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1 Introduction

This note is a summary of the preprint [19]. The paper [19] is concerned with the local regularity
of viscous incompressible fluid flows above rough bumpy boundaries z3 > ey(2'/e) with ~
Lipschitz and the no-slip boundary condition. Although bumpy boundaries have a complicated
geometry and low regularity, the flow may paradoxically be better behaved than for smooth or
flat boundaries. It is well documented in the physical [22, 33] and the mathematical [29, 12, 18]
literature that roughness favors slip of the fluid on the boundary in certain regimes. In the
striking paper [8] it is even showed experimentally that roughness may delay the transition to
turbulence. This also supports the idea that the vanishing viscosity limit from Navier-Stokes to
Euler may be less singular above highly oscillating boundaries than above flat ones [20, 11, 31].

Our goal is to investigate these effects, such as the enhanced slip, or the delay of the transition
to turbulence, from the point of view of the regularity theory. Due in particular to vorticity
creation at the boundary, the boundary regularity of fluid flows with the no-slip boundary
conditions is delicate. In the nonstationary case, it is for instance not known whether there
is an analogue of Constantin and Fefferman’s [7] celebrated geometric regularity criteria for
supercritical blow-up scenarios. For perfect slip or Navier-slip boundary conditions on the
contrary, the situation is brighter. In particular an extension of the criteria of [7] is known in
this case; see the work [6] by Beirdo da Veiga and Berselli. We expect that fluids over bumpy
boundaries have an intermediate behavior between these two extreme no-slip and (full-)slip
situations, especially as far as the mesoscopic regularity properties are concerned.

Our approach grounds on the use of asymptotic analysis to prove regularity estimates. The
success of such methods to prove the regularity to certain Partial Differential Equations is
spectacular. One of the striking examples is that of homogenization. The basic idea is that
the large-scale regularity is determined by the macroscopic properties of the systems, i.e. in
the homogenization limit, while the small-scale regularity is determined by the regularity of the
data (coefficients, boundary). Two approaches were developed: (a) blow-up and compactness
arguments in periodic homogenization in the wake of the pioneering works [4, 5], (b) quantitative
arguments based on suboptimal local error estimates as developed for periodic homogenization
[34, 9, 32], almost periodic homogenization [3], and stochastic homogenization [15, 1].

In this work, we focus on the regularity for stationary problems. We consider the three-
dimensional stationary Navier-Stokes equations

—Auf +Vp* = —u® - Vu® in Bf (0)
V-u®=0 in Bf (0) (NS#)
u® =0 on I'7(0) .

The functions u® = u®(x), u® = (u‘i,ug,ug)T € R3, and p° = p°(z) € R denote respectively the



velocity field and the pressure field of the fluid. We have set for € € (0,1] and r € (0, 1],

/ .’L'l

Br (0)={re R? | 2’ € (—r,7)%, sfy(%) <rz3<e /(?) +7},
/ (1)
rE0)={xeR®| 2" € (—nrr)?, z3= 57(%)}

The boundary function v € W5H*°(R?) is assumed to satisfy v(z') € (—1,0) for all 2/ € R.

Our use of compactness arguments to tackle the regularity for solutions of (NS) is reminis-
cent of the pioneering work of Avellaneda and Lin [4, 5] in homogenization, and of the works
by Gérard-Varet [10], Gu and Shen [16], and Kenig and Prange [23, 24]. We separate the small-
scale regularity, i.e. at scales < ¢, from the mescopic- or large-scale regularity, i.e. at scales
e < r < 1. Concerning the small scales, the classical Schauder regularity theory for the Stokes
and the Navier-Stokes equations was started by Ladyzenskaja [27] using potential theory and
by Giaquinta and Modica [14] using Campanato spaces. These classical estimates require some
smoothness of the boundary and typically depend on the modulus of continuity of V~ when the
boundary is given by x3 = v(a’). Therefore, these estimates degenerate for highly oscillating
boundaries z3 = v(z’/¢) with sufficiently small € € (0,1). As for the large scales, on the con-
trary, the regularity is inherited from the limit system when ¢ — 0 posed in a domain with a
flat boundary. Here no regularity is needed for the original boundary, beyond the boundedness
of 7 and of its gradient. The mechanism for the regularity at small scales and at large scales
is hence completely different. Moreover, it is possible to prove. at the large scales, improved
estimates that are known to be false at the small scales. An example of this is our large-scale
Lipschitz estimate of Theorem 1.1 below that is known to be false over a Lipschitz graph at the
small scales even in the case of a linear elliptic operator [25, 26, 34].

Beyond improved regularity estimates, our objective is to develop local error estimates for
the homogenization of viscous incompressible fluids over bumpy boundaries and derive local wall
laws. The wall law catches an averaged effect from the O(e)-scale on large scale flows of order
O(1) through homogenization. In the wall law, a rough boundary is modeled as a smooth one
and an appropriate condition is imposed on it reflecting the roughness of the original boundary.
In typical situations, this process gives a Navier-type condition with slip length of O(e), the so-
called Navier wall law. This effective boundary condition reads for instance in two dimensions

up =cadbu;, uz =0 on 8]1%1 (2)

with a constant a depending only on the boundary function 7. We now briefly review the
literature concerned with the derivation of wall laws such as (2) and the proof of error estimates
in the global setting. The literature is vast and it is impossible to be exhaustive here. The wall
law for simple stationary shear flows is analyzed in the pioneering work Jéger and Mikeli¢ [21]
when the boundary is periodic. This result is extended to a random setting by Gérard-Varet [10]
and to the almost periodic setting by Gérard-Varet and Masmoudi [12]. Nonstationary cases are
studied in Mikeli¢, Nec¢asovd, and Neuss-Radu [30] under the assumption that the limit flows are
space-time C? functions. The strong regularity condition in [30] implies that a careful analysis
is needed when we study Initial Boundary Value Problems (IBVPs). Indeed, for these cases,
no matter how regular the initial data are, there is the loss of regularity of solutions due to
the boundary compatibility condition. Higaki [18] considers an IBVP in a bumpy half-space
and verifies the Navier wall law for C'! initial data under natural compatibility conditions. A
key ingredient is to make use of the L*°-regularity theory of the Navier-Stokes equations in the
half-spaces. Theorem 1.3 below provides a local counterpart of these global error estimates in
the case of the stationary Navier-Stokes equations.
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Outline and novelty of our results. Our main results are given in the two theorems below.
In Theorem 1.1 we state a uniform Lipschitz estimate. In Theorem 1.3 we give a local error
estimate and identify the building blocks of the regularity theory. Both results hold for weak
solutions of the nonlinear equations (NS?) and hold without any smallness assumption on the
size of the solutions.

Theorem 1.1 (mesoscopic Lipschitz estimate). For all M € (0,00), there exists a constant
M € (0,1) depending on [Vllwreomzy and M such that the following statement holds. For all

e € (0,eM] and r € [¢/eM, 1], any weak solution u® € HY(B5 . (0))* to (NS°) with

1
€12 2 <M 3
ul” ) < (3)
B§ ,(0)

1

2
(]é; ) mz) <, @

+

T

satisfies

where the constant C](&) is independent of € and r, and depends on ||y|ly1.00m2y and M. More-

1) . ) ) .
over, C’J(\/ is a monotone increasing function of M and converges to zero as M goes to zero.

Remark 1.2. (i) By using the Caccioppoli inequality in Appendix, one can easily prove

1
PR
VUS 2) S C(l)
(]i:,mn vl M

for r € [¢/e™), %] Here the constant C](Vl[) satisfies the same property as C’]<Vll) .

(ii) In the paper [10], Gérard-Varet obtains a uniform Holder estimate for weak solutions of
the Stokes equations when v € C'*(R?) for a fixed modulus of continuity w. Let us emphasize
that there is a gap in difficulty between the uniform Hélder estimate (right-hand side of (4)
replaced by Cr# with p € (0,1)) and the uniform Lipschitz estimate (4). Indeed the Lipschitz
estimate requires the analysis of the boundary layer corrector. Moreover, let us emphasize that
the Lipschitz estimate is the best that can be proved for «° uniformly in €. This comment
does not contradict the uniform C* estimate below. Indeed the estimate in Theorem 1.3 is a
measure of the oscillation between v and affine functions, and is not an estimate for u* directly.

(iii) As in the works [4, 10, 23] one can combine the mesoscopic regularity estimate with the
classical regularity, provided the boundary is regular enough, i.e. when V-~ is Hélder continuous.
In that case, we can prove the full Lipschitz estimate \|Vu8||Loc(Bi+(0>) for (NS¢). However, one
cannot expect such an estimate to hold in Lipschitz domains even for the Laplace equation with
the Dirichlet boundary condition.

(iv) There is a version of Theorem 1.1 for the linear Stokes equations; see Theorem 3.1 in
Section 3 below. An important application of such uniform Lipschitz estimates is for estimating
the Green and Poisson kernels associated to the Stokes equations in the Lipschitz half-space
{ys > v(y')}. Following [4], such estimates were proved for elliptic systems in bumpy domains
in [23], or the Stokes equations with periodic coefficients [17]. Such estimates play a crucial role
for the homogenization of boundary layer correctors, in particular in the works [13, 2, 35]

Next let us state the result which gives a local justification of the Navier wall law. The
following theorem is concerned with the polynomial approximation of weak solutions to (NS¢)
at mesoscopic scales. Remark 1.4 below states consequences of the theorem and Remark 1.5
establishes the connection between our theorem and the Navier wall law.



Theorem 1.3 (polynomial approximation). Fiz M € (0,00) and u € (0,1). Then there exists
a constant €2 € (0,1) depending on [Vllw.eo @2y, M, and p such that for all weak solutions
uf € H'(B5 (0))? to (NS°) satisfying the bound (3), the following statements hold.

(i) For all e € (0,e®)] and r € [¢/eP), 1], we have

(o

7t (0)

Zcm:pde1| dx) <C(2)( H“Jrszrz) (5)
0)

where the coefficient c; ;, j € {1,2}, is a functional of u® depending on e, 7, ||V|[w1eow2), M,
and 1, while the constant C’J(fj) is independent of € and r, and depends on ||y|lw1.00r2), M, and

fi.

(ii) We assume in addition that v € W1 (R?) is 2r-periodic in each variable. Then there ex-
ists a constant vector field o) = (agj), aéj),O)T € R?, j € {1,2}, depending only on (Y[l w100 2y
such that for all € € (0,e@)] and r € [¢/eP 1], we have

9 1 —
(][ ‘UE x Z C T,J $3€ + €Q(J))|2 dl‘) 2 < C]<\/21)(7'1+/J + E%T_%) ’ (6)
B2 (0)

=1

where the coefficient c; ;, j € {1,2}, is same as in the estimate (5), while the constant C’](\j) is
independent of ¢ and r, and depends on ||7|ly1,00(r2y, M, and .

Remark 1.4. (i) Each of the constants 0(4) and C(I) satisfies the same property as C( )i
Theorem 1.1 as functions of M.

(ii) Note that at the small scale, namely when = O(¢), the right-hand side in the estimate
(5) is no better than the right-hand side of (4) in Theorem 1.1. Hence there is no improvement
at this scale. On the other hand, if we consider the case € [(¢/e(*)%,1] with § € (0,1), then
we see that

Pl 4 eapa < (1+ (5(2))%1“12;557“%”“ .

Therefore, we call the estimate (5) a mesoscopic Cb* estimate at the scales € [(¢/e2))9,1]
with § € (0, (21 + 1)71].

(iii) A comparison between the estimates (5) and (6) highlights the regularity improvement
coming from the boundary periodicity. Indeed, the estimate (6) is sharper than (5) at mesoscopic
scales because 2772 < 272 holds whenever r € e, 1].

Remark 1.5. Let us denote the polynomial in (6) by Pg ;, j € {1,2}:
v (1) = z38) + 20l (7)

Then each PE - is a shear flow in the half-space ]R3 and is an explicit solution to the Navier-
Stokes equatlons with a Navier-slip boundary condltlon

—Auf, + Vpy = —ufy - Vuy in Rg
V-uy =0 in R} R
uy3 =0 on B]R‘j’r (NSy)

(U1, uivg) T = eM(Bsufy 1, Osusy,) " on ORY

with a trivial pressure p%;, = 0. Here the 2 x 2 matrix M = (al(j))lgi’jgg can be proved to

be positive definite; see Proposition 2.2 (ii). Thus the estimate (6) in Theorem 1.3 reads as
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follows: any weak solution u® to (NS¢) can be approximated at any mesoscopic scale by a linear
combination of the Navier polynomials Py ; and Py , multiplied by constants depending on u®.
This is a local version of the Navier wall law at the O(e?)-scales, which has been widely studied
in the global framework.

The novelty of our results can be summarized as follows:

(I) Singular boundary: it is just Lipschitz and has no structure (except in Theorem 1.3 (ii)).

(IT) No smallness assumption on the size of solutions.

(III) Derivation of a local wall law and local error estimates.

As is stated in (I), one of the originalities of Theorem 1.1 is that it does not rely on the
smoothness of the boundary such as, the Holder continuity of Vv. Moreover, one cannot use
any Fourier methods due to the lack of structure of the boundary. In fact, when working with
Lipschitz boundaries, the classical Schauder theory is not applicable directly since there is no
improvement of flatness coming from zooming on the boundary as is explained in [24]. The
smoothing happens at scales larger than that of the boundary layer thickness.

Concerning point (II), we are able to remove any smallness assumption on the size of the
solutions in Theorem 1.1 and Theorem 1.3. This is in stark contrast with previous works
concerned with the regularity of elliptic or Stokes systems [4, 10, 16, 23, 24]. Moreover, as far as
we know the error estimates in the stationary global setting are all in the perturbative regime;
see for instance [12].

Point (III) is concerned with Theorem 1.3. It is important physically as well as mathemati-
cally since we are interested in the effects of rough boundaries on viscous fluids. Our result is a
first-step toward understanding roughness effects on the Navier-Stokes flows in view of regularity
improvement. As far as we know, estimate (6) is the first justification of a local wall law.

These three aspects are further discussed in connection with our strategy in the paragraph
below.

Difficulties and strategy. The proof of Theorem 1.1 and Theorem 1.3 is based on a com-
pactness argument as in [23, 24] originating from the works [4, 5] on uniform estimates in
homogenization. In principle, we follow the strategy of [24] concerned with the regularity the-
ory of elliptic systems in bumpy domains. The main points in [24] are: (1) construction of a
boundary layer corrector in the Lipschitz half-space, (2) proof of the mesoscopic regularity by
compactness and iteration. This strategy entails difficulties related to the lack of structure of
the boundary which implies a lack of compactness of the solution to the boundary layer prob-
lem, and to the unavailability of Fourier methods up to the boundary. In addition to these
difficulties, our proof is more involved due to: (i) the vectoriality of the equations (NS¢) and the
divergence-free condition, (ii) the nonlocal pressure, (iii) the nonlinearity of the Navier-Stokes
equations and the lack of smallness of the solutions.

Concerning the first point, the (vectorial) divergence-free condition V - u® = 0 causes a
difficulty in the compactness argument even for the Stokes equations; see Section 3, especially
Lemma 3.2 and its proof. A key idea is that no boundary layer is needed on the vertical
component of the velocity. Therefore the boundary layer corrector is naturally constructed as a
divergence-free function.

Concerning the second point, let us stress a key difference between the stationary Navier-
Stokes equations and the nonstationary ones. For the stationary Stokes equations imposed in a
ball B;1(0), one can estimate the pressure directly in terms of the velocity as

lp = @) B,o)llz2B10)) < CIVDIE-1B,(0)) < ClIVUll 1208, (0))- (8)



Similar estimates in balls intersecting the boundary and for the Navier-Stokes equations are
intensively used in our note. This is in strong contrast with the nonstationary Navier-Stokes
equations where the pressure interacts with the time derivative of the velocity.

The third aspect is partly related to (ii). In typical statements of the partial regularity
theory for the nonstationary Navier-Stokes equations, one assumes smallness of certain scale-
critical quantities in € and hence one obtains linear equations in the limit ¢ — 0. Then the
regularity theory for the linear equations yields a space-time Hélder regularity improvement
for the original solution; see Lin [28] for example. However, for the stationary Navier-Stokes
equations discussed in our note, we do not need such a smallness condition; see Theorem 1.1.
The limit equations when ¢ — 0 are not linear, but we can prove the smoothness of weak
solutions because H' bounds are enough to control both the nonlinear term and pressure term
in L? space (see Appendix for details). Then bootstrapping using the standard elliptic regularity
in a smooth domain leads to the (spatial) C*°-regularity for the limit equations. Estimate (8)
is the reason why one can bootstrap the regularity. Once the regularity is inherited at a fixed
scale 6 € (0,1), a serious difficulty arises in the iteration of such an estimate. At each step in the
induction, we need to use the Caccioppoli inequality from Appendix to control the norm ||u®|| 2.
A naive approach yields an estimate that depends algebraically on the size M of u® as in (3).
Hence the naive estimate becomes unbounded in M as the iteration proceeds. This prevents
one from closing the induction due to the lack of uniformity. We overcome this difficulty by
choosing the free parameter 6 in the compactness lemma in terms of the data v and M. This is
done in the spirit of the Newton shooting method. We will make this idea precise in Section 4.
It should finally be emphasized that the boundary layer corrector, entering the scheme for the
nonlinear Navier-Stokes equations (NS), solves the linear Stokes equations. This is expected
from the following formal heuristics. Indeed, in the boundary layer u® ~ ev(z/e), so that v
solves f%Av—i-sv-Vv—o—Vq:O, V.-v=0.

Outline of the note. In Section 2 we summarize the results concerning the boundary layer
equations. In Section 3 we prove the linear version of Theorem 1.1 in order to show how the
compactness method works in the regularity argument. In Section 4 we prove the main results
namely Theorem 1.1 and Theorem 1.3. The regularity theory in a domain with a flat boundary
and the Caccioppoli inequality are stated in Appendix.

Notations. Let us summarize the notations in this note for easy reference. For z = (1, 2, .Z'3)T €
R3, we denote by 2’ its tangential part (x1,2z2)". For r € (0,1] and ¢ € (0, 1], we define B, (0)
and I'2(0) as is done in (1) and set

BT(O) = {I € Rd | 'I, € (_T7 7”)27 T3 € (_T7 T‘)} = (_Tv T)37

B, (0)={z R |2 € (~rr)*, x3€(0,r)},

rT(O) = {17 € R? ‘ S (77077’)27 €T3 = 0}

Note that formally we have B, (0) = BY, (0) and I',(0) = I')(0). For an open set @ C R? and
a Lebesgue measurable function f on €2, we set

]{2|f\:|é—‘/ﬂ\f|7 (%:ﬁ/ﬂf, (9)

where |Q] denotes the Lebesgue measure of Q.
Note that, since our interest is in the local boundary regularity of (NS¢), the boundary
condition is prescribed only on the lower part of 9B;  (0). We work in the framework of weak
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solutions of (NS). A vector function u® € H'(Bf ,(0))? is said to be a weak solution to (NS°)
if u® satisfies V - u® = 0 in the sense of distributions, u°| r0) =0 in the trace sense, and

/ Vu® -V = —/ (u®-Vus) - ¢ (10)
B1,.(0) 5140

for any ¢ € C5%, (B 4 (0)). Here C%(€2) denotes the space of test functions { f € C3°(Q)* | V-f =
0} when  is an open set in R?. For the pressure p°, we emphasize that the unique existence
in L%( i, +(0)) up to an additive constant can be proved in a functional analytic way using the
weak formulation (10).

2 The boundary layer corrector

In this section we summarize the results concerning the boundary layer problem in Lipschitz
half-spaces without proof.

General case. The boundary layer equations for j € {1,2} are written as

—Av+Vqg=0, y e QP!
V-ov=0, y € QM (BLY)
vy (W) == )e;,

where v € W1 (R?) and QP! denotes the Lipschitz half-space QP! = {y € R3 | y(y) < y3 < oo}
The unique existence of weak solutions to (BL()) is stated as follows.

Proposition 2.1. Fiz j € {1,2} and let v € WH(R2?). Then there exists a unique weak

solution (v,q) = (v9),qU)) € HL (QP1)3 x L?oc(m) to (BLY)) satisfying

sup/ / Vo (y' ys) P dys dy’ < C, (11)
n€Z? JJn+(0,1)2 J(y')

where the constant C' depends only on ||7|ly1,00 (r2)-

The basic idea of the proof is to decompose the domain QP! into E U (QM \@) and to
derive an equivalent equations to (BL)) on the infinite channel QP! \]RT?’F but involving the
Dirichlet-to-Neumann operator. This formulation allows us to apply the Poincaré inequality in
the vertical direction when estimating the local energy. The reader is referred to [19, Section 3]
for the details.

Periodic case. We note the asymptotic behavior of the boundary layer corrector at spatial
infinity when the boundary is periodic; see [19, Proposition 11].

Proposition 2.2. Fiz j € {1,2} and let v € WH*°(R?) be 27-periodic in each variable. Then the
weak solution (v(j>,q(j>) to (BL(j)) provided by Proposition 2.1 satisfies the following properties.

(i) There exists a constant vector field al9) = (agj), ozéj), 0)" € R3 such that

. . . . _ v
09(y) = @V + yslgP ()] < COO(, )l r202mny e 25 ws > 1, (12)

where C' is a numerical constant. )
(ii) The 2 x 2 matric M € R**2 defined by M = (Otgj))lgi_’jgg is symmetric and positive
definite.



Some useful estimates. We state an easy lemma useful in estimating v(7). We omit the proof
since it is just a simple computation using Proposition 2.1.

Lemma 2.3. Fiz j € {1,2} and let e € (0,1) and r € [e,1]. Then we have

/ ‘(Vyvm)(z)’2 dz < Cer?, (13)
B; . (0) €

J

where the constant C' is independent of & and r and depends on ||||ly1,0 (m2)-

and for m € {0,1,2},

q_m
’v(.i)(f)f“” dr < Cr_f ’ (14)
2.0 € e

3 Regularity for the Stokes equations

In this section we consider the Stokes equations
—Auf +Vp* =0 in B (0)
V-uf =0 in Bf ,(0) (S9)
u® =0 on I'5(0)
in order to demonstrate how the compactness and iteration arguments work in a simpler setting.
Note that a weak formulation for (S¢) can be defined in a similar manner as (10) for (NS¢) in
the introduction. Our goal in this section is to prove the following theorem.
Theorem 3.1 (linear estimate). There exists a constant €3 € (0,1) depending on (Y[l wrr.o0 m2)

such that the following statement holds. For alle € (0,e®)] andr € [¢/e®), 1], any weak solution
uwt = (u5(z),us(x),u5(x)) T € HY( 5 1(0))? to (S°) satisfies

1 1
(f w) F < c<3>r(][ |uf|2>2 , (15)
B (0) Bf . (0)

where the constant C®) is independent of ¢ and r, and depends on 7[00 2y -

e
T+

We prove the compactness and iteration lemmas in Subsection 3.1 which are essential tools
for our argument. We prove Theorem 3.1 in Subsection 3.2 using the estimates in Section 2.

3.1 Compactness and iteration lemmas

The compactness lemma is stated as follows. Let v() = v(9)(y) be the weak solution to (BL®))
for j € {1,2} provided by Proposition 2.1.

Lemma 3.2. For p € (0,1), there exist constants 6 € (0,3) and €, € (0,1) depending on
[[Vllwr.oom2y and p such that the following statement holds. For e € (0,e,], any weak solution
u® = (uf(2), us(x),u5(x))" € H'(B] (0))* to (S°) with

f o s (16)
Bs , (0)

satisfies

2
][ @) — 3 @) 55 0 (w35 + 0@ (L))| da < 67+ (17)
B5,4+.(0) j=1 " <

95



96

Proof. For given p € (0,1), we choose 6 € (0,3) in the statement as follows. Let (u®,p") €
Hl(B%’+(O))3 X LQ(B%’+(O)) be a weak solution to the e-zero limit equations

~Au? +Vp? =0 in By _(0)
b =
V-u'=0 in B%+(O) (18)
u? =0 on I‘%(O)
with
[ e (19)
By 4 (0)

By the regularity theory to (18) in Appendix combined with (19), we see that u° € C? (B%ﬁL (0)).

From the no-slip condition in (18), we calculate the tangential component u? of w with j € {1,2}
as

ul(x) — (05u) g, , (0) 3

€3 0(,./ 0
=2 Osu; (2, tes) — Ozu;(2)) dz dt,
\Be7+(0)|/o /BM(O)( i ) = Oy ()

where 6 € (0, %) is arbitrary. Thus we see that
L, o 5@ = @ahs, o sl o < (20)
0.+

with a constant C' independent of §. For the normal component uJ of u, by the divergence-free
and no-slip conditions in (18), we have

ug :—xg/ 28 uo (2, tx3) d

Since 8ju9 =0on F%(O) holds for j € {1, 2}, we also have

77553/ / Ztasa]uj 2, strs)dsdt.

Thus there exists a constant C' independent of § such that for any 6 € (0, %),
][ [ud|? < Co*. (21)
By, +(0)

Then we choose 6 € (0, %) in (20) and (21) sufficiently small depending on u so that
2
2
][ Z 83’& B9+ $3ej‘ dx
Bo,+(0) j=1
62+2u

= [ul(x) — (63u )B 13\2dx +][ [ud]? <
]ig,+<o) ! o+l By 4.(0) 8

(22)
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The rest of the proof is by contradiction. Assume that there exist sequences {ex}72, in (0,1)
with limy, o £ = 0 and {u}32 in H'(Bf* (0))* with

£, s (23)
By, (0)
satisfying both
—Aut + Vp* =0 in B (0)
V- uft =0 in B§f+(0)
utk =0 on I'{*(0)
and
2
][ Z 8311, sk “(0) 2336] + EkU(J) )| do > 022 (24)
B§k+<0) j=1 5

Since ey(2 /1) — 0 uniformly in 2’ € R?, the boundary I'{*(0) is included in the set (—1,1)2 x
(—%70) when k is sufficiently large. We extend u®* by zero below the boundary, which is
denoted again by u®*, and we see that ufk € HY(B1(0))? for all k € N. Then, by the Caccioppoli
inequality in Lemma A.2 with p = and r =1 in Appendix, we have from (23),

][ Vs < ©
BY (0)
1.4

with C independent of €. Hence, up to a subsequence of {u+}¢2 |, which is denoted by {u®*}2°
again, there exists u® € H'(B1(0))? such that in the limit & — oo,
2

u* — u’ in L*(B1(0))?, Vuts — Vi’ in L*(B

1
2

and (19) holds by the assumption (23). Moreover, we have for any ¢ € C§°((—3, 5)*x (—3,0))?,

/ u o= lim uF =0
(=3:3)2x(~3.0) ko0 J(—3.5)2%(=5.0)
and for any ¢ € ngj,(B% (0))3,
/ Vu' Vo = lim Vuk -V =0.
By L0 koo Bk (0)

We see that u® = 0 on (—3, $)? x (—1,0) and hence that u® = 0 on F%(O) from u® € HI(B% (0)).

Thus u” is a weak solution to (18) satisfying (19). Then, from Bg* (0) = (By" (0) \ By (0)) U
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(BZﬂ(O) N By4(0)) and | By (0)| = |By4(0)] = 46°, by the triangle inequality we have

][E Z 83“ Bk (0) (z3€; —I—akvm(f))‘?dx
Be,k+(0 et =
1 / 2
< — 83u Bk (z3ej + gkv(J)( )| do
463 Bk (0)\By,+ (0 ) ; ‘. (0) j - |

2
+ — / ufk — 0 + Bgu B 1;39 (aSUO) T3€; dax
03( BZ,’;(O)nBM(m i Z‘ 5. (0)738) ) By, 0)T3€|

2
NOT 2
4 &2 P u / (= d:r)
k;‘( ool o (U)ﬂBeJr(U) )

+ 8][ 03u r3e;| dr.
B9,+(0) Z By, +(0) J‘

=1

Since u®* — u’ in L?(B1(0))? and {Vu*}7° | is uniformly bounded in L*(B
2
assumption (24) we see that

(0))2*3, from the

N|=

6224 < Tim uF(x 83u B z3ej + o) dzx
k—o00 Bsk (0) } ; k (0)( J ‘
2
< 8][ Z Bo+(0)x3e.7’ da:
Bﬂ,+(0) j=1

where (14) with m = 0 in Lemma 2.3 is applied to obtain the second line. Hence the choice of
0 in (22) contradicts (24). This completes the proof of Lemma 3.2. O

The iteration lemma to (S%) is stated as follows. Let K( be the constant of the Caccioppoli
inequality in Lemma A.2 in Appendix.

Lemma 3.3. Fiz pu € (0,1) and let § € (0,%) and €, € (0,1) be the constants in Lemma

3.2. Then for k € N and ¢ € (0,05 1e,], any weak solution u® = (u§(x),us(x),u5(z))" €
HY(B5 (0))? to (S°) with

][ luf|? <1 (25)
B (0)

satisfies

2
][ |u(2) - Z ai, j(v3e; + Ev(” | dz < gH+20k (26)
O =

Here the number aj ; €R, j € {1,2}, is estimated as

Z|ak3|<2K0 073(1-0) 129#“ by, (27)
=1



Proof. The proof is done by induction on k € N. The case k = 1 is valid since it is exactly (17)
in Lemma 3.2 putting af ; (83u )B: RONVAS {1,2}. Indeed, by the Holder inequality we have

2
_1
Z lai ;1 < 2|B5 1 (0)]"2 [Vl 25, (o))

1 3 _
S Kg072(1=0) lwfllra s, o)) »

where we have applied the Caccioppoli inequality to (S°) with p = 0 and r = 1 in Lemma
A2 in Appendix. Thus by (25) we have (27) for £ = 1. Next let us assume that (26)
and (27) hold at rank k € N and let ¢ € (0,0%,]. Then we define new functions U e/t =

" (), U5 (), U5 ()T and P19 = P/" (y) on BE?(0) by
k 1 > 0Fy
U/ (y) = m(us(eky) - Zﬁka;j (y3e_l ak (J)( B ))) )

2
P = gl Lk ).

We see that (Ue/ek, PE/Gk) is a weak solution to

—AUE v, P — 0 in BT (0)

v, U =0 in B/ (0) (28)
Us/tt = 0 on 15/ (0).

From the recurrence hypothesis (26) at rank %k, we have

Us/f*)2 < 1 29
]{Bwk<0)| | (20)

by a change of variables. Now, since £/0% € (0, €], we can apply Lemma 3.2 to see that

2 k
E/ak E/Qk 0@ i (4) 0_@/ 2 2421
éE/gk (0) U ]:ZI ay3U E/fk (0) (yse] + ekv ( c ))} dy < 0 .

0,4

A change of variables leads to

2
][5 u(z Zak+1 jlzse; + EUU ] dp < @201 (30)

0k+1,+(0) J=1

where the number aj, ; €R, j € {1,2}, is defined as

ok
a5y, = a5 + 00, U7") (31)

B
The Caccioppoli inequality to (28) with p = 6 and r = 1 combined with (29) leads to

1
2

< KE(1-0) YU/
o S K (1= 0 U=/

1
<2K3(1-0)7"

ek
”vaE/ HLQ(B;/M L2( s/ek(o)

99



100

Therefore, from the assumption (27) for k£ and (31), by the Holder inequality we obtain

2
T
< Z|ak]‘ +9”kz} ayzUE /0 ) s/9’€< ){

Z |ak+1,]
j=1 j=1 Jj=1
k+1
< 2K29_5(1 —0)~ty e,
=1
which with (30) proves the assertions (26) and (27) for k 4+ 1. This completes the proof. 0

3.2 Proof of Theorem 3.1

We prove Theorem 3.1 by applying Lemma 3.3. Fix p € (0,1) and let 6 € (0, %) and ¢, € (0,1)
be the constants in Lemma 3.2.

Proof of Theorem 3.1: Since the equations (S¢) are linear, it suffices to prove the estimate

%
<][ m?) <or. (32)
BE, (0)

Set £ = ¢, and let € € (0,6®)]. Firstly we note that if » € (6, 1], then

1
() o
T+ (0)

holds. Thus we focus on the case 7 € [¢/e(), 0]. For any given r € [¢/e®), 0], there exists k € N
with k& > 2 such that r € (6*,*71] holds. From ¢ € (O,Ok*16(3>] we apply Lemma 3.3 to see

that
2 3
(][ |u6|2) < (073][ |u5|2)
B (0) ng,1,+(o>

1
<03 (][ |uf () Zak 14( Jfge]—FEU(J) | dx )

9’“*1,+(0) J=1

e 2(Z|ak iy <z][

< ptmk— n-3

+003(1—60)" 1 -0 (Z][

ok—1 4

‘xgej + oW (= ))’ dx)i (33)

. 1y
1
’xgej—i-sv(]) | dz ) ,

where C' depends only on [|||yy1,00(g2y. From (14) with m = 0 in Lemma 2.3 one has

1
(Z][ yxge] +5v<]> )| dm) T o0F 10T,

ok~ 1+

Therefore, by 851 € (0,6='r) and ¢ € (0, #*1e®)], we have from (33),

1
<][ \u€|2) <O I L 0031 — 0) 1 (1 — om0V 220 T)
B; . (0)

< (o5 co i1 —0) (-0 (14 (€9



Hence we obtain the desired estimate (32) by letting p = % for instance. This completes the
proof of Theorem 3.1. a

4 Proof of the main results

We prove Theorem 1.1 and Theorem 1.3 in this section. As is done in Section 3, we first work out
the compactness and iteration lemmas in Subsection 4.1. Contrary to the linear case, we need
to carry out a careful analysis of the iteration argument due to the nonlinearity. Indeed, since
we do not assume any smallness condition on solutions of (NS?), a naive iterated application of
the Caccioppoli inequality leads to a blow-up of the derivative estimate in the nonlinear case.
We overcome this difficulty a priori by taking the free parameter 6 appearing in the compactness
lemma sufficiently small depending on the bound M of the solution to (NS¢). Eventually, the
proof of Theorem 1.1 and Theorem 1.3 is given in Subsection 4.2.

4.1 Nonlinear compactness and iteration lemmas
We consider the modified Navier-Stokes equations:

— AU+ VP = -V - (U Q1 + b @ U°)
— X°U®-VU® +V-F° in Bf_(0)

MNS*®
V-U®=0 in Bf (0) ( )
U® =0 onI(0),
where b° = b°(z) is defined as
2 N
b(x) =Y C5(zse; + ew)(g)) ., x€Bi(0). (34)
j=1

Note that V -5 = 0 in Bf ,(0) and »* = 0 on I'{(0). The compactness lemma is stated as
follows.

Lemma 4.1. For M € (0,00) and p € (0,1), there ezists a constant 6y € (0, %) depending on

M and p such that the following statement holds. For any 6 € (0,00, there exists €, € (0,1)
depending on ||V|lyw1.cm2), M, p, and 0 such that for ¢ € (0,e,], (\°,Cf,C5) € [-1,1]3, and
Fe € L2(B5 . (0)%*3 with

IE N 285, 0)) < Mep, (35)

any weak solution U = (Us (), Us (), U5 (x)) " € Hl(Bi+(O))3 to (MNS®) with
fo s (36)
Bi (0

satisfies

2
Fo 0@ = Y O ag o ase + 20D do < 26, (37)
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Proof. By setting

Ue pe Fe
e _ 2 e _ - e _ 2
V - M ) Q M ) G M ’
we see that V¢ and G° satisfy
f VST 1 o <
1

and that (V¢ QF) solves the equations

—AVELVQ = -V (VED B+ @ VF)
~ MXNVE-VV+ V-G in Bf,(0)

38
V-VE=0 in B;(0) (38)
VE=0 onI5(0).
In the following we consider the rescaled equations (38). Hence our goal is to obtain
][ |Ve(z) — 2(831/]5)35 L) (z3ej + Ev(j)(g)ﬂ2 dz < 672, (39)
+(0 j=1 ‘

we choose fy € (0,3%) in the statement as follows. Let

For given M € (0,00) and p € (0,1), w
(B1 ,(0)) be a weak solution to the e-zero limit equations

(V°.Q") € H'(By ,.(0))* x L*(B

1
27

2 2
—AVY 4 VQO =-V- (VO & (ZC]ngej) + (ZC]Q:L’gej) & VO)
J=1 J=1

= MXV? -V in By (0) (40)
V-V'=0 in By ,(0)
VO=0 on F%(O)

with

/ Vo2 <4. (41)
B%#(O)

By the regularity theory to (40) in Appendix using (41), we see that V0 € C?(Bsz , (0)) and
g

0
||V HCZ(B§,+(()>) S K
with a constant K depending on M but independent of (A\°,CY¥,CY) € [-1,1]*. Then, in the
same way as in the proof of Lemma 3.2, we choose 6y € (0, %) sufficiently small so that for any

0 e (07 (90}

92+2u

][ Z 53V0 Bg+ xge]‘ dz < (42)
By, +(0 )

=1



holds. We emphasize that 6y depends only on M and p. The rest of the proof is done by contra-
diction. Assume that there exist 6 € (0,6p] and sequences {e;}7>, C (0,1) with limj_,o e, =0,
{(A%, C1F, G302y C [=L 1), and {GF}2, € L*(B1%,(0))**? with

”GE}CHL?(Bffi(O)) <eg.

Moreover, we assume that there exists {V}2, in H'(B7*, (0))® with
£, e (13)
Bk 0)
satisfying both
— AV VQF = —V - (Vo @ b 4 b @ V)
— MASVEE YV 4 VG5 in B, (0)
V.V =0 in B, (0)
Ve =0 on I'{*(0)

and

][ VE’c Z 83V B (0) (z3e; +5kv(]) 5 ’ dz > %21, (44)
(0) k

=1

We extend Vsk v (-/e1,), and G= by zero below the boundary, which are respectively denoted
by Ver, v (. /e;,), and GE* again, and see that Vet € H'(B1(0))® and G+ € LQ(Bl(O))?’X?’ for
all k& € N. By applying the Caccioppoli inequality in Lemma A.2 with p = 5 and » = 1 in
Appendix, we obtain

Ve ||L2(Bfk 0) = C(1+M3)

uniformly in k& with a constant C' independent of M. Here we have used (13) in Lemma 2.3
and (43). Hence, up to subsequences of {VE£}2° = {(A%k, CT*, C5¥)}7° |, and {G*}3° |, which
are respectively denoted by {Ver}72 | {(A, CT*, C5F)}22,, and {G®F}° | again, there exist
Ve Hl(B% (0)) and (A%, G0, CY9) € [=1,1)3 such that in the limit k — oo,

ver — VO oin L2(B%(o))3, vver —~ vvY in LQ(B%(O))M,

(A, CFF, C5F) = (A, C7,C9) in [-1,1°,  G* — 0 in L*(B1(0))***.

[

On the other hand, the assumption (43) implies (41). Hence, from (14) with m = 0 in Lemma
2.3, by a similar reasoning as in the proof of Lemma 3.2 combined with the convergences

VEr Ve o VO VY in Ll(B%(O)):‘,

Ve ® ZC kEk’U(J) ZC kEkUO) ) & Vek
j=1

— 0 in Ll(B (o))3x37

1
2
we see that the limit VO gives a weak solution to (40) satisfying (41). Then, in the same way
as in the proof of Lemma 3.2, we reach a contradiction to (44) from the choice of 6 € (0, 6] in
(42). Hence we obtain the desired estimate (39) yielding (37). This completes the proof. O
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Next we prove the iteration lemma to the Navier-Stokes equations

—Auf +Vp® = —uf - Vu® in Bf (0)
V-u®=0 in B, (0) (NSF)
ut =0 on I'5(0) .

An important step is the a priori choice of § of Lemma 4.1 depending on the bound of the
solution. Let Ky be the constant in the Caccioppoli inequality in Appendix.

Lemma 4.2. Fiz M € (0,00) and p € (0,1), and let 6y € (0, %) be the constant in Lemma 4.1.
Choose 6 = 6(M, u) € (0,6y] sufficiently small to satisfy the conditions

4
3

1
ARG (1= 071 (6 + 2 M) 2 Moz <1
2 M63)* +(1—9)-%(01(1—9H) (6 + 28M*) 2 Moz

(Cr(1—0")~ 16+ 2°M*)2 M
-0 7

= 4

and  Co(1 —60")72(6 +28MH Mo <1,

(45)

where C1 and Cy are numerical constants appearing respectively in (55) and (56) in the proof.
Moreover, let ¢, € (0,1) be the corresponding constant for 6 in Lemma 4.1. Then for k € N and

€ (0, 9k+2(2+u)(1—51k)—lgi—51k] , (46)

where &1y, is the Kronecker delta, any weak solution uf = (u§(x),u§(w), u5(x))" € Hl(Bf7+(0))3
o (NSF) with

][ [uf|? < M? (47)
(0)

satisfies

N

][ |u®(z) — Za;j (z3e; + ev(j)(g))IQ dz < M29@+2k (48)
. (0) j=1

Here the number aj ; € R, j € {1,2}, is estimated as

2 k
1

1 1
S lag,l < Kgom3(1—6)"H(6+2°(1 - 6) 2M*Y)2 M Z ui=1) (49)

Jj=1 -1

Proof. The proof is done by induction on k € N. For k = 1, from ¢ € (0,g,], we can apply
Lemma 4.1 to (NS?) by putting in (MNS®),

(UE7P6):(U’E7PE)7 A =1, 05207 je{172}7 F*=0.

Thus, if we set af ; = (83u§)33+(0), j € {1,2}, the assertion (48) for the case k = 1 follows.
Moreover, from (47), the Caccioppoli inequality in Lemma A.2 with p = 0 and r = 1 leads to

||Vu5k||iz(32k+<o)) < Ko(1— 6)’2(Hu5||%2(3157+(0)) +(1- 9)72HUE||%2(B§7+(0)))
< Ko(1—0)"2(4+25(1 — ) 2M*) M>.
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Hence we obtain (49) for £ =1 from

2
1
Z a1 ;1 < 2[B5 1 (0)]72[[Vur]l 255 o))

j=1 (50)

1 , 1
< K30 2(1—6)" (4+2°5(1—0)"2M*) 2 M.
Next we assume that (48) and (49) hold for £ € N and let ¢ € (0,0k+2(2+“)€i]. We define
U/ = U=/ () and P*/?" = /%" (y) on B/ (0) by

2
& 1 0Fy
U () = s (uﬁ(akwf}?jekaz,,,-(ygej D)),

2
W( Z qO)( ?y )

J=1

P (y) =

After a direct computation, we see that (UE/Ok, Pe/%") is a weak solution to

— AU v, P = v, (U © (0567 + (076" 0 UF/?)
o 9(2+H)kU5/0k . vaE/ok

+ 9, F i B (0) (51)
v, U =0 in BY(0)
Us/%* =0 on re/“) (0),

where b*/%" = b°/%" () and F=/%" = F</%" (y)) are respectively defined by

=/0F 2 5 < ) 0ky € k e
b (y) = ch,k(y3ej + g ( B ) Cip=0%ag;,
=1
2
I () = 07 (517" () 6/ (1) Zc e)) © (3 C5usey)
kY3 ] 5,kY3€5) ) -

Note that V, - b/%" =0 in Bs/a (0) and b/ = 0 on Fa/e (0). Moreover, we can subtract

2
(> C5ruse) & Z < 1Y3€;5)
=1

from b°/%" @ b</?" beforehand, since it vanishes if we take its divergence. This is indeed a crucial
fact in the following proof where we cancel singularities in #~! by choosing ¢ small with respect
to 6 as in (46). From the recurrence hypothesis, (48) at rank k, we also have

][ 1% ) U/ 2 < M2 (52)

by a change of variables. Let us estimate b¢/ " and F</%". From the recurrence hypothesis

2 1
> lag ;| < AKZOTE(1— 7)1 (6 + 26 MY)E M (53)
j=1
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holds, where (1 — #)~! < 2 was used. We have uniformly in k € N,
1
105 CS | < 4KE(1— 64)71(6 + 25 M%) 2 Mo < 1 (54)

by (45). Moreover, by (13) in Lemma 2.3 and € € (0,0%+2(*1e2] we see that

2

k 1,k
IV, (0" MW iaszret o) < C(Y_10*C54l) (1 +22672)
, =~

< Cy(1—0M)71(6 + 28 M%)z Moz

(59)

where C is independent of k, M, 6, and e, while the definition of Fe/o* implies that for y €
B/ (0),
2 2
[F/" ()] < CO 153 |ai ) 22 |(J)Ty|+ 2[00 ?y)‘)'

j=1 j=1

Thus, from (14) with m = 0 and m = 2 in Lemma 2.3, we have again by ¢ € (0, 01”2(2*”)63],

[V < COR-WE=3(1 — gr)=2(6 + B MY M2 (2075 + 07F)

1285/ (o))
< COT1( = 04)72(6 + 28 MA) M2 (e, 07 + 5202(2-&-#)) (56)
< (C(1 — M) 72(6 + 2 M*)MO) Me,, ,

where C5 is independent of k, M, 6, and . Then, from (52) combined with (54) and (56) under
(45), since £/6% € (0,e,], we can apply Lemma 4.1 to (51) by putting

(U¢, P°) = (Ue/f)""Pe/G’“)7 2\ — 9(2+/4)k’
s =6°cs,, je{l2y, F =rF/"

n (MNS?) and find that

2 k
/0 0, U™ cor + S0 (LYY 12
][;5/91‘( |U ]:1 7J3 ] E,/zk(o)(ydej + ekv ( c ))‘ dy
< M2+
A change of variables yields that
2
][5 |uf(@) = Y afy(ase +5”(]) )| do < Mg (57)
ng+11+(0) j=1
where the number aj ., ;, j € {1,2}, is defined as
k /0%
G = ai + 0 (95 o (58)

Let us estimate aj, ;. By (52) and (55) under (45) we have

k 4 k "
(19,077 (1= 0 H v (0 o,

L2(B*" (0)) L2(B5/gk(0)))
<(1-60)"2Mm2.

B/ (0))



Then (56) under (45) and the Caccioppoli inequality applied to (51) with p =0 and r = 1 lead
to

v7 (]E/@lc 2
V30 1,

& k
< Ko(l - ‘9) (HU5/9 HiZ(BE/Ok(O)) + (1 ) 2||U6/(9 ||(LS/2(BE/M(0)) +2 2)

< Ko(1—0)72(6+25(1 — ) 2M*) M?.
Therefore from the Holder inequality we obtain

2
s/é)k /0% _1 /6%
3 @) | < HBE OO

1 1
<KE03(1—0)"1(6+25(1—0)>M") 2 M .
Thus, by the recurrence hypothesis, (49) at rank k, and (58), we have

2

Z |af41,4] < Z |aj. ;1 +0Mk2‘ aysUe/gk) e/ek(o)|

Jj=1 Jj=1 j=1
L . k1
< KZ075(1—0)7 (64 25(1— 0) M) 2 3 -
=1

which with (57) proves (48) and (49) at rank k& + 1. This completes the proof. dJ

4.2 Proof of Theorems 1.1 and 1.3

Firstly we prove Theorem 1.1 by applying Lemma 4.2. Throughout this subsection, for given

M € (0,00) and p € (0,1), let 6 € (0, %) and ¢, € (0,1) be the corresponding constants in

Lemma 4.2. Note that, for any k € N, we have

(07 0k—1(92(2+p)gi)] C (0’ 9k+2(2+p)(1—61k)—1€i—61k] .

Proof of Theorem 1.1: We fix 11 € (0,1) and set e = 92412 TLet € € (0,£M]. As in the
proof of Theorem 3.1 in Subsection 3.2, we can focus on the case r € [¢/¢(1),0]. For any given
r € [e/eD), 6], there exists k € N with k > 2 such that € (6, 0*~1]. From the bound (3) and
e € (0,0 'eM], one can apply Lemma 4.2. By using an easy estimate of ap; €R, je{l,2}k

2
S lai;l < COTE(1 -0 1+ MY M (59)
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with a constant C' depends only on [|7||yy1,00 g2y, We see that

: :
(][ ‘uSIQ) < (973][ |UE‘2)
54 (0) By i, (0)
1

. 1
<62 (][ (@) = Y aiy s (wse; + 20D (D) dx) 2
§k71,+(0) J=1 )

, 2 2 N T 2
+075 (X lai ) (Z][ © raey + 202 C)] dx)

j=1 j=1"Pgr—1 4

1
2

< Mo (E—1)-3

1
2

2
+CO3(1— 0 1+ MY M (Z][ |zse; + 0 (2)) \zdx>
j=1/Bg_1 (0) €
Then, in the same way as in the proof of Theorem 3.1, we have
1
2
(][ |u‘5\2> < (eféﬂw Lo — ) (1 4 (eW)3) (1 + M4)%)Mr .
By 1 (0)

Hence we obtain the assertion (4) by letting p = % for instance and by defining C’J(Vl[) by
clh) = (9*3 FOOH1— 031+ (M) +M4)%)M.

Indeed, it is easy to see that C](Vl[) increases in M if one chooses 6 to be the supremum of the

numbers ¢ satisfying (45) with p = . Moreover C](Vl[) converges to zero when M — 0 from this
choice of §. The proof is complete if we combine the trivial estimate for r € (6,1]. O

Next we prove Theorem 1.3. Let al¥) € R3, j € {1,2}, be the constant vector in Proposition
2.2.

Proof of Theorem 1.3: As in the proof of Theorem 1.1, we set ¢(2) = 92(2+”)si and take
e € (0,e@].

(i) We focus on the case r € [¢/e()), 6] again as in the proof of Theorem 1.1. Since every
r € [¢/e®), 0] satisfies r € (9%,0F1] with some k € N satisfying k > 2 we have

: :
(]{Bi,+(o> 0@ = D ks mes] dx)

Jj=1

2 1

5

< (973][6 lu®(z) — z:ai_l,jac?,ej‘2 dz)
gk—17+(0> Jj=1

< MoHI D)3

2 1
+06”3(1—9”)’1(1+M4)%M5(Z][ yu<j>(f)|2dx>2,
j=1"Bgk-1 (O <

)

where Lemma 4.2 has been applied in the third line. The estimate (59) for a1, €ER, j€ {1,2},



is also used in the same line. Then (14) with m = 0 in Lemma 2.3 and 8~ € (0,07'r) lead to

2 1
2
<][ |u6(:c) — Z ai,lijgej ’2 dx)
Br (0) =1
< (73 mrtes comE(1— 9 (1 M) Redr )M
Hence we obtain the assertion (5) by defining ¢; ; and Cj(é) by

Gj=aiay, O = (07 oI -0 1+ MY, (60)

and by combining the trivial estimate for r € (6, 1].
(ii) In a similar way as in (i), for r € [¢/e®), 0] with € (6*,6%], we have

1

. 2
<][ |uf(z) — Zc?j(xgej +5a(3>)|2da;>
B;4(0)

) j=1
< MoOHWk=1)-3 (61)

,vm(g) QU2 dx) &

2
+CO3(1— oM (1 + M4)%Mg<z][
j=1 ng—ld_(o)

where Lemma 4.2 and the estimate (59) are applied again. Moreover, the notation Cf_, = aj_4 j
in (60) is used. Then (14) with m = 0 in Lemma 2.3 and (12) in Proposition 2.2 lead to

<§:][ o ;w)(g) B a(”Ide)%

i
<ot (S [ ) - a0 Par)’
j=1 Bgsd—(o) c

2 k—1 1

0
/ WD)~ o[ day d$/> ’
2 Je 3

Hence, by 0*~1 € (0,0'7), 7=t € [)=+1 =), and ¢ € (0,0F )], from (61) we find

1

. 2
(][ |u5(x) — Z ci’j(xgej + sam) ‘2 dz)
B:_(0) =

< (9—%—%“# FCO3(1— M) N1 + D)1 + M4)%a%r—%)M.
The assertion (6) follows by setting

c? = ((r%*“ FCO3(1— 0" (1 4+ @) (1 + M4)%)M.

This completes the proof by using the trivial estimate for r € (0, 1].
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A  Appendix

In this appendix we state a few technical lemmas without proof. The proofs can be found in
[19, Appendices A and B]. The first one is about the regularity results for

—Au+Vp=—-V-(u@b+b®u)—Au-Vu mB%A_(O)
V-ou=0 in B%Hr(()) (62)
u=20 onI’%(O)7

where b = b(x) is defined as b(z) = Z?:l Cjzse;.

Lemma A.1. Let (A C1,C2) € R® and let (u,p) € Hl(B%ﬂL(O))?’ X LZ(B%#(O)) be a weak
solution to (62). Then for allr € (0, %), we have

u€ C®(Br1(0))°,  peC®(B4(0), (63)
and for all k € NU {0}, we have
Hu”Ck(Bwr(())) <K, (64)
where the constant K1 depends nonlinearly on (X, C1,Ca), |lull 25, L) and k.
1
The second one is about the Caccioppoli inequality for
—Auf +Vp* ==V (b @uf +u® @) — A(u® - Vu') + V- F° in B (0)
Vou =0 in B, (0) (65)
u® =0 on I'5(0).

Lemma A.2. Let ¢ € [0,1), b° € H'(Bf ,(0))* with b° = 0 on T5(0), A* € [0,1], and F* €
L2(Bi+(0))3X3, and let u® € Hl(BjJr(O))3 be a weak solution to (65). Then we have for all
O<p<r<l,

1
||VUEH%2(B;+(O)) < Ky ((7‘ — p)2 ||u€||%2(Bfr+(O))
4
VO 2252 , )
4 0 2 66
+ (\|Vb5\|L2(Bi+(O)) + e p)% >||u5HL2(B;+(0)) (66)
(A9

+ WHUEHGL?(B?JJO)) + ||FEH%2<B§,+<0>>> :

where the constant K depends only on HA/HWLoo(Rz). In particular it is independent of €, b°, A%,
p, and r.
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