wall law. This effective boundary condition reads for instance in two dimensions 

u1 = c:a知 1, u2 = 0 on a記 (2) 

with a constant a depending only on the boundary function 1. We now briefly review the 

literature concerned with the derivation of wall laws such as (2) and the proof of error estimates 

in the global setting. The literature is vast and it is impossible to be exhaustive here. The wall 

law for simple stationary shear flows is analyzed in the pioneering work Jager and Mikelic [21] 

when the boundary is periodic. This result is extended to a random setting by Gerard-Varet [10] 

and to the almost periodic setting by Gerard-Varet and Masmoudi [12]. Nonstationary cases are 

studied in Mikelic, Necasova, and Neuss-Radu [30] under the assumption that the limit flows are 

space-timeび functions.The strong regularity condition in [30] implies that a careful analysis 

is needed when we study Initial Boundary Value Problems (IBVPs). Indeed, for these cases, 

no matter how regular the initial data are, there is the loss of regularity of solutions due to 

the boundary compatibility condition. Higaki [18] considers an IBVP in a bumpy half-space 

and verifies the N avier wall law for C1 initial data under natural compatibility conditions. A 

key ingredient is to make use of the£00-regularity theory of the Navier-Stokes equations in the 

half-spaces. Theorem 1.3 below provides a local counterpart of these global error estimates in 

the case of the stationary Navier-Stokes equations. 
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Outline and novelty of our results. Our main results are given in the two theorems below. 

In Theorem 1.1 we state a uniform Lipschitz estimate. In Theorem 1.3 we give a local error 

estimate and identify the building blocks of the regularity theory. Both results hold for weak 

solutions of the nonlinear equations (NS,:) and hold without any smallness assumption on the 

size of the solutions. 

Theorem 1.1 (mesoscopic Lipschitz estimate). For all M E (0, oo), there exists a constant 

E(l) E (0, 1) depending on ll'Yllw1,00(即） and M such that the following statement holds. For all 

c E (O,c(1l] and r E [c/c(l), 1], any weak solution u,: Eが (Bf,+(0))3to (NSりwith

(! 厨12)½:S: M 
Bい(0)

(3) 

satisfies 

(/  lu平）½::; C炉，
B;,+(O) 

(4) 

where the constant C位） is independent of c and r, and depends on ll,llw1,oo国） and M. More-
(1) 

over, CM is a monotone increasing function of M and converges to zero as M goes to zero. 

Remark 1.2. (i) By using the Caccioppoli inequality in Appendix, one can easily prove 

(/  I▽可）｝心
尻，十(0)

(1) 
for r E [s/s(1l, ½J. Here the constant CM satisfies the same property as C似

(ii) In the paper [10], Gerard-Varet obtains a uniform Holder estimate for weak solutions of 

the Stokes equations when IE C1,w(配） for a fixed modulus of continuity w. Let us emphasize 

that there is a gap in difficulty between the uniform Holder estimate (right-hand side of (4) 

replaced by CrμwithμE (0, 1)) and the uniform Lipschitz estimate (4). Indeed the Lipschitz 
estimate requires the analysis of the boundary layer corrector. Moreover, let us emphasize that 

the Lipschitz estimate is the best that can be proved for u0 uniformly in E. This comment 

does not contradict the uniform ct,μestimate below. Indeed the estimate in Theorem 1.3 is a 

measure of the oscillation between u0 and affine functions, and is not an estimate for u0 directly. 

(iii) As in the works [4, 10, 23] one can combine the mesoscopic regularity estimate with the 
classical regularity, provided the boundary is regular enough, i.e. when▽ 1 is Holder continuous. 

In that case, we can prove the full Lipschitz estimate IIVu0IIL=(se (O)) for (NS0). However, one 

cannot expect such an estimate to hold in Lipschitz domains eved'for the Laplace equation with 

the Dirichlet boundary condition. 

(iv) There is a version of Theorem 1.1 for the linear Stokes equations; see Theorem 3.1 in 

Section 3 below. An important application of such uniform Lipschitz estimates is for estimating 

the Green and Poisson kernels associated to the Stokes equations in the Lipschitz half-space 

{y3 > 1(y')}. Following [4], such estimates were proved for elliptic systems in bumpy domains 
in [23], or the Stokes equations with periodic coefficients [17]. Such estimates play a crucial role 

for the homogenization of boundary layer correctors, in particular in the works [13, 2, 35] 

Next let us state the result which gives a local justification of the Navier wall law. The 

following theorem is concerned with the polynomial approximation of weak solutions to (NSり
at mesoscopic scales. Remark 1.4 below states consequences of the theorem and Remark 1.5 

establishes the connection between our theorem and the Navier wall law. 
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Theorem 1.3 (polynomial approximation). Fix ME  (0, oo) andμE (0, 1). Then there exists 

a constant€(2) E (0, 1) depending on lhllw1,oo(ffi.2), M, andμsuch that for all weak solutions 

炉 Eが (Bf,十(0))3to (NSりsatisfyingthe bound (3), the following statements hold. 

(i) For all€ E (O,c(2l] and r E [c/c(2l, 1], we have 

(/ 
2 

Be (0) 
r,+ lu"(x) 一苫 c~,jx3e』 2dxr::::; Cげ(rl+μ,+叫）， (5) 

where the coefficient c~,j'j E {1, 2}, is a functional of ue: depending on c:, r, lhllw1,oo国）， M,
(2) 

andμ, while the constant CM is independent of E and r, and depends on lhllw1,oo国）， M,and 
μ. 

(ii) We assume in addition that "I E W_1•00国） is 21r-periodic in each variable. Then there ex-

zsts a constant vector field詞=(a 
(j) ( 
1 ,ail,o? E配， jE {1, 2}, depending only on lhllw1,=(IR2) 

such that for all EE (O,c:(2)] and r E [c:/c:C2l, 1], we have 

(/ 
2 

ue:(x)ーと心（→ +rn(j)}l2dx)2 SCげ(rl+μ,+ Eい）， (6) 
B0 (0) 

j=l 

(2) 
where the coefficient~,j'j E {1, 2}, is same as in the estimate (5), while the constant CM is 

independent of E and r, and depends on lhllw1,oo国）， M,andμ. 

(2) (2) 
Remark 1.4. (i) Each of the constants CM and CM satisfies the same property as Cりin
Theorem 1.1 as functions of M. 

(ii) Note that at the small scale, namely when r = O(c:), the right-hand side in the estimate 

(5) is no better than the right-hand side of (4) in Theorem 1.1. Hence there is no improvement 
at this scale. On the other hand, if we consider the case r E [(c:/c:C2)凡1]with i5 E (0, 1), then 

we see that 

rl+μ, + E奸½S (1 + (c:(2)壮r~—µ,)rl+µ,. 

Therefore, we call the estimate (5) a mesoscopic ci,μ, estimate at the scales r E [(c:/c:C2)凡1]
with i5 E (0, (2μ+ 1)-1]. 

(iii) A comparison between the estimates (5) and (6) highlights the regularity improvement 
coming from the boundary periodicity. Indeed, the estimate (6) is sharper than (5) at mesoscopic 

scales because c: 2 r万 Sc:2r2 holds whenever r E [c:, l]. 

Remark 1.5. Let us denote the polynomial in (6) by P幻 jE {l, 2}: 

Pf..r)x) =x四 +rn(j)_ (7) 

Then each P瓦,is a shear flow in the half-space訊 andis an explicit solution to the N avier-
Stokes equations with a Navier-slip boundary condition 
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(NS}[) 

with a trivial pressure P}-r = 0. Here the 2 x 2 matrix訂=(a?lh-:::i,j-:::2 can be proved to 

be positive definite; see Proposition 2.2 (ii). Thus the estimate (6) in Theorem 1.3 reads as 
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follows: any weak solution u15 to (NSりcanbe approximated at any mesoscopic scale by a linear 

combination of the Navier polynomials P和，1and Pfv,2 multiplied by constants depending on u見

This is a local version of the Navier wall law at the 0(砂)-scales, which has been widely studied 
in the global framework. 

The novelty of our results can be summarized as follows: 

(I) Singular boundary: it is just Lipschitz and has no structure (except in Theorem 1.3 (ii)). 

(II) No smallness assumption on the size of solutions. 

(III) Derivation of a local wall law and local error estimates. 

As is stated in (I), one of the originalities of Theorem 1.1 is that it does not rely on the 

smoothness of the boundary such as, the Holder continuity of▽'Y. Moreover, one cannot use 

any Fourier methods due to the lack of structure of the boundary. In fact, when working with 

Lipschitz boundaries, the classical Schauder theory is not applicable directly since there is no 

improvement of flatness coming from zooming on the boundary as is explained in [24]. The 

smoothing happens at scales larger than that of the boundary layer thickness. 

Concerning point (II), we are able to remove any smallness assumption on the size of the 

solutions in Theorem 1.1 and Theorem 1.3. This is in stark contrast with previous works 

concerned with the regularity of elliptic or Stokes systems [4, 10, 16, 23, 24]. Moreover, as far as 

we know the error estimates in the stationary global setting are all in the perturbative regime; 

see for mstance [12]. 

Point (III) is concerned with Theorem 1.3. It is important physically as well as mathemati-

cally since we are interested in the effects of rough boundaries on viscous fluids. Our result is a 

first-step toward understanding roughness effects on the Navier-Stokes flows in view ofregularity 

improvement. As far as we know, estimate (6) is the first justification of a local wall law. 

These three aspects are further discussed in connection with our strategy in the paragraph 

below. 

Difficulties and strategy. The proof of Theorem 1.1 and Theorem 1.3 is based on a com-

pactness argument as in [23, 24] originating from the works [4, 5] on uniform estimates in 

homogenization. In principle, we follow the strategy of [24] concerned with the regularity the-

ory of elliptic systems in bumpy domains. The main points in [24] are: (1) construction of a 

boundary layer corrector in the Lipschitz half-space, (2) proof of the mesoscopic regularity by 

compactness and iteration. This strategy entails difficulties related to the lack of structure of 

the boundary which implies a lack of compactness of the solution to the boundary layer prob-

lem, and to the unavailability of Fourier methods up to the boundary. In addition to these 
difficulties, our proof is more involved due to: (i) the vectoriality of the equations (NSりandthe 

divergence-free condition, (ii) the nonlocal pressure, (iii) the nonlinearity of the Navier-Stokes 

equations and the lack of smallness of the solutions. 

Concerning the first point, the (vectorial) divergence-free condition▽ ・炉 = 0 causes a 

difficulty in the compactness argument even for the Stokes equations; see Section 3, especially 

Lemma 3.2 and its proof. A key idea is that no boundary layer is needed on the vertical 

component of the velocity. Therefore the boundary layer corrector is naturally constructed as a 

divergence-free function. 

Concerning the second point, let us stress a key difference between the stationary Navier-

Stokes equations and the nonstationary ones. For the stationary Stokes equations imposed in a 

ball B1 (0), one can estimate the pressure directly in terms of the velocity as 

IIP-(P)B1(0JIIL2(B1(0)):.:; GIi▽ PIIH-1(B,(O)) :.:; GIi▽ ull戸 (B1(0))・ (8) 
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Similar estimates in balls intersecting the boundary and for the Navier-Stokes equations are 

intensively used in our note. This is in strong contrast with the nonstationary Navier-Stokes 

equations where the pressure interacts with the time derivative of the velocity. 

The third aspect is partly related to (ii). In typical statements of the partial regularity 

theory for the nonstationary N avier-Stokes equations, one assumes smallness of certain scale-

critical quantities in E and hence one obtains linear equations in the limit E→ 0. Then the 

regularity theory for the linear equations yields a space-time Holder regularity improvement 

for the original solution; see Lin [28] for example. However, for the stationary Navier-Stokes 

equations discussed in our note, we do not need such a smallness condition; see Theorem 1.1. 

The limit equations when E→ 0 are not linear, but we can prove the smoothness of weak 

solutions because H1 bounds are enough to control both the nonlinear term and pressure term 

in L2 space (see Appendix for details). Then bootstrapping using the standard elliptic regularity 

in a smooth domain leads to the (spatial) C00-regularity for the limit equations. Estimate (8) 

is the reason why one can bootstrap the regularity. Once the regularity is inherited at a fixed 

scale 0 E (0, 1), a serious difficulty arises in the iteration of such an estimate. At each step in the 

induction, we need to use the Caccioppoli inequality from Appendix to control the norm II研 IIL2-

A naive approach yields an estimate that depends algebraically on the size M of u0 as in (3). 

Hence the naive estimate becomes unbounded in M as the iteration proceeds. This prevents 

one from closing the induction due to the lack of uniformity. We overcome this difficulty by 

choosing the free parameter 0 in the compactness lemma in terms of the data'Y and M. This is 

done in the spirit of the Newton shooting method. We will make this idea precise in Section 4. 

It should finally be emphasized that the boundary layer corrector, entering the scheme for the 

nonlinear Navier-Stokes equations (NSり， solvesthe linear Stokes equations. This is expected 

from the following formal heuristics. Indeed, in the boundary layer u0仝 rn(x/c),so that v 

solvesーと△v+EV・ ▽v十▽q = o, ▽ ・V = 0. 

Outline of the note. In Section 2 we summarize the results concerning the boundary layer 

equations. In Section 3 we prove the linear version of Theorem 1.1 in order to show how the 

compactness method works in the regularity argument. In Section 4 we prove the main results 

namely Theorem 1.1 and Theorem 1.3. The regularity theory in a domain with a flat boundary 

and the Caccioppoli inequality are stated in Appendix. 

Notations. Let us summarize the notations in this note for easy reference. For x = (x1, x□3汀E

記 wedenote by x'its tangential part (x1,x2) . For r E (0, 1] and EE (0, 1], we define B;,+(O) 
and閂(0)as is done in (1) and set 

Br(O) = {x E股3Ix'E (-r,r-)2, x3 E (-r,r)} = (-r,r-)3, 

Br,+(O) = {x E lR.3 Ix'E (-r,r-)2, X3 E (O,r)}, 

じ(O)={xE股3Ix'E (-r,r-)2, x3 = 0}. 

Note that formally we have Br,+(O) = Bル(0)and I'r(O) = r~(O). For an open set DC配 and

a Lebesgue measurable function f on D, we set 

£111=固LIll'(知＝贔fo1, (9) 

where IOI denotes the Lebesgue measure of n. 
Note that, since our interest is in the local boundary regularity of (NSり， theboundary 

condition is prescribed only on the lower part of aB;, 十(0).We work in the framework of weak 
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solutions of (NSり.A vector function u6 Eが (Bい(0))3is said to be a weak solution to (NSり
if u6 satisfies▽・ 炉=0 in the sense of distributions, 研 lrI(O)= 0 in the trace sense, and 

J叫 (0)▽ue:. ▽ cp=-1叫 (o/ue: . ▽uり・¢ (10) 

for any cp E Co,'(j (Bい(0)).Here C, 品(0)denotes the space of test functions {J E Co'(!J)3 I▽ f= 

O} when n is an open set in配.For the pressure p0, we emphasize that the unique existence 

inび(Bい(0))up to an additive constant can be proved in a functional a叫 yticway using the 

weak formulation (10). 

2 The boundary layer corrector 

In this section we summarize the results concerning the boundary layer problem in Lipschitz 

half-spaces without proof. 

General case. The boundary layer equations for j E {1, 2} are written as 

｛げ： ;;:~o, ;: 雷
v(y', 1(y')) = -1(y')ej, 

(BL叫

where'YE W1,00(配） and炉 denotesthe Lipschitz half-space伯={y E股3I 1(y') <即く oo}.
The unique existence of weak solutions to (BL叫 isstated as follows. 

Proposition 2.1. Fix j E {1, 2} and let "I E W1,00(配） • Then there exists a unique weak 

solution v, q) = (v(j), qUl) EHぬ（砂1)3XLに（伽） to (BL叫 satisfying. ( 

00 
sup J J IVvUl(y',y3)12如 dy'::;C, 
'T/E宜 "l+(0,1)2 ,(y') 

(11) 

where the constant C depends only on llrllw1,oo国）・

The basic idea of the proof is to decompose the domain炉 into記 u(炉＼訊） and to 
bl derive an equivalent equations to (BL叫 onthe infinite channel O ¥配 butinvolving the 

Dirichlet-to-Neumann operator. This formulation allows us to apply the Poincare inequality in 

the vertieal direction when estimating the local energy. The reader is referred to [19, Section 3] 
for the details. 

Periodic case. We note the asymptotic behavior of the boundary layer corrector at spatial 

infinity when the boundary is periodic; see [19, Proposition 11]. 

p ropos1t10n 2.2. Fix j E {1, 2} and let'Y E w1,00図） be 21r-periodic in each variable. Then the 

weak solution (vU), q叫 to(BL叫 providedby Proposition 2.1 satisfies the following prope廿ies.

(i) There exists a constant vector field aUl = (a 
(j) () 
1 ,a、,O)T E配 suchthat 

lv(jl(y) -a(j) I+ Yaliil(y)I :S CllvUl(., 0) IIL2((0,21r)2) e―朋, Y3 > l, (12) 

where C is a numerical constant. 

（） ii The 2 x 2 matrix M E JR2x2 defined by M ( 
(j) 

= a;)1<::i,j<::2 is symmetric and positive 

definite. 
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Some useful estimates. We state an easy lemma useful in estimating vU). We omit the proof 

since it is just a simple computation using Proposition 2.1. 

Lemma 2.3. Fix j E {1, 2} and let EE (0, 1) and r E [c, l]. Then we have 

j I(▽ yV叫（：氾dx:S Ccr2, 
B;,+(O) 

(13) 

and form E {O, 1, 2}, 

j lv(jげ） 2+m dx::; Cr4ー悶'
が (0) E E 

1十皿
r,+ 2 

(14) 

where the constant C is independent of E and r and depends on ll,llw1,oo(IR2)・

3 Regularity for the Stokes equations 

In this section we consider the Stokes equations 

｛言:: 6忙 ~o 悶腐鸞
祈 =0 onq(o) 

(Sり

in order to demonstrate how the compactness and iteration arguments work in a simpler setting. 

Note that a weak formulation for (Sりcanbe defined in a similar manner as (10) for (NSりin

the introduction. Our goal in this section is to prove the following theorem. 

Theorem 3.1 (linear estimate). There exists a constant E(3) E (0, 1) depending on lhllwi,oo(記）

such that the following statement holds. For all E E (0, c(3l] and r E [c / c(3), 1], any weak solution 

u0 = (uf(x),u~(x),u§(x))T E H1(Bf, 十(0))3to (Sりsatisfies

(i見(0) 国 12)½::; c(3)r(i叫(0) 口）½' (15) 

where the constant c(3) is independent of E and r, and depends on ll,llwi,ooぽ）・

We prove the compactness and iteration lemmas in Subsection 3.1 which are essential tools 

for our argument. We prove Theorem 3.1 in Subsection 3.2 using the estimates in Section 2. 

3.1 Compactness and iteration lemmas 

The compactness lemma is stated as follows. Let vUl = vUl(y) be the weak solution to (BL叫
for j E {1, 2} provided by Proposition 2.1. 

Lemma 3.2. ForμE (0, 1), there exist constants 0 E (0, ½) and EμE (0, 1) depending on 

lbllw1,oo⑱)  andμsuch that the following statement holds. For E E (0, Eμ], any weak solution 

u0 = (uf(x),u~(x),u三 (x))T E H1(Bf, 十(0))3to (8°) with 

f lu平さ 1
Bい(0)

(16) 

satisfies 

f 
2 

国(x)一 L(a叫）叩(o)(x四 +rn叫））ドdx:::; 02+2μ. (17) 
Bい(0) j=l 
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Proof. For givenμE (0, 1), we choose 0 E (0, ½) in the statement as follows. Let (u0,p0) E 

が (B1 (0))3 xび(B1 (0)) be a weak solution to the f-zero limit equations 
2, 2, 
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(18) 

with 

j lu叩:S4. 
Bi,+(O) 

(19) 

By the regularity theory to (18) in Appendix combined with (19), we see that u゚ Eび(Ba (0))釘
8'十

From the no-slip condition in (18), we calculate the tangential component uJ of u with j E {1, 2} 

as 

uJ(x) -(8可）Bい (0)X3 

= IE。:(O)I!1 J (叫(x',tx3) -0可(z))dzdt, 
0 Bぃ(0)

where 0 E (0, ¼) is arbitrary. Thus we see that 

f 聞(x)一麿）恥(0)疇 dxさ004
Bo, 十(0)

(20) 

with a constant C independent of 0. For the normal component ug of u, by the divergence-free 

and no-slip conditions in (18), we have 

1 2 

咄(x)= -x3 J L む叫(x',t⑬) dt. 

゜j=l 

Sinceむ叫=0 on r½(0) holds for j E {1, 2}, we also have 

1 1 2 

誓＝ーx~ff Lta迅uJ(x',stx3) ds dt. 
0 0 j=l 

Thus there exists a constant C independent of 0 such that for any 0 E (0, ¼), 

f 隣12≪;Cが．
B0,+(D) 

Then we choose 0 E (0, ½) in (20) and (21) sufficiently small depending onμso that 

(21) 

f 
2 

間(x)-L(a吋）恥(o)X3ej12 dx 
恥 (0) j=l 

=f 聞(x)-(鰐）B0,+(0) X姐dx+ f lu肝＜゚ 2:2μ, (22) 
Bo, 十(0) B0,+(0) 
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The rest of the proof is by contradiction. Assume that there exist sequences {叫已 in(0, 1) 
with limk→oo荘=O and {u0k}k=l in H1(B~~+(0))3 with 

j lu州:::;1 
B~\(O) 

(23) 

satisfying both 

{古::~1'• ~a 悶覧闊
U0k = Q Oil r~k (Q) 

and 

2 

f B殊

lu叫）一L(戸）弘(0)(→ +c:k占 (t))l2dx > g2+2μ,. (24) 
0, 十(0) j=l 

Since Ek"f(x'厖）→ 0 uniformly in x'E記 theboundary r1k (0) is included in the set (-1, 1) 2 x 

（一ふ0)when k is sufficiently large. We extend u0k by zero below the boundary, which is 
denoted again by u0k, and we see that u鐸€ 圧 (B1(0))3for all k EN. Then, by the Caccioppoli 

inequality in Lemma A.2 with p =½and r = 1 in Appendix, we have from (23), 

/ I▽u勺2:SC 
B;k (0) 
;i,+ 

with C independent of Ek-Hence, up to a subsequence of { u勺に1,which is denoted by { u0k}江1

again, there exists u゜€ が (B1(0))3such that in the limit k→ oo, 

Uf:k→ u0 in L2(B½(0))3, ▽ Uf:k → ▽砂 inび(B凶(0))3x3,

and (19) holds by the assumption (23). Moreover, we have for any'PE C8°((一ふら）2 X (一ふ0))叫

八½J2x(一ふ，0) u゚ 'P=占悶(½,応(-ふ0)u"k. ip = Q 

and for any <p E C, 篇(B.1(0))汽
2 

J勺，十(0)▽u゚・匹 =k四J見 (0)豆▽1.f!=O. 

We see that u0 = 0 on (一½, ½)2 X (—½, 0) and hence that u0 = 0 on r1 (0) from u゚ EH1(B½(O)). 

Thus u0 is a weak solution to (18) satisfying (19). Then, from B~\(O) = (B訂'.+-(0)¥ B0, 十(0))U 
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(B?+(O) n Be, 十(0))and IB?+(O)I = IB0, 十(O)I= 403, by the triangle inequality we have 

f 
2 

B訊(0)
lu叫）一 L(如?)化(0)(→ ＋森vUl(t))12 dx 

j=l 

1 
2 

さ叩1瓜 O)¥B。oい(x)一L(a心）B仇(0)五＋荘v(i)(t))12 dx 
j=l 

＋羞(1星 (O)nBe,+(O)lu"k -u゚12+ti(的）弘(0)四 ej―（鰐）恥(0)虚 j2 dx 
j=l 

2 

＋翡苫I(叫）弘ca/h化 (o)nBe,+(O)lv(jl(t州dx)

f 
2 

+s iu゚(x)―L(a吋）恥(0)虚 Jドdx.
Be,+(O) j=l 

Since u萩→u0 inび(Bi(0))3 and {▽ u"k}已 isuniformly bounded in び (B½(0))3x3, from the 
ぅ

assumption (24) we see that 

2 

02+2μ::; ~ 圧t訊cailu叫）—匹疇）B仇(0)(→ ＋咋v(j)(t))12 dx 
j=l 

f 
2 

::; 8 砂(x)-L(知加。，十(O)X3汀dx,
Bい (0) j=l 

where (14) with m = 0 in Lemma 2.3 is applied to obtain the second line. Hence the choice of 

0 in (22) contradicts (24). This completes the proof of Lemma 3.2. ロ

The iteration lemma to (Sりisstated as follows. Let Ko be the constant of the Caccioppoli 
inequality in Lemma A.2 in Appendix. 

Lemma 3.3. FixμE (0, 1) and let 0 E (0 , 8) and fμE (0, 1) be the constants in Lemma 
3.2. Then fork EN  and f E (o,0k-lfμl, any weak solution u" = (ui(x),uち(x),u;(x)) T E 

が (Bf,十(0))3to (Sりwith

j lu平::;1 
Bi,+(D) 

(25) 

satisfies 

2 

SE 阿（叫—ど心（→ + c:v(j)己）） 2 dx ::S; g(2+2μ)k . (26) f 砂，十(0) j=l 

is estimated as Here the number a0 . E股， jE {l 2} . 
k,J''  

2 k 

I:laU ― 

1 

:S: 2K;f 0責1-0)―1 L0μ(l-1). 

j=l l=l 
(27) 
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Proof. The proof is done by induction on k E N. The case k = l is valid since it is exactly (17) 

in Lemma 3.2 putting a1,j = (8叫）Bい(o),j E {1, 2}. Indeed, by the Holder ineq叫 itywe have 

2 

L lai,j I::; 21Bi,+(O)Iゴ II匹 IIい(Bい(0))
j=l 

::; K}0 — ~(1 -0)-1 llu0 IIL2(Bい(0))'

where we have applied the Caccioppoli inequality to (Sりwithp = 0 and r = I in Lemma 

A.2 in Appendix. Thus by (25) we have (27) for k = l. Next let us assume that (26) 

and (27) hold at rank k E N and let c: E (0, 0kc:μ]- Then we define new functions us/Ok = 

(Ut0k (y), u;10k (y), u;10k (y)) T and ps/0k = ps/0k (y) on Bft (0) by 

us/0¥y) = g(lい(us(0ky)-t 0kak,j (y的+~占(~)))'
j=l 

ps/0k (y) =声（が(0勺）一幻，J別（竺）
j=l 

E) 

We see that (us/ek, ps/eりisa weak solution to 
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e/0k 
in B1,+ (0) 

in B 
e/0k 
1 + (0) ， 

on r e/0k 
1 (0). 

(28) 

From the recurrence hypothesis (26) at rank k, we have 

f IU°/0kl2 :cc:; 1 
B 
s/ek 
1,+ (0) 

by a change of variables. Now, since c:/0k E (0, Eμ], we can apply Lemma 3.2 to see that 

(29) 

f 
2 

e/ek 1w10\y) —区(8ypf0k) e/ek (y四＋三 (j) 炉y 2 
Be,+ (0) Ok 

V (―)） I dy s 02+2μ,. 
E 

j=l 
恥 (0)

A change of variables leads to 

f圧 国(x)一立い(x四 +rnUl戸））12 dx S 0(2+2μ,)(k+l), (30) 
砂+1,十(0) j=l E 

where the number a6 . 
k+I,J € 恥 jE {1, 2}, is defined as 

心，j=心＋已(ayPt0k)B;ぐ(0).

The Caccioppoli inequality to (28) with p = 0 and r = I combined with (29) leads to 

IIVyW10kll 
ロ(Bt!k(O))

~KJ (1 -0)-l 11Ue:/0k II 
£2(B氾¥oJ)

~2KJ(l -0)―1 . 

(31) 
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Therefore, from the assumption (27) fork and (31), by the Holder ineq叫 itywe obtain 

2 2 2 

こ叫，)~Llak,j! + 0μ,k L l(oypf0k)心 (a)I 
j=l j=l j=l 

1 
k+l 

~2KJ0―虹i -e)-1 L e,,,u-1) , 

l=l 

which with (30) proves the assertions (26) and (27) for k + 1. This completes the proof. ロ

3.2 Proof of Theorem 3.1 

We prove Theorem 3.1 by applying Lemma 3.3. FixμE (0, 1) and let 0 E (0, ½) and祁 E(0, 1) 

be the constants in Lemma 3.2. 

Proof of Theorem 3.1: Since the equations (Sりarelinear, it suffices to prove the estimate 

(/  lu平）ら::;Cr 
B;,+(O) 

(32) 

Set E(3) = Eμand let EE (0, E(3l]. Firstly we note that if r E (0, 1], then 

(t尻 (oJlu平）占::;0―糾

holds. Thus we focus on the case r E [c/E(3), 0]. For any given r E [c/E(3), 0], there exists k EN 

with k 2: 2 such that r E (砂炉一1]holds. From E E (0, 炉一1c(3l]we apply Lemma 3.3 to see 

that 

(t見(0) 国 12)½::; (0-3£:k-1,+(0) 国 12)½
2½ 

::; 0-~(i" (O) ue(x)一苔%-1,j(x四+cvCil(~)) 12 dx) 
砂ー1,十

+ 0-~(t la%-1,』)位£" Ix的 +cv(i万））門dxr
j=l 。k-1,十

(0) 

::; 0(1+µ)(k-l)-~ 

2 

+ 00-3(1-0)―1(1ー仰）―1(Lf I X 

ぅ

X四 +cv
B" (0) 

叫—)）l2dx) , 
j=l 。k-1,+ c 

where C depends only on I竹llw1,00国） • From (14) with m = 0 in Lemma 2.3 one has 

信f弧 1,+caiIx四 +rn叫））12 dx)½ さC(0k-l+ cら万）．

Therefore, by炉一1E (0, 0-1r) and c E (0, 0k-lc(3l], we have from (33), 

(t見 cailu平）½::; 0-~-圧+µ+00-3(1 -0)-1(1 —仰）ー1戸 +c½汀）

::; (0-~ ―μザ+00-4(1-0) ― 1(1 —仰）―1(1 + (c(3))い）r. 

(33) 
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Hence we obtain the desired estimate (32) by lettingµ=½for instance. This completes the 

proof of Theorem 3.1. ロ

4 Proof of the main results 

We prove Theorem 1.1 and Theorem 1.3 in this section. As is done in Section 3, we first work out 

the compactness and iteration lemmas in Subsection 4.1. Contrary to the linear case, we need 
to carry out a careful analysis of the iteration argument due to the nonlinearity. Indeed, since 

we do not assume any smallness condition on solutions of (NSり， anaive iterated application of 
the Caccioppoli inequality leads to a blow-up of the derivative estimate in the nonlinear case. 

We overcome this difficulty a priori by taking the free parameter 0 appearing in the compactness 

lemma sufficiently small depending on the bound M of the solution to (NS0). Eventually, the 

proof of Theorem 1.1 and Theorem 1.3 is given in Subsection 4.2. 

4.1 Nonlinear compactness and iteration lemmas 

We consider the modified Na vier-Stokes equations: 

{~ —• :~•~+o•: ·~~~〗喜;~こい~:\,nい(0)
ぴ=0 on ri(o), 

whereが=b0 (x) is defined as 

2 

ザ(x)= LC%(x的 +c:v叫））， X EBい(0).
j=l 

(MNSり

(34) 

Note that▽ • が=0 in Bい(0)and b0 = 0 on rI(O). The compactness lemma is stated as 

follows. 

Lemma 4.1. For ME  (0, oo) andμE (0, 1), there exists a constant 0。E(0, ½) depending on 
M andμsuch that the following statement holds. For any 0 E (0, 0ol, there exists祁 E(0, 1) 
depending on 11,llwi,oo(即),M, μ, and 0 such that for f E (0, fμ], (入0,Cf,q)E [-1,1]叫and
F0 E L2(Bい(0))3x3with 

II『 II正 (Bi,+(O)):::::MEμ' (35) 

any weak solution UC= (Uf(x), V: 三(x),U§(x))T E H1(Bf.+(0))3 to (MNSりwith

f IU平：：：：： M2 
Bi,+(O) 

(36) 

satisfies 

f 
2 

仰(x)一 L(a閃）叩(0)(→ +EV尺））l2dx:::; 炉 02+2μ. (37) 
考，十(0) j=l 
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Proof. By setting 

ue pe FE 
ve: = _ Qe: = _ Ge: = _ 

M 'M' M '  

we see that ve: and Ge: satisfy 

f IV平：：：：：： 1, 
耳，十(0)

and that (V尺Qりsolvesthe equations 

IIG叫L2(Bい(0))SEμ, 
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(38) 

f 
2 

iv刊x)-L(a的）閤，十(0)(→ +c:v(j)己））12 dx:::; 02+2μ. (39) 
Bi, 十(0) j=l 

For given M E (0, oo) andμE (0, 1), we choose 0。E(0, ½) in the statement as follows. Let 

(Vo,Qo) Eが (B1 (0))3 xび(B1 (0)) be a weak solution to the c:-zero limit equations 
2'十 2'十

2 2 

—• vo + VQO =―▽ -(voR(LcJ→） +(LCJ→） 0v0) 
j=l j=l 

-M入ova.▽ v0 in B½, 十(0)

▽ -V0=0 inB炉，十(0)

v0 = 0 onい(0)
2 

(40) 

with 

/ wo12::; 4. 
B½, 十(0)

(41) 

By the regularity theory to (40) in Appendix using (41), we see that v0 E C2(B!! (0))3 and 
8' 

IIV0llc2(Ba (O)) :SK 
g,+ 

with a constant K depending on M but independent of (入o,cp,(雰） E [-1, 1]3. Then, in the 

same way as in the proof of Lemma 3.2, we choose 0。E(0, ふ） sufficiently small so that for any 

0 E (0, 0o] 

I jvo(x)一幻V/)島+(O)→12山＜゜2:2μ
Bぃ(0) j=l 

(42) 
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holds. We emphasize that 0。dependsonly on M andμ. The rest of the proof is done by contra-

diction. Assume that there exist 0 E (0, 0o] and sequences {叫江1C (0, 1) with limk→00荘 =0,

｛（い， Cfk'C~k)}芦1 C [-1,1]叫皿d{炉}k=lCび(Bt+(D))3X3with 

IIG0kllだ (B~打(0)):::; 荘・

Moreover we assume that there exists 咋 00{V h=i in H1(B『¥(0))3with 

j IV州：：：：： 1 
B~\(O) 

(43) 

satisfying both 
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f 
2 

化 (0)
IV叫）一 L(o的）閏(O)(x四＋咋v(j)(t))l2dx>02+2μ,. (44) 

j=l 

We extend V氏 v(j)(・/咋）， andQEk by zero below the boundary, which are respectively denoted 
by V庄 vUl(-1森）， andQEk again, and see that V荘€ 圧 (B1(0))3and G荘€ び(B1(0))3x3for 

all k E N. By applying the Caccioppoli inequality in Lemma A.2 with p =½and r = 1 in 

Appendix, we obtain 

II ▽v荘 IIL2(B~k (0)) ,S: C(l + Afり
2, 十

uniformly in k with a constant C independent of M. Here we have used (13) in Lemma 2.3 

and (43). Hence, up to subsequences of {正｝芦1,{(い，Cドc;knk=1,and {か｝芦1,which 

are respectively denoted by {V門江1,{ (い，C『，c;knk=l'and{か｝芦1again, there exist 
Vo Eが (B1(0))3皿 d(入0,cp, cg) E [-1, 1]3 such that in the limit k→ oo, 

VCk→ v0 inび(B凶(0))3' ▽VCk --'▽ v0 inび(B凶(0))3x3,

（入Ek,C「k,c;k)→（入o,cf,c含） in [-1,1]3, QEk→ 0 in び (B½(0))3x3.

On the other hand, the assumption (43) implies (41). Hence, from (14) with m = 0 in Lemma 

2.3, by a similar reasoning as in the proof of Lemma 3.2 combined with the convergences 

v荘R砂→ v0@v0 inが(Bら(0))3'

2 2 

v我 R(LC.i冨 v(j)ビ）） +(LC? 荘 v(j)ビ）） @VE:k 
j=l 森 j=l 釘c

→ 0 inじ(B!(D))axa, 

we see that the limit v0 gives a weak solution to (40) satisfying (41). Then, in the same way 

as in the proof of Lemma 3.2, we reach a contradiction to (44) from the choice of 0 E (0, 0o] in 

(42). Hence we obtain the desired estimate (39) yielding (37). This completes the proof. ロ



104

Next we prove the iteration lemma to the Navier-Stokes equations 

{~ 竺:~"~ ー炉 ・Vu'悶塁霊
U0 = 0 on r『(0).

(NSり

An important step is the a priori choice of 0 of Lemma 4.1 depending on the bound of the 

solution. Let Ko be the constant in the Caccioppoli inequality in Appendix. 

Lemma 4.2. Fix ME  (0, oo) andμE (0, 1), and let 0。E(0, ½) be the constant in Lemma 4.1. 
Choose 0 = 0(M, μ) E (0, Bo] sufficiently small to satisfy the conditions 

叫 (1-0μ 戸(6+ 2国） ½Mo½:::; 1, 

(C1(lー仰）ー1(6+28M情M叫 +(1 -0)-! (凸(1-仰）―1(6+ 2国）½M0州

:::; 
(1 -0)-2 

4 

(45) 

and C2(l -0μ 戸(6+ 28記）M0:::; 1, 

where C1 and C2 are numerical constants appearing respectively in (55) and (56) in the proof. 

Moreover, let cμE (0, 1) be the co汀 espondingconstant for 0 in Lemma 4.1. Then fork EN and 

f E (0, gk+2(2+μ)(lー知）ー1点―!ilk], (46) 

where J1k is the Kronecker delta, any weak solution u0 = (ui(x), u~(x), uH x))丁 EH1(Bf, 十(0))3

to (NSりwith

satisfies 

f Be 砂，十(0) 

f 厨12::;M2 
Bい(0)

(47) 

2 

似(x)一こ咋，j(→+c:v(j)己））ドdx:SM切(2+2μ,)k. (48) 
j=l 

Here the number a%,j E股， jE {1, 2}, is estimated as 

2 k 

ど嗚I::;KJ0責1-0)―1(6 + 26(1-0) ―2記） ½ML0µ(l-1). (49) 

J=l l=l 

Proof. The proof is done by induction on k E N. For k = l, from E: E (0, E:μ], we can apply 

Lemma 4.1 to (NSりbyputting in (MNSり，

(W,Pり=(us,Pり，入0= 1, Cl = 0, j E {1, 2}, F0 = 0. 

Thus, if we set a1,j = (fJ叫）均，十(O),j E {1,2}, the assertion (48) for the case k = l follows. 

Moreover, from (47), the Caccioppoli inequality in Lemma A.2 with p = 0 and r = 1 leads to 

IIVu荘 lli2(B化(O))S Ko(l -0)―2(llu鳴2(Bい(0))+ (1 -0)-21国lli2(Bい(0)))

SKo(l-0)-2(4+2町1-0)一国）M2. 



105

Hence we obtain (49) fork= 1 from 

2 

Lia『,J
1 

Iさ2IB和，十(0)□II▽ ucll正 (Bい(0))
j=l 

::; K}0-~(l -0) —1(4+26(1-0)-2M4)½M. 

(50) 

Next we assume that (48) and (49) hold fork E N  and let c E (o,0k+2(2+μ)点].We define 

uc:/ek = uc:/ek (y) and pc:/ek = pc:/ek (y) on B『ぐ(0)by 

uc:/0¥y) = g(lい(u"(0ky)-t八，j(Y四＋か叫~)))'
j=l 

2 

pc:/0¥y) = 
. 0ky 

声（が(0勺）一こ呪炉（了）））．
j=l 

After a direct computation, we see that (U"/ek, pc:/eりisa weak solution to 

ー今uc/0k十▽ype/0k =―▽ y, (ue/0k Q9 (0附/0k)+ (0kbc/0k)Rucf0k) 

_ g(2+μ,)kuc:/0k . ▽ yuc:/0k 

十▽Y • pc:/0k in B~'.!k (0) 

▽ y・uc:/ek = 0 in Bげ(0)

us/Ok= Q Oil r『0k(Q)' 

where b01°k = b01°k (y) and pa/Ok = pa/Ok (y) are respectively defined by 

2 
E (j) 炉y

be/0¥y) = LC贔(y四＋屈V (了））， C虹=0kak,j, 
j=l 

2 

ps/0k (y) = -0―μk(bs/0k(y) @bs/0k(y)-(区C'J,kY四） 0(区CJ,kY四））．
j=l j=l 

Note that▽ . bs/0k s/0k 
y = 0 in B (0) and b01°k 1, 十 = 0 on r s/0k 

1 (0). Moreover, we can subtract 

2 2 

(LCJ,k訊） 0 (L  CJ,kY3ej) 
j=l j=l 

(51) 

from b01°k 0 b01°k beforehand, since it vanishes if we take its divergence. This is indeed a crucial 

fact in the following proof where we cancel singularities in 0-1 by choosing c: small with respect 

to 0 as in (46). From the recurrence hypothesis, (48) at rank k, we also have 

f 1w10k12~M2 
B心(0)

by a change of variables. Let us estimate be:/Ok and pe/Ok. From the recurrence hypothesis 

2 

L lak,ji~4K}0-~(I -0μ 戸(6+ 2国）½M
j=l 

(52) 

(53) 
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holds, where (1 -0)-1~2 was used. We have uniformly ink EN, 

l0kG_7,kl :S 4KJ (1 -0μ 戸(6+ 28M州M0½:S 1 (54) 

by (45). Moreover, by (13) in Lemma 2.3 and E'E (0,0k+2(2+μ)点],we see that 

図 (0kbc:/0k)II正(Btt(O))さC(L10kc;,kl)(l +d0-い
j=l (55) 

S C1(l -0μ 戸(6+ 28Mり2Af02'

where C1 is independent of k, M, 0, and c, while the definition of F01°k implies that for y E 

B 
c:/0k 
1,+ (0), 

2 2 

1Fc:/0k (y)I s c0(2-μ)k(L lak,ji)2 L ((嘉） Iv叫~)I+ (7fk)2 占(~冑）．
j=l j=l 

Thus, from (14) with m = 0 and m = 2 in Lemma 2.3, we have again by c E (0, 0k+2(2+μ)点］，

IIF010kll < C0(2-μ)k-3(l -0μ 戸(6+ 28記）M2(c20万+c0-k) 
L2(B汀(0))―

S c0-I-μ(l -0μ 戸(6+ 2国）M2(咋゚ 2+μ三 02(2+μ)) (56) 

さ(C2(l-0μ 戸(6+ 28 M4)M0)Mc加

where C2 is independent of k, M, 0, and c. Then, from (52) combined with (54) and (56) under 

(45), since c/0k E (O,cμl, we can apply Lemma 4.1 to (51) by putting 

(U°,Pり=(uc:/0k'pc/0k)' 入C = 0(2+μ)k' 

CJ= 0心，k, j E {l, 2}, 戸=Fc:/0k 

in (MNSりandfind that 

f 
2 

. 0勺

ぷ k(0) 
1w10k(y) L(aypfek)B::t(oJ(晒＋嘉v叫―)）12 dy 

j=l c 

S M叩 +2μ.

A change of variables yields that 

2 

f 国(x)一どい（→ +rn(j)己））12 dx S M20(2+2μ)(k+l) , (57) 
B似+1,十(0) j=l 

where the number ak+l,j• j E {1, 2}, is defined as 

叫，j=a知＋臼(Bypf0k) B; ぐ(0).

Let us estimate a%+1,j• By (52) and (55) under (45) we have 

（応(0罰 /0k)114 
び (B召t(o))

4 

+ (1 -0)―t1団 (0位 ;0k)II")11w10k2 
£2(B~ ぐ(0))

II £2(B e/ek 1,+ (0)) 

：：：： (1 -0戸M2.

(58) 
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Then (56) under (45) and the Caccioppoli ineq叫 ityapplied to (51) with p = 0 and r = 1 lead 

to 

1団 uc/0kll2
叫悶k(0)) 

S Ko(l -0)-2(11U"10k11~2(B鸞\on+ (1-0) —211w10k11~ い(B~げ(D))+ 2M2) 

S Ko(l -0)―2(6 + 2町1-0)―叩）M2. 

Therefore from the Holder inequality we obtain 

2 

L (Bypt0k) s/0k く 2IB。，十 (o)I―叶団us/0kII 
j=l 

B::t(O) ― L噂ぐ(0))

sKJ0訂1-0)-1 (6 + 26(1 -0戸M州M.

Thus, by the recurrence hypothesis, (49) at rank k, and (58), we have 

2 2 2 

ど叫，jsど叫 +0心凶u;/0k)ぐ coiI 
j=l j=l j=l 

1 3 1 k+l 

s~ 評―2(1-0)-1(6 + 26(1-0)一国）>ML0μ(l-l)' 

l=l 

which with (57) proves (48) and (49) at rank k + 1. This completes the proof. 

4.2 Proof of Theorems 1. 1 and 1.3 

口

Firstly we prove Theorem 1.1 by applying Lemma 4.2. Throughout this subsection, for given 

ME  (O,oo) andμE (0,1), let 0 E (O,g) and祁 E(0, 1) be the corresponding constants in 
Lemma 4.2. Note that, for any k E N, we have 

(0, 0k-1(02(2+μ)心）l C (0, 0k+2(2+μ)(1ー知）ー1点―,51k].

Proof of Theorem 1.1: We fixμE (0, 1) and set c:(1) = 02(2+µ,)E~- Let EE (O,c:(ll]. As in the 

proof of Theorem 3.1 in Subsection 3.2, we can focus on the case r E [c:/c:(1), 0]. For any given 

r E [c:/c:(1),0], there exists k EN with k 2: 2 such that r E (0¥0k-1]. From the bound (3) and 

c: E (0, ek-lc:(1l], one can apply Lemma 4.2. By using an easy estimate of ak,j E恥 jE {l, 2}: 

2 

I:laU 
3 1 

さC0―う(1-肥）―i(l+ M4戸M (59) 
j=l 
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with a constant C depends only on ll,llw1,oo(JR2), we see that 

(f, 見(OJ 国 1')½ ~(,-,1-, 汽·;•,+'"'国1')½'
SB—~(/阿(x) ― Laい(x四 +rnUl 戸））門 dx 2 

Be 
ek-1, 十

(0) j=l c )  

2 2 

+o-~(Llak-1,jl)(L/ I (j) x 2 
j=l j=l B:k-1, 十(0)→+rn (~))I dx) 

< M0(l+µ,)(k-l)-~ 

， 

2 

+ 00-3(1―仰）ー1(1+M州Mにf Ix四 +cv(i)げ））ドdx 1. 
， 

j=l Bい，十(0) c )  

Then, in the same way as in the proof of Theorem 3.1, we have 

(i尻(0) 国 12)½::::: (0-~ — µ,rµ, + ce-4(1 -gμ, い(1+ (c: 叫）(l+M州）Mr. 

(1) 
Hence we obtain the assertion (4) by lettingµ=½for instance and by defining CM by 

c位=(0-3 + 00-4(1 -0½ 戸(1+ (c: 叫）(l+M州）M. 

(1) 
Indeed, it is easy to see that CM increases in M if one chooses 0 to be the supremum of the 

C 
(1) 

numbers 0 satisfying (45) withµ=½- Moreover converges to zero when M → 0 from this M 

choice of 0. The proof is complete if we combine the trivial estimate for r E (0, l]. ロ

Next we prove Theorem 1.3. Let aUl E配， jE {1, 2}, be the constant vector in Proposition 

2.2. 

Proof of Theorem 1.3: As in the proof of Theorem 1.1 we set s(2) 02(2+μ) 2 = E and take μ 

E E (0, c(2)]. 
(i) We focus on the case r E [s/s<1l, 0] again as in the proof of Theorem 1.1. Since every 

r E [s/s(2l,0] satisfies r E (0k,0k-l] with some k EN satisfying k 2': 2 we have 

2 

(/ 国(x)ー LE:
尻 (o) ,~, a,_., 四:・,門dx)

½ 
<::: (0-3i尻k-1十 (0)国(x)一苔い，J四 ejドdx)

< M0(l+µ)(k-l)-~ 

2 

+ 00-3(1 —仰）ー1(1 + M州Ms(Lf lv(j)げ）ドdx , 
ぅ

j=l B:k-1, 十(0) c)  

where Lemma 4.2 has been applied in the third line. The estimate (59) for ak-l,j E恥 jE {l, 2}, 
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is also used in the same line. Then (14) with m = 0 in Lemma 2.3 and gk-l E (0, 0-1,,.) lead to 

(i見 (0)国(x)-t心，J四eldx)½ 
j=l 

::; (0-;-μ 凸 +C0責I-0μ 戸(l+M叫い）M. 

Hence we obtain the assertion (5) by defining ce: . and C 
(2) 

T,J M by 

cら=ak-1,j'Cげ=(0—〗—µ+C0責I -0μ 戸(l+M州）M, (60) 

and by combining the trivial estimate for r E (0, I]. 
(ii) In a similar way as in (i), for r E [c/cC2l,0] with r E (0k,0k-l], we have 

(/ 
2 

見 (0)阿(x)一苫ら（叫＋量）附dx)

< M0(1+µ)(k-1)-~ (61) 

2 

+ 00-3(1ー例）ー1(1+M州Mc(苫f尻k-1,+(O) Iv(疇）一砂）ドdxr,

where Lemma 4.2 and the estimate (59) are applied again. Moreover, the notation~,j = ak-l,J 
in (60) is used. Then (14) with m = 0 in Lemma 2.3 and (12) in Proposition 2.2 lead to 

2 (Lf lv(jげ）一a(j)2 dx)½ 
j=l Bい，十(0) c 

2 

S g-;(k-l) (L J lv(j)戸）―a叫 dx
½ 

j=l 鬼 +(O) c )  

+0甘(k-1)(文J J゚k-1lv(j)げ）一aUl2d叩 dx'2
j=l (-0k-1,0k-1)2 ,: c I )  

S C(c:;。牙(k-1)+ c:½0-½(k-l)). 

Hence, by gk-l E (0, 0-1r), r-1 E [0-(k-l), 0勺， andc E (0, gk-lc:(2l], from (61) we find 

(/阿(x)-tら（→ +rn(jl)l2dx½ 
Be (0) r,+ j=l ） 

S (0-~-µ 凸 +c0-3(1-0μ 戸(1+ c(2l)(l + M叫｝パ）M. 

The assertion (6) follows by setting 

面=(0-炉μ+C0-3(l -0μ 戸(1+ c(2l)(l + M州）M. 

This completes the proof by using the trivial estimate for r E (0, l]. 口
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A Appendix 

In this appendix we state a few technical lemmas without proof. The proofs can be found in 

[19, Appendices A and B]. The first one is about the regularity results for 

｛ご： :;p~ ―▽ •(uoob+boou) ―畑 Vu:塁：：［闊
u=O onr1(0), 

2 

(62) 

where b = b(x) is defined as b(x) = I: にCjx3ej.

Lemma A.1. Let (〉1,C1, C2) E 〗忍3 and let (u,p) E H1(B½, 十(0))3x L2(B1 (0)) be a weak 
2'十

solution to (62). Then for all r E (0, 贔）， wehave 

u E C00(Br, 十(0))3, p E C00(Br, 十(0)), 

and for all k EN  U {O}, we have 

llulb(Br, 十(0))さK1,

where the constant K1 depends nonlinearly on (入，Cいら）， llullび (Bi (o)), and k. 
:i;,+ 

The second one is about the Caccioppoli inequality for 

{―△研＋可＝―▽ • (IfR 炉十 a"Rが）一叫• ▽炉）十▽ ・>'inBい(OJ
▽ ・ 炉 =0 inBい(0)

炉=0 on r『(0).

(63) 

(64) 

(65) 

Lemma A.2. Let E E [O, 1), が E圧 (Bf,十(0))3withが=0 on ri(O), 入e:E [O, 1], and Fe: E 

L2(Bf, 十(0))3x3,and let ue: E H1(Bf, 十(0))3be a weak solution to (65). Then we have for all 

0 < p < r::; 1, 

II匹 lli2(B;,十(0))::;;K,。 ((r~p)2 llu鳴戌，+(D))

4 

IIVbEII百

+ (11▽b干＋
だ (B;,+(D))

L2(B;,+(D)) 
(r -p)百

4 ) llu鳴噂，十(0))
(66) 

(.X. 州
+ (r _ p)4 lluclll2(B;, 十(0))+ IIFElli噂，+(D)))'

where the constant Ko depends only on ll,llw1,=(即）. In particular it is independent of c:, b", 見
p, and r. 
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