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1 Introduction 

Coherent configurations are a generalization of association schemes. Assa-

ciation schemes and coherent configurations are defined as sets of {O, 1 }-
matrices, called adjacency matrices, satisfying some conditions (see Defini-

tion 2.1 and [2]). Adjacency algebras of association schemes and coherent 

configurations are defined as algebras spanned by adjacency matrices over 

the complex field C. 
Commutative association schemes are association schemes satisfying that 

all adjacency matrices are commutative each other. Commutative association 

schemes have primitive idempotents and the sets of primitive idempotents 

are bases of adjacency algebras. 

For commutative association schemes, fusion schemes are considered in [1] 

and [9] and these papers revealed the equivalent condition for commutative 

association schemes to have fusion schemes, called the Bannai-Muzychuk cri-

terion. In the proof of this equivalence, partitions for both sets of adjacency 

matrices and primitive idempotents are given. 

On the other hand, the sets of primitive idempotents for non-commutative 

association schemes and coherent configurations are not bases of adjacency al-

gebras of them. In stead of the sets of primitive idempotents for commutative 

association schemes, we may consider decompositions of adjacency algebras 

of non-commutative association schemes and coherent configurations given 
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by the Wedderburn theorem. The wedderburn theorem is a theorem in the 
representation theory of algebras and gives bases for adjacency algebras of 

them (see Definition 3.1 and [8]). For non-commutative association schemes, 

[8] revealed the sufficient condition for non-commutative association schemes 
to have fusion schemes. 

In some sense, fiber-commutative coherent configurations (see Defini-
tion 2.2) can be regarded as a generalization of commutative association 
schemes. In this paper, we reveal an equivalent condition for fiber-commutative 
coherent configurations to have fusion configurations. To describe the equiv-

alence, we use bases of adjacency algebras of fiber-commutative coherent 

configurations, called bases of matrix units (see Definition 3.1). Since the spe— 

cialization for commutative association schemes of this equivalence is same 

as the Bannai-Muzychuk criterion (see Corollary 5.1), this equivalence is a 
natural generalization of the Bannai-Muzychuk criterion. Note that, bases of 

matrix units for adjacency algebras of coherent configurations are defined in 
[7] as a specialization of [4], [5]. In particular, for fiber-commutative coherent 
configurations, the concept of bases of matrix units for them are described 
in [6]. 

2 Coherent configurations 

Let X be a finite set and凡 CXx  X be binary relations for i = 0, 1, ... , d. 
For Ri, adjacency matrix Ai with respect to Ri is de且nedas (A山，y= 1 if 
(x, y) E凡 andO otherwise. 
Let I, J E Mx(CC) be the identity matrix and the all-ones matrix, respec-
tively. 

Definition 2.1. For a finite set X let R o,R1, ... ,Ra C Xx  X be binary 
relations of X x X and A。,A1, ... , Aa be the adjacency matrices. A coherent 
configuration (X, {R心） is defined as 

(i) there exists a subset KC  {O, 1, ... , d} such that L Ai= I, 
iEK 

d 

(ii) LA= J, 
i=O 

(iii) for any i E {O, 1, ... , d}, there exists i'E {O, 1, ... , d} such that A, = 
AT 
i' 
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d 

(iv) Aふ=~尤Ak,
i=O 

The algebra spanned by A。,A1, ...'心 over(C is called the adjacency alge-
bra. Coherent configurations with IKI = 1 are called homogeneous coherent 
configurations or association schemes. 

For a coherent configuration C = (X, { Rk}い）， sincethe index set 
{O, 1, ... , d} is not suitable for this paper, we rearrange it into an index set 

of triples as follows: By the Definition 2.l(i), IE Mn(C) is decomposed into 

{O, 1 }-matrices. This implies that Xis decomposed into X = uiEFふ forthe 
set F = {1, 2, ... , IKI}. By the Definition 2.l(iv), for any k E {O, 1, ... , d}, 
there exist i, j E F such that Rk c Xi x Xi. For any i, j E F, we de-
note ri,j = #{k E {O, 1, ... , d} I Rk C Xi x Xj}- Thus the index set 
{0,1, ... ,d} can be replaced by {(i,j,a) I i,j E F,a E {1,2, ... ,ri,j}} and 
{Rk此。={Ri,j,a I i,j E F,a E {1,2, ... , ぃ｝｝．
Note that, the eachふiscalled a fiber. In the rest of this paper, we always 
use {(i,j,a) I i,j E F,a E {1,2, ... ,ri,j}} as the index set of adjacency 

matrices and relations instead of {O, 1, ... , d}. 

For brevity, we always assume that A,i,l = Ixi for all i E F and Aj,i,a = 
AT. 
i,J,a foralli,jEF(iヂj),where Ixi is the diagonal matrix with (IxJx,x = 1 
if x E Xi and O otherwise. 

Let辺bethe adjacency algebra of C. Since 2l is a subalgebra of Mx(C), 
辺isdecomposed into a direct sum of subspaces: 2l = EBi,jEF丸j,where翫・
are subspaces of辺spannedby { Ai,j,a I a E {1, 2, ... , ri,j}} for i, j E F. It is 
clear that {A,j,a I a E {1, 2, ... , ri,j}} is a basis of叫，j・

Defimt10n 2.2. Let C = (X, {Ri,j,ah,j,a) be a coherent configuration with 
fibers X = uiEFふ.For each i E F, the coherent configuration C is fiber-
commutative if 2li,i is commutative for all i E F. Similarly, C is fiber-
symmetric if辺i,iis symmetric for all i E F. Fiber-commutative coherent 

configurations with IFI = 1 are called commutative association schemes. 

3 Fiber-commutative coherent configurations 

In the rest of this paper, we assume that all coherent configurations are 

fiber-commutative. 



36

Let別bethe adjacency algebra of a fiber-commutative coherent configu-

ration C. Let <I> = { c/Js I s E S} be a set of representatives for all irreducible 
matrix representations of sit over CC satisfying如(A)*=か(A*)for any A E叫
where * denotes the transpose-conjugate. Since sit is semisimple, sit is decom-
posed into 

汎＝〶心
sES 

where Q:5 is a simple two-sided ideal affording cp8. Moreover, for each s E S, 
Q:s is isomorphic to Me)CC), where Me)CC) is the es X es full-matrix algebra 
over CC. 

Since C is fiber-commutative, for any s E S, i E Fs, dim(siti,i n Q:s)さ1
holds (see [7, Lemma 2.9]). This assertion is also proved in the view of the 
representation theory by [3, Proposition 2.1]. Thus, for each s E S, let 

凡={i E FI dim(~s n叫） = l}. 

Then we may construct following bases (see [7, Definition 2.3]). In addition, 
it is clear that es= IFsl holds for each s ES. 

Definition 3.1. Let別bethe adjacency algebra of a fiber-commutative co-

herent configuration. Bases of matrix units for 2l are defined as matrices 

{cf,j Is ES, i,j E Fs} satisfying 

(i) for any s, t E S, i, j E Fs, k, l E Ft, cf,j出＝心，tも，kEi,z,

(ii) for any s E S, i, j E Fs, cf/ =弓，i'

(iii) for any s E S, i, j E Fs, cf,j E別i,j'

(iv) for any s E S, there exist s E S such that, Fs = Fs and, for any 
i,j E Fs, 出＝叫

Note that { cf,j I i, j E凡}is a basis of Q.:5 and {cf,j Is E S,i,j E Fs} is a 
basis of辺
Let 

si,j = { s E s I dim(辺i,jn ts) = 1} 

for each i, j E F. 

．． 
Propos1t10n 3.2. For i,j E F, Si,i = Si,i n Si,i・ 
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Proof. By尋，jE別i,jif and only if r::f,i E叫，iand弓，jE叫，jfor s E S, the 
result follows. ロ

Let 

A = II Fs X Fs X { s} = II { i} X {j} X si,j (1) 
sES i,jEF 

be the set of triple indices of bases of matrix units for辺.Since A is decom-

posed into (1), for any i, j E F, {土 Is E Si,j} is a basis of the subspace 
翌•
Thus, for i, j E F, 翌 has{A,j,a I a E {1, 2, ... , ri,j}} and {sf,j Is E si,j} 
as bases and it means that these matrices are expressed as 

A,j,a= L加，a(s)sf,j,
sESi,J 

1 
r,,1 

c・. = 
i,J v1叉図 a=lL Qi,j,s(a)Ai,j,a 

for Pi,j,a (S), qi,j,a (S) E C. 

Definition 3.3. For a fiber-commutative coherent configuration C, the first 

and second eigenmatrices are defined as P = (Pi凸，jEF,Q = (Q叫i,jEF,re-
spectively, where (Pi,jい=(Pi,j,a(s)) and (Q叫a,s= qi,j,s(a). 

Note that P, Q have matrices in their entries. By this definition, Pi,j, Qi,j E 

叫，J(C) satisfy Pi, 心，i=~I八，j.

4 Fusions in fiber-commutative coherent con-

figurations 

Let C = (X, { Ri,j,ah,j,a) be a fiber-commutative coherent configuration with 

fibers且iEFふ，辺＝〈Ai,j,aI i,j E F, a E {1, 2, ... , ri,j}〉icbe the adjacency 
algebra of C and {cf,j I (i,j, s) E A} be the bases of matrix units for the 

adjacency algebra辺whereA=几，jEF{i}X {j} X si,j・Moreover, let p = 
(Pi,j) be the first eigenmatrix of C. 
In this section, we give an equivalent condition for a subalgebra of~to 
be the adjacency algebra of a coherent configuration with the same fibers as 

those of C. 
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Defimt10n 4.1. A coherent configuration C'= (X, {Rいh,j,a)is a fusion 
configuration with the same fibers as those of C if C and C'have the same 
fibers and the adjacency algebra別'ofC'is a subalgebra of 2l. 

Note that, since C is fiber-commutative, each fusion configuration with 
the same fibers as those of C is fiber-commutative. 

Defimt10n 4.2. A family of partitions△ = {△ i,j I i, j E F} is called 
admissible if 

(i) for any i, j E F, 且<lE△i,i r5 = {1, 2, ... , ri,j}, 

(ii) for any i E F, {1} E△ i,i' 

(iii) for any r5 E△ i,j, { a E {1, 2, ... , rj,i} I Af,i,a = A,j,b for some b E <5} E 
△ j,i・ 

Lemma 4.3. If C'is a fusion configuration with the same fibers as those of C, 
then there exists a uniquely determined admissible family of partitions△ = 

｛△ i,j I i, j E F} such that C'= (X, { R~,j, 止，1,o),where Rい=UaEo凡，j,a
for 6 E△ i,j. Conversely, if△ = {△ i,j I i, j E F} is an admissible family 
of partitions, then the set { A~,j,o I i, j E F, 6 E△ i,j} satisfies conditions of 
Definition 2.1 (i), (ii), (iii), where Aい＝区aEoAi,j,a・ 

Proof. Let { A臼，bI i, j E F, b E {1, 2, ... , r~,1}} be the set of adjacency 
matrices of C'and別'bethe adjacency algebra of C'. Then辺'isa subalgebra 

of辺andit implies that, for any i, j E F and b E {1, 2, ... , rt1}, there exists 

a subset bi,j,b c {1, 2, ... , ri,j} such that 

Aい＝区 Ai,j,a・
aEふ，j,b

By Definition 2.1 (i), (ii), (iii), for all i,j E F, △ i,j = {c5i,j,b I b E {1, 2, ... , 応｝｝
satisfy Definition 4.2 (i), (ii), (iii) and△ ={△ i,j I i, j E F} is admissible. 
The converse is clear by Definition 4.2. ロ

The following theorem essentially reveals the condition in Definition 2.1 (iv). 

Theorem 4.4. Let G = (V, E) be a bipartite graph with V = F U S and 

edge set E = {(i, s) I (i, i, s) E A}. Then C'= (X, {R~,j,ohj,o) is a fusion 
configuration with the same fibers as those of C, where R~,j,o = UaEo凡，j,afor 
c5E△ i,j, if and only if△ ={△ i,j I i, j E F} is admissible and there exist 
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(I) diagonal matrices Ci,j indexed by Si,j x Si,j with (C叫s,s = Cらfor
i,j E F, 

(II) an index set S'and subsets Ta C S, Fa C F for a E S'which gives a 
partition { Fa X'I',。Ia E S'} of E into complete bipartite edge-subgraphs; 
E = UaES'凡 X'I',び 9

such that, for any i, j E F, 

(i) I△ i,jl = ISLI, 

(ii) for any s E且aEStJTa, 佑=1, leしI=1,cf』=cf:=<j, 

(iii) for any a E s:,j, 6 E△ i,j, row sums of the submatrix of Ci,jPi,j indexed 
by T,。x6 is a constant pら，6(a)and row sums indexed by Oi,j x 6 is 0, 

where SL = { a E S'I F,。3i, j} and Oi,i =恥＼（且rES!,jT)  M a . oreover, if 
C'is a fusion configuration with the same fi加rsas those of C, then the first 

eigenmatrix P'= (Pf,j) of C'with respect to bases of matrix units { c'fj I a E 

S',i,j E凡}is given by (Pf,jい＝恥，6位） for a ES似6E△i,j, where 

c'~j = L cf因，J (2) 
sETu 

for O" E S', i, j E Fa. 

5 Applications 

In this section, we apply Theorem 4.4 to commutative association schemes, 

fiber-commutative coherent configurations and the fiber-commutative coher-

ent configuration given by Zi~S6. 

5.1 C ommutat1ve association schemes 

Commutative association schemes are defined as fiber-commutative coherent 

configurations with IFI = 1. 
We assume F = {1 }. For brevity, we omit indices given by F. Let疋＝

(X, {Ra塁） be a commutative association scheme and {合 Is E S} be its 
primitive idempotents. Since疋hasonly one fiber, any fusion configuration 
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with the same fiber as those of疋hasalso a fiber X and is called a fusion 
schemes. Then an admissible partition△ for疋satisfies

(i) {l} E△, 

(ii) for any 5 E△, { a I Ar = Ab for some b E 5} E△. 

Let S'be an index set with IS'I = I△ I and, for a E S', let T{J C S. Note 
that, by IFI = 1, F =凡 holdfor all a E S'. Then the bipartite graph 
G = (V, E) defined by疋hasvertex set V = FUS = {1} US and edge 
set E = { (1, s) I s E S}. Thus the partition {{1} x T{J I a E S'} of 
E can be identified with the partition {T{J I a E S'} of S. Moreover the 
first eigenmatrix P is decomposed into submatrices indexed by T{J x 5 for 

a ES', 5 E△ • In this case, it is clear that c8 = 1 for all s E S and O = 0. 
Thus Theorem 4.4 for commutative association schemes is specialized as 

follows. 

Corollary 5.1 (Bannai-Muzychuk criterion, [1, Lemma 1] and [9]). Let 
疋=(X {Rぷ=1)b e a commutative association schemes, {ざ Is E S} be 
its primitive idempotents and P be its first eigenmatix. Then疋hasa fusion 

scheme疋=(X, {R~ い） given by a partition△, where R'=且aE'5凡 for
6E△, if and only if△ is admissible and there exists a partition {T{J I a E S'} 

of S such that IS'I = I△ I and for any a E S', 5 E△, row sums of the subma-
trix indexed by T{J x 5 of P is constant. 

5.2 Trivial fusion configurations with the same fibers 

Any fiber-commutative coherent configuration has a trivial fusion configura-

tion with the same fibers. Let C = (X, { Ri,j,ah,j,a) b e a fiber-commutative 

coherent configuration and別=E0i,1年鬼 beits adjacency algebra. Define 
an admissible partition△ ={△ i,j I i, J E F} as follows: 

(i) for i E F, 心={{1}, {2}, ... , {叫｝，

(ii) for i,j E F (iヂj),△ i,j = { {1, 2, ... , ぃ｝｝．

By the definition of△, it is trivial that△ gives a subalgebra辺'=④i,jEF翌
such that翌＝叫 and叫，j=〈区贔Ai,j,a〉cfor i ::/-j and Qt'is the 
adjacency algebra of a certain fusion configuration C'with the same fibers 
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as those of C. By Theorem 4.4, the edge set E of the bipartite graph G is 

decomposed into 

E=(Fx{s0})LJ II {(i,s)} 
(i,s)EE 
sナso

where 心＝〈~:当A,j,aI i,j E F〉cis the simple two-sided ideal of汎
corresponding to s0 ES. In other words, Both sit and辺'haveQ:80 as a simple 
two-sided ideal. In this case for an i・ y ,J E F (iヂj),ISI,il = ISi,il and 
Oi,i = Si,i ¥ { so} hold. 

5.3 The fib er-commutative coherent configuration given 

by zi XI s6 
There is a unique primitive permutation group g of degree 81 of the form 
g~zi ><1 S6, where Z3 is the cyclic group and S6 is the symmetric group on 
6 letters. 

Since g has nontrivial outer automorphisms, we fix an outer automor-
phism x. Let Q'= {(g,gx) I g E Q} be a permutation group of degree 162. 

Then the set of all orbits of g gives a fiber-commutative coherent configura-
tion C = (X, { Ri,j,ah,j,a) with F = {l, 2} and r1,1 = r2,2 = 4, r1,2 = r2,1 = 3. 
Moreover the adjacency algebra辺canbe decomposed into 

別＝①C名 9
i=O 

where~si~M2(C) for i = 0, 1, 2 and~si~C for i = 3, 4. By this decom-
position, we may write Fs。=Fs1 = Fs2 = {1, 2}, 肛={1 }, Fs4 = {2}. The 
first eigenmatrix P = (Pi,j) can be written as 

1 2 3 4 1 2 3 4 

So 1 30 20 30' So / 1 30 20 30 

P1,1 = 
S1 1 -6 2 3 

,P2,2 = 
S1 1 -6 2 3 

S2 1 3 -7 3 S2 1 3 -7 3 

S3 1 3 2 -6) S4、1 3 2 -6 
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Note that A,i,a are symmetric for all i E {1, 2}, a E {1, 2, 3, 4} and AL,a = 
A2,1,a hold for all a E {1, 2, 3}. 
For C, let S'= {びo,び1'(乃，四}and, we define△ ={心 Ii,j E {1, 2}} 
and Ta, F,。fora E S'as follows: 

ふ，1=ふ，2= {{1},{2,3},{4}}, 

ふ，2=ふ，1= { {1, 2}, {3} }, 

Ta。={so}, Fa。={1, 2}, 
互={s1心},Fa1 = {1, 2}, 

Ta2 = {的},Fa2 = {1 }, 

互={s4}, F, び3= {2}. 

Then△, Ta, Fa satisfy the conditions in Theorem 4.4 with cf,j = 1 for all 
i,j E {1,2},s E Si,j・In this case, 01,2 = 02,1 are empty. Thus a fusion con-
figuration with the same fibers as those of C is obtained and its eigenmatrix 

P'= (P[,j) is 

{1} {2,3} {4} {1} {2,3} {4} 

a。(150 30) u。(150 330) P{.1 = 0"1 1 -4 3'P: 幻＝び1 1 -4 

び2 1 5 -6 四 1 5 -6 

{1,2} {3} 

びo(75 n P1' ,2 =P2',1 = 3 
び1 -

Moreover, 辺hasthe following subalgebra Qt". Since this subalgebra is 
not closed with respect to the transpose, this subalgebra is not an adjacency 
algebra of any fusion configuration. For i = 1, 2, we construct subalgebras 
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叫'.iC叫，iwhich is the same as above; i.e. 

況＝〈Ai,i,l,Ai,i,2 + Ai,i,3, Ai,i,4〉c
＝〈堺，s:)+ r:::}, 唸〉C,

where a=  3 if i = 1 and a = 4 if i = 2. Thus the transition matrices with 

respect to these bases are P::i = P'. for i = 1, 2. On the other hand, in 
叫，2叫，1,we construct subspaces 砥:~叫，1as follows; 

叫，2=〈A1,2,1+ A1,2,3, A1,2,2〉c

=〈C訟 ~(sf\-2喝）〉IC'
翌＝〈A2,1,1,A2,1,2 + A2,1,3〉c

1 
=〈C岱，一ー(2吋¥―sf髯）〉IC・
v12 

Note that the transition matrices with respect to these bases are 

{1,3} 

応=~~(ふ ，
 

、＼’_ー／’

}
。
⑫
6

6

 

2
 
｛
 

{1} {2,3} 

Pふ=~~(ふ＿ば½),
whereびO,び1correspond to { s0}, { sぃs2},respectively. Then 

2 

辺II= 〶翌
i,j=l 

is closed with respect to the matrix multiplication and this is a subalgebra 

of辺whichis not closed with respect to the transpose. 

This example shows that adjacency algebras may have subalgebras which 

are closed with respect to the Hadamard product and not adjacency algebras. 
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